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GORENSTEIN POINTS IN P*

Abstract. After the structure theorem of Buchsbaum and Eisenbud [1boren-
stein ideals of codimension 3, much progress was made iraths from the al-
gebraic point of view; in particular some characterizaiar these ideals using
h—vectors (Stanley [9]) and minimal resolutions (Diesel [@Rre given. On the
other hand, the Liaison theory gives some tools to explait, &t the same time, it
requires one to find, from the geometric point of view, newépstein schemes.
The works of Geramita-Migliore [5] and Migliore-Nagel [6}gsent some con-
structions for Gorenstein schemes of codimension 3; iriquéatr they deal with
points inP3.

Starting from the work of Migliore and Nagel, we study thenstructions and we
give a new construction for points iPe: given a specific subset of a plane com-
plete intersection, we add a “suitable” set of points on a ot in the plane and
we obtain an aG zeroscheme that is not complete intersedferemphasize the
interesting fact that, by this method, we are able to “vigedlwhere these points
live.

1. Introduction

It is well known, by the structure theorem of Buchsbaum arst#tud [1] and by the results of
Diesel [3], what are all the possible sets of graded Betti lmens for Gorenstein artinian ideals
of height 3. Geramita and Migliore, in their paper [5], shdwttevery minimal free resolution
which occurs for a Gorenstein artinian ideal of codimengipalso occurs for some reduced set
of points inP3, a stick figure curve if?* and more generally a “generalized” stick figurefif,

On the other hand, Stanley [9] characterizedthectors of all the Artinian Gorenstein quotients
of k[xg, X1, X2], showing that theih-vectors are Sl-sequences and, viceversa, every Sl-sggjuen
(4, hq,...,hs_1,1), wherehy < 3, is theh-vector of some Artinian Gorenstein scheme of
codimension less than or equal to 3. In Section 2 we will seedagel and Migliore [6] found
reduced sets of points iP? which haveh-vector(1, 3, hy, ..., hg_», 3, 1).

In this case, the points iR3 solving the problems can be found as the intersection of two
nice curves (stick figures) which have good properties., Ih@vever, very hard to see where
these points live! We try to make the set of points found bgéheonstruction more visible.

In the last section we give some examples: we take a set afgpeihich come from Nagel-
Migliore’s construction (i.e. a reduced arithmetically i@ostein zeroscheme not a Complete
Intersection) and we study where this set lives. In pariculve have a nice description of
Gorenstein point sets whos$evector are of the forn(1,3,4,5,...,n— 1, n,n,....,n,n —
1,...,5431).

This allowed us to determine, in a way which is independerhefprevious constructions,
particular configurations of points which are reduced aritically Gorenstein zeroschemes not
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complete intersection.

2. Gorenstein points inP3 from the h-vector

In this section we will see how Nagel and Migliore find a rediiegithmetically Gorenstein
zeroscheme i3 (i.e. a reduced Gorenstein quotientidkg, X1, X2, x3] of Krull dimension 1)
with given h-vector.

We start with some basic definitions that we find in [6] and i [9

DEFINITION 1. Let H = (hg, hy, ..., hj,...) be a finite sequence of non-negative inte-
gers. Then H is called an O-sequencedfa 1and h;1 < hi<|> foralli.

By the Macaulay theorem we know that the O-sequences areilbertfunctions of stan-
dard gradedk-algebras.

DEFINITION 2. Leth= (1, h4, ..., hg_1, 1) be a sequence of non-negative integers. Then
h is an Sl-sequence if:
e hj =hg_jforalli =0,...,s,
e (hg,hy —hg,...,ht —ht_1,0,...) is an O-sequence, where t is the greatest integer
< $

Stanley [9] characterized threvectors of all graded Artinian Gorenstein quotients of
k[Xo, X1, X2], showing that these are Sl-sequence and any Sl-sequeitbehn= 3, is theh-
vector of some Artinian Gorenstein quotientkgkg, X1, Xo].

Now we can see how Nagel and Migliore [6] find a reduced aritically Gorenstein ze-
roscheme iP3 with givenh—vector. This set of points will result from the intersectiointwo
arithmetically Cohen-Macaulay curveslid, linked by a Complete Intersection curve which is
a stick figure.

DEFINITION 3. A generalized stick figureis a union of linear subvarieties @", of the
same dimension d, such that the intersection of any thregponemts has dimension at most
d — 2 (the empty set has dimension -1).

In particular, sets of reduced points are stick figure, antick figure of dimensiord = 1
is nothing more than a reduced union of lines having only s@esingularities.

So, let
h=(hg,h1,....,hs) = (1,3, hp,....,h{_1,ht,ht,....ht,h_1,...,h, 3, 1)
be a Sl-sequence, and consider the first difference
Ah=(1,2hp—hq,...,ht —h{_1,0,0,...,0,h{_1 —ht,...,—2,-1)
Define two sequences= (ap, ..., a) andg = (dp. - . . . Us+1) in the following way:

g =hj —hj_q forO<i <t
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and

i+1 forO<i <t
g=1t+1 fort<i<s—t+1
s—i+2 fors—t+1<i<s+1

We observe thaty = g1 = 2, ais a O-sequence sindeis a Sl-sequence arglis theh-
vector of a codimension two Complete Intersection. So, welavtike to find two curve<C and
X in P3 with h-vector respectivelp andg. In particular it is easy to see thagis theh-vector of
a Complete Intersectiorx, of two surfaces ifP3 of degreet + 1 ands — t + 2.

We can getX as a stick figure by taking as the equation of those surface$amns which
are the product, respectively, 8p, ..., At andBy, ..., Bs_t41, all generic linear forms. Nagel
and Migliore [6] proved that the stick figure (embeddedX)y determined by the union
consecutive lines iAj = 0 (always the first inBg = 0), is an aCM schem€ with h-vector
a. In this way, if we conside€’, the residual ofC in X, the intersection o€ andC’ is an aG
schemeY of codimension 3. This is also a reduced set of points beciyuszandC’ are stick
figures and it has the desirevector by the following theorem:

THEOREM1. LetC, C, X, Y be as above. Letg (1, ¢, gy, ..., Us, Os11) be the h-vector
of X, leta= (1,a;,...,a) and b= (1, by, ..., by) be the h-vectors of C and’Cthen

bi =0st1-j — sy1-i

fori > 0. Moreover the sequence & g + b; — g is the first difference of the h-vector of Y.

So we have to show that = h; — hj_1:
e ForO<i <twehavedi =a =h;j —hj_1
e Fort+1<i<s—twehavedj =bj —gi =0

e Fors—t+1<i<s+1lwehavedi =bj —g = —asy1-j = —(hsy1-j — hs—i) =
hi —hj_1

REMARK 1. Theorem 1 says, for example, that there exists no culbagfirthe 8 points of
a Complete Intersection of two cubics, but not through tine nin fact, if we consider a reduced
Complete Intersection zeroscheden P2 given by two forms of degrea andb, theh—vector
of X\ {P}is(1,2,3,....,a—1a,a,...,a,aa—1,...,3, 2), whatever pointP we cut off.

ExampPLE 1. Leth = (1, 3,4, 3,1) be a Sl-sequence. Consider the first differench,of
ie.Ah= (1,21, -1, -2 —-1).

So,g= (1, 2, 3,3, 2, 1) istheh-vector of X, stick figure which is the Complete Intersection
of F1 = ]_[i2:0 A andF, = Hi?’zo Bj, whereA; andB; are general linear forms.

Now, we callP, j the intersection betweefyy = 0 andBj = 0. ThenC = PgoU Py gU
Py 1 U P, g is the scheme which hdsvectora = (1, 2, 1).
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Figure 1

So, it is clear that the residu@’ of C in X is the union of the lines oK which aren’t
components irC. Then the reduced set of pointswith h-vector (1, 3, 4, 3, 1) consists of 12
points which exactly are:

e 3 points onPy g, intersection betweeRy g and Py 1, Pg 2 and Py 3
e 2 points onPy g, intersection betweeR; g and Py 5, P1 3
¢ 4 points onPy 1, intersection betweeR; 1 and Py », Py 3, Pg.1 andPs 1

e 3 points onP, g, intersection betweeR, g andP, 1, Po o> andPo 3

ExAamMPLE 2. Leth = (1,3,5,3,1). With the previous notations, we have that the first
difference ofh is Ah = (1, 2,2, -2, -2, -1), sog = (1, 2,3, 3,2, 1). Hence, we can take a
stick figureX which is a Complete Intersection between a cubic and a guarti

Therefore, as above, we get a subschem¥ wfith h-vector(1, 2, 2).

Bo B1 B2 Bs

Figure 2

In this way, the intersection betwe@nand the residual’ gives the reduced set of 13 points
with the expectedh-vector.



Gorenstein points it?3 159

3. Gorenstein Sets of points not complete intersection

In this paragraph, we start visualizing some sets of poifigkvresult from the Migliore-Nagel
construction. This construction has given an idea of howuitdtparticular sets of points in
P3 which are arithmetically Gorenstein zeroschemes and noiplxte Intersections. For this
purpose, we start from a careful analysis of Examples 1 and 2.

ExamMPLE 3. In example 1 we can see that the ¥edf 12 points which realizes thie-
vectorh = (1, 3,4, 3, 1), has the following configuration: 3 points df o (the intersection
betweenPy g and Pg 1, Po,2, Po,3), 2 points onP g (the intersection betweeR; g and Py »,
Py 3), 3 points onP; g (the intersection betwee g and P, 1, P2 2 andP; 3), 4 points onPy 1
(intersection betweeRy 1 andPg 1, P21, P12, andPy 3). So, we denote these points by

k.|
Py =R NPk

We focus our attention on the plaBg, where we consider 9 points: the intersections of the
lines B g with the planesBy,By,B3.

So we have three triplets of points which are collinear, kag the triplets of the forn{lPii,’J! }
i = 1,2, 3 are collinear, because they live in the intersection betvig) andB;, i = 1,2, 3.
These points, exce® = Pll,’t}' are inY. Now, we consideiP; 1: this line is throughP and
is not in Bg. The remaining 4 points are the intersection betwBer and Ag, A, B, B3 and
they are different fronP. The union of all these points, except is our Gorenstein séf.

Figure 3

So, from that analysis we get a guess to construct a mordeviSitrenstein set of 12 points.
We start from a plan®8g with 9 points which satisfies some relation of collinear#g {n Figure
3), we cut off a point, and we choose a line= Py ; through this point and not in the plane.
Notice that this is equivalent to say that we choose the plageand B;. It is easy to see that
we can choose the points on this lineandomly. This is due to the fact that, at this point of the
Migliore-Nagel construction, each of the plandg, Ay, By, B3, are defined by three collinear

points (for exampleAg is the plane througtﬁ’g’&, P&g, and P&g’). In other words, if we start
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from Figure 3, the 9 points don't fix uniquely the plangg, Ay, B>, andBgs, but they define 4
pencils of planes in which we can choose the previous planes.

EXAMPLE 4. Now, let's analyze Example 2 (a set of 13 points) and tryisoalize this set
as before. Here we have:

e 3 points onPy g, intersection betweeRy g and Py 1, Pg 2 and Py 3

e 2 points onPy g, intersection betweeR; g and Py », P1 3

e 3 points onPy 1, intersection betweeR; 1 andPy 1, P1 2, P13

e 2 points onP, g, intersection betweeR, g and P, 5, P> 3

¢ 3 points onP; 1, intersection betweeR, 1 andPy 1 P22, Po3

As in the previous example,we consider the 9 points in thegiy, but this time we have
to cut off two points:P := Pll’ol andQ = Pzz’g. After we take the lines := P; 1 ands := P, ;

respectively throughP and Q, we have to fix three points on each IinBlo’ll, Plll2 P1113 and

0,1 2,2 52,3
PZ,l’ PZ,l’ I32,1'

This time, we cannot randomly choose all the six points: @t faese points are given by
the intersections of ands with the planesAg, B, and B3. So if we randomly choose three
points (for example im), then the planeg#, B> and B3 are fixed, and the points @itoo. The
result appears as in the figure below:

B1NB3
-
Pl 1 P < B1NBy
P2 1 , P -
, P P
-
% -
~ Ve
- Ve B]_
- -
-
Poa
~
N

BoNn Az

Figure 4

If we look carefully at the plan®g of the two examples, the 9 points are a Complete Inter-
section inP3 defined by three generatofsg, h where degf) = 1, deqg) = degh) = 3 and
both g andh are products of three linear forms.
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Obviously we can generalize this idea to bigger sets. We baibserve that, following
Nagel-Migliore, we can always “picture” a Gorenstein sepoints inP3, but we can do it with
more or less freedom. This freedom dependsYormr better, on itdh-vectorhy. In fact, we
can say that if our Sl-sequence is of the fonp = (1, 3,4, ...,t,t,t, t,.....4, 3, 1), with the
hypothesis that all the entries ah, excepthy —hg = 2, are equal to 0 or 1, then it is possible to
find a particular plane Complete Intersect¥rof points and, after taking a line through a point
P e X (and cut off this point) and a correct number of points défgrfrom P on the line, we
obtain a Gorenstein set of pointsc P3 with h-vectorh.

Now, suppose that the hypothesisidig are verified. The next question is the following: is
it possible to substitute the generatgrs by g, h’ not products of linear forms ?

So we tried to take a generic complete intersecioof the form(1, 3, 3); as before, we cut
off a point P and we choose a st of 4 points over a general line through not in the plane.
Working with theh-vectors of X, P andW, we are able to prove thadt = (X U W) \ {P} is
again a Gorenstein set of Points, not a Complete Interseatith h-vector(1, 3, 4, 3, 1).

Figure 5

This fact gave us the idea for another generalization: whppéns if we take a Complete
Intersection of the fornl, a, b) minus a point, and a set of points over a line through thist@oin
Do we obtain a Gorenstein set of points?

We notice that this time, however, we don't start fromtamector, but we search a new
method to construct Gorenstein set of points not Compl@&dactions.

The answer to the question is positive. To proof, we need kdviing result by Davis,
Geramita and Orecchia [2]:

THEOREM?2. Let | be the ideal of a set X of s distinct pointsBA and suppose that the
Hilbert function of X has the first difference which is synmmednd that every subset of X
having cardinality s— 1 has the same Hilbert function. Then the homogeneous cateliing
of X is a Gorenstein ring.
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THEOREM3. Let X ¢ P3 be a reduced Complete Intersections of the fgine, b) and
let P € X a point. Take a line L through P, not in the plane that cordaithand fix a set Y of
a -+ b — 1distinct points on L, containing P. Define

W= (XUY)\ (P}
Then W is an arithmetically Gorenstein zeroscheme.

Proof. Supposea < b. Let Ix = (F1, Fp, F3), where degF1) = 1, deqFp) = a and

deg F3) = b. Theh-vector of the Complete Intersectiofiis
hy =(1,23,...,.a—1aa,...,a,a,a—1,...,3,2,1),

where the two a — 1” entries correspond to the forms of degrees 2 andb. So the length
of hy isa+b— 1. LetY be the set o + b — 1 points onL; Iy will be (L1, Lo, L3), where
IL = (L1,Lo) and degL3) = a+ b — 1. SinceP = XNY, we havelx + Iy C Ip. But
Ix + Iy is (Fq, Fp, F3, L1, Lo, L3) and thelp = (Lq, Ly, F1), so we have thaty + ly is
the satured idedlp. Obviously, theh-vector ofly ishy = (1,1,..., 1, 1), because we have
a+b—1 points on aline. From the next exact sequence we can cadhkh-vector of XU Y:

0= lIxNly — I'x d ly —=lIx+ly—0

1 1 1
2 1 0
a—1 1 0
a 1 0
a 1 0
a 1 0
a 1 0
a—1 1 0
2 1 0
1 1 0

So, we obtairhxyy = (1,3,4,5,...,a,a+1a+1,...,a+1la+1a,...,5432).
If we considerX U Y \ {P} = W, it hash-vector

1,3,4,5,...,a,a+1,a+1...,a+1,a+1a,...,5431

which is symmetric. In fact, suppose that the/ector does not decrease at the last position.
Then there is a fornf of degree less thaa + b — 2 which is zero orW but not onP. So, if

we consider the curve given By = 0 in the planeF; = 0, we have a form of degree less than
a+b—2which is zero on all but one the points of a Complete Intdiseca, b), but this is not
possible by Remark 1.

Now, we use Theorem 2 to prove that this set of points is GoeensCut a point off this set
to obtain a seW’: it is sufficient to prove thahyy is the same for any point we cut off. There
are two possible cases:
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1) the point is on the linék; = 0, Lo = 0,
2) the point is on the planE; = 0.

Case 1.LetW = W\ {Q}, whereQ € L N W. The only possiblé-vector forw’ is
1,3,4,5,...,a,a+1,a+1...,a+1la+14a...,54273).

In fact, it cannot decrease in any other point, because $ncige there would be a forfn
of degree less than or equaldet b — 3 that is zero on all the points & and not onQ. So,
F = 0 onab — 1 points of the Complete Intersectiofy then, for Remark 1, we know th&t is
also zero on the other point o, that isP. Soa + b — 2 points ofL are zeros of, thenF is
zero onL and soF (Q) = 0. This is a contradiction.

Case 2.Let Q € X\ {P}, for the same reasons of the case 1, we cannot have a form of
degree less than or equalder b — 3 that is zero oW’ and not onQ. If F exists, it is zero on
a+b— 2 points ofL, soL is contained irfF = 0 and soF(P) = 0. ThenF iszerooma+b—1
points of X and, for Remark 1F(Q) = 0.

Then, the only possible-vector forW’ is
1,3,4,5,...,a,a+1a+1...,a+1,a+1a,...,5423).
O

REMARK 2. If a # 1 andb # 1, the Gorenstein set of points which we foultd, is not
a Complete Intersection. In fact, in this caskis not contained in any hyperplane, but we have
two independent forms of degree two which are zerd\brwith the above notation, those forms
areF,Lq, andF1Lo. Moreover, every form of degree two iIfy must containF as factor by
Bezout's Theorem. So, in every set of minimal generatordsypfve have two forms of degree 2
which are not a regular sequence.

4. Conclusion

In the previous section we showed a new method to construzeagslimensional schemes not
complete intersection. By this way, we can easily visuali'eposition of these points and obtain
more informations about the “geometry” of the scheme, aniéix¢ example shows.

ExamMPLE 5. We know that the coordinate ring of a set of five general {3oin P3 is
Gorenstein, where general means that not four are on a pMfewant give a proof using
Theorem 3.

In fact let Py, Py, P3, P4, Ps be five general points iB3. Let L1 = 0 be the plane contain-
ing P1, P>, P3andLy = 0, L3 = 0 the line throughP4 and Ps. So we have a new poirig,
i.e. the intersection between this plane and this line. e points in the plane are complete
intersection ofL 1 and two forms of degree two, because no three of them areeatli In fact,
if Pg and two points on the plane are collinear, tH&n Ps and those points are on a plane, and
this is a contradiction. So, by Theorem By, P>, P3 and 2+ 2 — 2 points on a line through
Pg but not in the plane form an arithmetically Gorenstein zehesne. If we choosé the line
throughPg and P4 and P5 the points orlL, we have the conclusion.
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REMARK 3. Unfortunately in this way we can obtain very particulahemes: all these
schemes have-vector

1,3,4,5,...,a,a+1la+1...,a+1,a+1a4a...,5431);

so, we cannot build the scheme of the Example 2. But, thisnsehteo, can be obtained from
the union of a residual scheme and a “suitable” completesattion.

Recently, in a joint work with R. Notari and M.L. Spreafico, generalized this construction
obtaining a bigger family of Gorenstein schemes of codirimenthree.
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