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TOPICS ON INTERPOLATION PROBLEMS IN ALGEBRAIC

GEOMETRY

Abstract. These are notes of the lectures given by the authors during the school/workshop
“Polynomial Interpolation and Projective Embeddings”. We mainly focus our attention on
the planar case and on the Segre and Harbourne-Hirschowitz Conjectures. We discuss the
state of the art introducing several results and different techniques.

1. Introduction

These are the expanded and detailed notes of the lectures given by the authors during
the school and workshop entitled “Polynomial Interpolation and Projective Embed-
dings”, held at the Politecnico di Torino during the period September 15 - 20, 2003.

The second author gave five lectures of length one hour each. He attempted to cover
the basic facts in interpolation problems in algebraic geometry. Given the extensiveness
of the subject, it was not possible to go into great detail in every proof. The first author
gave two exercise sessions where he made examples and exercises and he introduced
some topics that were complementary to the standard lectures.

We believe that these notes can be a valuable addition to the literature and give new
details and new points of view of the subject that cannot be found in other expository
work.

In the expository Section 2 we introduce the origin of the subject. We first focus our
attention on the planar case and on the Segre and Harbourne-Hirschowitz Conjectures.
We discuss the state of the art introducing several results and different techniques.

In Sections 3 and 4 we focus on one of these techniques based on the results of
Lorentz and Lorentz [42] and others, which is related to a detailed study of the inter-
polation matrix.

Although the technique can be used more broadly, we will present the main ideas by
concentrating on the study of linear systems in two variables with prescribed multiple
base points, i.e., Hermite interpolation in two variables.

In Section 5 we will explain the essential features of a particular specialization
technique introduced by Ciliberto and the second author in [22].

Although related closely to other specializations, the new feature is that the de-
generation is not of sets of points, but, instead, we degenerate the surface where these
points live. The idea is based on a degeneration method used by Z. Ran ([48]) to study
enumerative problems on singular curves and consists in degenerating the plane to a
reducible surface. The restriction of the limit linear system to the components of the
surface are hopefully easier to understand than the system that one begins with.

In Section 6 we will explain some interesting applications of the previous degener-
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ation technique. In particular, we will present some Lemmas that permit one to obtain
information on the system by simply working with the degenerated system. At the end
of the Section there will be some examples to illustrate and better understand these
results.

In Section 7 we introduce a new topic for the interpolation problems: the concept
of special effect varieties. These varieties are the main subject of the Ph.D. thesis of
the first author. During the workshop he gave a communication about his recent results
and we present this summary in the notes as a sixth lecture.

Both authors want to thank the main organizers of this School/Workshop, Gian-
franco Casnati, Silvio Greco, Nadia Chiarli, Roberto Notari and Maria Luisa Spreafico.
We are also most grateful to the participants with their mathematical discussions and
communications that made for a very interesting and productive week in the lovely city
of Torino.

2. Lecture one: overview

2.1. Interpolation problems

This section is dedicated to an overview on linear systems with base points and their
relationship with polynomial interpolation.

Let us start with the following naive problem: fix points {Pi} and values {ci}; find
f such that f (Pi) = ci for each i .

The first question we can pose is “from where do we take the function f ?”. Let
us consider the case when f is a polynomial; to be specific, let us take f ∈ Vd , with
Vd = {polynomials of degree ≤ d}. Even in this case the nature of the solution
depends on the number of variables.

In one variable, the classical polynomial interpolation theory of functions in nu-
merical analysis and statistics gives that a single-variable polynomial f ∈ K [x] of
degree d over a field K is uniquely determined by d + 1 distinct points P0, . . . , Pd on
the affine line A

1
K and a set of values ci ∈ K , i = 0, . . . , d such that f (Pi ) = ci for

each i = 0, . . . , d. This is essentially due to the nonsingularity of the Vandermonde
matrix.

We can generalize this problem slightly by asking not only for values of the func-
tion, but also for values of derivatives. Specifically, we can fix distinct points z0, . . . zn

and positive integers m i , i = 0, . . . , n such that m1 + · · · + mn = d + 1 and set the
values of the derivatives:

f ( j)(zi) = wi, j , i = 1, . . . , n, j = 0, . . . , m i − 1.

Again it is a standard exercise to show that one finds a unique polynomial f (x) satis-
fying the previous conditions, for any desired values {wi, j }. This is a linear problem in
the vector space of polynomials { f } of degree d, and if we set all values wi, j equal to
zero we obtain the corresponding homogeneous linear problem, where we are seeking
polynomials with values and derivatives equal to zero. In one variable, this linear prob-
lem has full rank, and the only solution to the homogeneous problem is the identically
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zero polynomial. We note that the only requirement is that the points {z i} be distinct;
in particular it is not necessary that they be general in any way.

The situation for r ≥ 2 variables is quite different. A polynomial of degree at most
d in r variables f ∈ K [x1, . . . , xr ] depends on Nr,d +1 =

(

d+r
r

)

parameters. Suppose
that we fix n points Pi in the r -dimensional affine space A

r
K and integers m1, . . . , mn

such that
n

∑

i=1

(

mi+r−1
r

)

= Nr,d + 1.

We can then impose that D( j) f (Pi ) = 0, i = 1, . . . , n, j = 0, . . . , m i − 1, where D(k)

is any derivative of order k. (This is the homogeneous linear problem.) In analogy with
the one-variable case, we can ask if the only polynomial satisfying these conditions is
identically zero; in several variables, there is as yet no answer to this problem in this
generality.

Going back to our starting problem, it is possible to incorporate derivatives in a
more general way. Define the set

Dd = {constant coefficient differentiable operators of order ≤ d}.

If P is any point, then the mapping

Dd × Vd → k
(L, f ) 7→ L( f )(P)

is a perfect pairing. If we fix distinct points Pi and, for each i , fix a subspace Ai ⊆
Dd , we can pose the following problem: determine all f ∈ Vd such that for each i ,
L( f )(Pi ) = 0 for all L ∈ Ai . We denote by Ld(−

∑

Ai Pi ) the (projectived) subspace
of polynomials verifying the previous condition, i.e.

Ld(−
∑

Ai Pi ) = { f ∈ Vd such that L( f )(Pi ) = 0, ∀L ∈ Ai , ∀i}

minus zero, modulo scalars.

EXAMPLE 1. If Ai =< I > for each i , then we are not asking for any derivatives;
we are asking only for values. This case is called Lagrange Interpolation.

EXAMPLE 2. If Ai = Dmi−1 for each i , then we are asking that all derivatives of
order at most m i − 1 are zero at Pi . Thus the coefficient of the Taylor expansions are
zero up through order m i − 1. This is a condition on the multiplicity of the polynomial
at the point Pi ; in particular it means that multPi ( f ) ≥ mi . The corresponding in-
terpolation problem is called Hermite Interpolation. The corresponding linear system
is denoted by Ld(−

∑

mi Pi ). This kind of interpolation is very important because it
does not depend on the choice of coordinates.

EXAMPLE 3. Assume Ai is spanned by “monomials” ∂a1+a2+···+ar

∂x
a1
1 ∂x

a2
2 ...∂xar

r
. The corre-

sponding interpolation problem is called Birkhoff Interpolation.
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EXAMPLE 4. Let C be a smooth curve through a point P and consider a polyno-
mial f . We can ask f|C vanishes to order ≥ k at P on C . It is not difficult to see that
this can be expressed with a particular k-dimensional subspace Ai as above. We refer
to this type of problem as Curvilinear Interpolation.

EXAMPLE 5. The theory of splines can in some ways be considered as a general-
ization of interpolation problems. For splines, one considers collections of polynomials
( f1, f2, . . . , fk) ∈ V × · · · × V , and imposes interpolation-type conditions on these
collections. For example we can ask that

f1(P1) = f2(P1) and f2(P2) = f3(P3) . . .

2.2. The dimension problem

The main question we can pose in all previous examples is: what is the dimension of
Ld(−

∑

Ai Pi ) ? As a first step we can define the virtual dimension of the system
Ld(−

∑

Ai Pi ) as

ν(Ld(−
∑

Ai Pi)) := dim(Ld)−
∑

dim Ai .

Note that this is the projective dimension; in particular we have that dim(Ld) = Nr,d =
(d+r

r

)

−1. This formula simply represents the expectation that each additional condition
imposed by the space Ai will drop the dimension of the space by one. In other words,
this formula will be true if all of the conditions imposed by the Ai are independent.

This number can be negative: in this case we expect that Ld(−
∑

Ai Pi ) is empty.
We can then define the expected dimension of Ld(−

∑

Ai Pi ) as

ε(Ld(−
∑

Ai Pi )) := max{ν(Ld(−
∑

Ai Pi )),−1};

here we take the convention that the empty projective space has dimension equal to−1.

REMARK 1. It is important to observe that the dimension (and all other phenom-
ena) of the previous system depends in a critical way on the position of points. Con-
sider, for example, a two-variable polynomial f of degree 5 vanishing at 8 points on a
line l. The dimension of the space of quintics in two variables is 20, so that expected
dimension of this linear system is 20 − 8 = 12. However if f vanishes at the first 6
of the points, then by Bezout’s Theorem f vanishes all along l, and therefore vanishes
at all 8 of the points. Hence the conditions imposed by the vanishing at the final 2
points are not independent of the first 6 conditions; indeed, the dimension of this space
is 20− 6 = 14, which is exactly the dimension of the space of residual quartics.

The “reason” this phenomenon has occured is that the points are related geomet-
rically in an obvious way. To avoid this, we assume that the points Pi are in general
position. This notion of general position means something different for every interpo-
lation problem.
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2.3. The interpolation matrix

To be more precise, we introduce a matrix M associated to the interpolation problem,
called the interpolation matrix. This matrix has columns indexed by a basis { fk} for
the vector space V from which we are drawing our polynomials and has rows doubly-
indexed by the points Pi and a basis Di, j for the interpolation conditions Ai for each i .
We form the entries of the interpolation matrix M by applying the Di, j ’s to the fk’s, and
evaluating at Pi ; specifically, the entry in row (i, Di, j ) and column fk is Di, j ( fk)(Pi ).

It is clear that the subspace of polynomials satisfying the interpolation problem may
be identified with the kernel of multiplication by M . Therefore the dimension problem
is equivalent to the computation of the rank of the interpolation matrix.

Now if we take the points Pi to have undetermined coordinates, then the various
minors of M become polynomials in these coordinates. The largest size (say s × s)
minor of M which is not identically zero determines the rank of M , for values of the
coordinates of Pi which makes at least one s× s minor nonzero. This condition (that at
least one of these minors be nonzero) gives a Zariski open subset of the set parametriz-
ing n points in r -space, and determines the precise notion of “general position” for this
particular interpolation problem.

REMARK 2. Hermite interpolation, expressed via imposing multiplicities to poly-
nomials at given points, lends itself also to working with homogeneous polynomials
and points in projective space. In this way the multiplicity conditions give a homoge-
neous ideal in the homogeneous coordinate ring of projective space; the graded pieces
(as we vary the degree d) represent the Ld interpolation problems. In this way the
interpolation problem is equivalent to the study of the Hilbert function of the given
ideal. Other commutative algebra tools now may come into play, and more compli-
cated problems related to this ideal (such as determining generators, syzygies, ranks of
multiplication maps, etc.) are of great interest also.

The Hermite interpolation problem for polynomials of degree d having multiplic-
ities mi at n points in general position will give a space which we will denote by
Ld(m1, . . . , mn). This notation is convenient when we do not want or need to refer
to the particular positions of the n points. If there are repetitions in the multiplici-
ties, these might be denoted using superscripts; for example, Ld(mn) means the linear
system of polynomials of degree d having multiplicity m at n general points.

2.4. Special linear systems

As explained at the beginning of the section, the Hermite interpolation problem has full
rank in one variable. Thus the above-mentioned questions are all relatively easy in P1.
However when we consider P2, there is still much unknown. Here, as we will see later,
we have some precise conjectures. From now on, we will assume that we are working
with Hermite interpolation in two variables.

A naive conjecture would be that, for points in general position, every Hermite in-
terpolation problem leads to a linear system which always has the expected dimension:
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all Hermite conditions are linearly independent at distinct points. This turns out to be
false, as the following example shows.

EXAMPLE 6. Consider the system of conics L2, and impose two double points P1,
P2. The notation for this system would be: L2(−2P1 − 2P2) or L2(22). Since any
double point imposes three conditions to a curve in P2, we obtain

ε(L2(22)) = ν(L2(22)) = 5− 3− 3 = −1

and we expect that the system is empty. But if f (x, y, z) = 0 is the homogeneous
linear polynomial defining the line through P1 and P2, then f (x, y, z)2 is a nonzero
conic double at P1 and P2. This conic exists for any two distinct points P1 and P2, and
in particular for general points; therefore dim(L2(22)) = 0 > −1 = ε(L2(22)). This
system does not have the expected dimension. Moreover note that f 2 is singular (has
multiplicity two) at every point of the line.

EXAMPLE 7. We have the same phenomenon with L4(−
∑5

i=1 2Pi) = L4(25)

which is the linear system of quartics with five general double points. This system has
expected dimension −1, but, if q(x, y, z) is the polynomial of the conic through the
points Pi ’s, then q2 is a quartic double at every point of the conic, in particular at the
five (general) points P1, . . . , P5. This system does not have the expected dimension.

Note that in the first example, if we blow up the plane at the two points, the line
in question becomes a (−1)-curve on the blowup, and the corresponding linear system
on the blowup consists of this (−1)-curve, with multiplicity two. Similarly, in the
second example, if we blow up the five points, the conic becomes a (−1)-curve, and
the corresponding linear system becomes this curve, with multiplicity two.

These two examples show that the naive conjecture, that every such linear system
in the plane has the expected dimension, is false.

DEFINITION 1. A system L = Ld(m1, . . . , mn) is special if its dimension is larger
than the expected dimension:

dim(L) > ε(L);
otherwise L is said to be non-special.

Consider the blow-up π : P̃
2 → P

2 of the plane P
2 at P1, . . . , Pn and let Ei ,

i = 1, . . . , n be the exceptional divisors corresponding to the blow-up of the points
Pi , i = 1, . . . , n. If we denote by H the pull-back of a general line of P2 via π , then
we can write the strict transform of the system L := Ld(

∑n
i=1 mi Pi ) as the complete

linear system L̃ = |d H −
∑n

i=1 mi Ei |. In the future, if confusion cannot arise, we will
indicate both L and L̃ by L.

Note that on the blowup, ν(L) = L·(L−K )
2 .

By Riemann–Roch, remembering that h2(P̃2, L̃) = 0, we obtain

(1) dim(L) = h0(P̃2,L)− 1 = ν(L)+ h1(P̃2, L̃).
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Hence

(2) L is non-special if and only if h0(P̃2, L̃) · h1(P̃2, L̃) = 0.

Using this cohomological reformulation, it is not hard to compute that if such a
linear system L has a (−1)-curve E on the corresponding blowup with L · E ≤ −2,
then E occurs as (at least) a double fixed component of L, and if L is not empty, it
must be special. If this happens, we will call the linear system (−1)-special.

2.5. Conjectures in two variables

Going back to the conjectures for special systems in P
2, B. Segre was the first author

who claimed that speciality is related to the non-reducedness of the general curve of
the given linear system with general multiple base points.

CONJECTURE 1 ((SC) B. SEGRE, 1961). If a linear system of plane curves with
general multiple base points L2,d(−

∑n
i=1 mi Pi ) is special, then its general member is

non-reduced, i.e. the linear system has, according to Bertini’s theorem, some multiple
fixed component.

In 1987, Gimigliano [34] studied several examples of special linear systems on P
2

and made the previous Conjecture more precise.

CONJECTURE 2 ((GC) A. GIMIGLIANO, 1987). Consider a linear system of
plane curves with general multiple base points Ld(−

∑n
i=1 mi Pi ). Then one has the

following possibilities:

(i) the system is non-special and its general member is irreducible;

(ii) the system is non-special, its general member is non-reduced, reducible, its fixed
components are all rational curves, except for at most one (this may occur only
if the system has dimension 0), and the general member of its movable part is
either irreducible or composed of rational curves in a pencil;

(iii) the system is non-special of dimension 0 and consists of a unique multiple elliptic
curve;

(iv) the system is special and it has some multiple rational curve as a fixed compo-
nent.

This conjecture, in the case of special systems, was made more precise by the
following conjecture given separately by B. Harbourne and A. Hirschowitz.

CONJECTURE 3 ((HHC) HARBOURNE–HIRSCHOWITZ, 1989). A linear system
of plane curves L := Ld(−

∑n
i=1 mi Pi ) with general multiple base points is special

if and only if it is (−1)−special, i.e. it contains some multiple rational curve of self-
intersection−1 in the base locus.
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The last conjecture we want to mention is related to the homogeneous case, i.e.
when m1 = m2 = · · · = mn = m.

CONJECTURE 4 ((NC) NAGATA, 1960). Ld(mn) is empty as soon as n ≥ 10 and
d ≤
√

n · m

Recently, Ciliberto and Miranda, in [24], proved the following implications

SC ⇐⇒ H H C
⇓

NC

Although the conjectures are still unproved it is important to note that, in more than
a century of research, all known special systems are consistent with them.

2.6. Results to date

We now mention some results on these conjectures, in particular on the conjecture of
Harbourne and Hirschowitz.

The first case we treat is Ld(1n), that is, when all points have multiplicity one. In
this case we are asking for polynomials of degree d that simply vanish at the points. It
is easy to see that this always has the expected dimension. One argues by induction on
the number of points n; the statement is clearly true for n = 0. Assume it is true for
n − 1, and consider the system Ld(1n), which is a subsystem of the system Ld(1n−1).
These two systems, unless they are both empty, have expected dimensions which are
different by one, and we must show that indeed Ld(1n) has dimension one less. This is
equivalent to showing that it is a proper subsystem of Ld(1n−1). It will be if we choose
the n-th point so that it is not a base point of the system. This is true if the points are in
general position. This proves the following:

THEOREM 1 (MULTIPLICITY ONE THEOREM). If the points Pi , . . . , Pn are in
general position, then the dimension of L(−

∑n
i=1 Pi) is equal to the expected dimen-

sion.

Consider now the linear systems L2,d(−
∑n

i=1 mi Pi ). When the number of points
n is less than or equal to 9, the anticanonical class−K̃ is effective on the blowup P̃2 and
we can use vanishing theorems (Kodaira’s and Kawamata-Vieweg’s or Mumford’s and
Franchetta-Ramanujam’s on the specific case of surfaces) to establish that h1(L̃, P̃

2) =
0 and use (2). In this way one proves the following result already known to Castelnuovo
and later rediscovered by several authors:

THEOREM 2 (CASTELNUOVO, 1891; NAGATA, 1960; GIMIGLIANO 1986;
HARBOURNE, 1986). The Harbourne–Hirschowitz Conjecture holds for all linear
systems with n ≤ 9 general multiple base points.

The second simple case is the one with only double points, i.e m1 = · · · = mn = 2.
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This case was examined by several authors, e.g. Campbell, Palatini, Terracini. More
recently, Arbarello and Cornalba used an approach based on an infinitesimal deforma-
tion technique consisting in moving the base points of the system and computing the
first order deformation of a curve which moves keeping its singularities. In general, in
these deformation techniques, one tries to show that if there exists C ∈ L with isolated
singularities, then H 1(L) = 0 (and conclude that L is non-special). In order to do this
one tries to interpret this H 1 as an obstruction space to deforming C ∈ L and to prove
that every element of H 1 occurs as an obstruction. In essence one tries to construct a
map

{ Deformations of Pi}
obstruction to moving C
−−−−−−−−−−−−−−−−−→ H 1(L)

and show that it is onto; the existence of C for points in general position allows one to
claim that it is also zero, and one deduces that the H 1 = 0. Using this general idea,
Arbarello and Cornalba proved the following:

THEOREM 3 (ARBARELLO–CORNALBA, 1981). ConsiderL = Ld(2n). Assume:

(i) d(d+3)
2 ≥ 3n, i.e. ν(L) ≥ 0;

(ii)
(

d−1
2

)

≥ n, i.e. gL ≥ 0.

Then L is non-special, and a general C ∈ L is irreducible, with nodes at the imposed
general double points P1, . . . Pn , and smooth elsewhere, except for L6(29) which is a
double cubic.

Another result by (slightly different) deformation techniques is the following

THEOREM 4 (A. BRUNO, 1998). L = Ld(−
∑n

i=1 mi Pi ) is non-special if
ν(L) ≥ 0 and gL ≥ 0 and the general curve has ordinary m i -tuple points at Pi ,
i = 1, . . . , n.

Although the hypothesis is rather strong, the main tool in Bruno’s proof is the use
of moduli space of curves, of stable reduction, and of the theory of limit linear system
that is a really new idea in this setting.

A different way to attack the problem is to argue by degeneration. In this technique,
we specialize the base points of the linear system so as to make it easier to compute
the dimension of the system. Since the dimension of L(−

∑n
i=1 mi Pi ) is upper semi-

continuous in the position of the points, it is enough to find a particular set of points
Q1, . . . Qh such that L(−

∑n
i=1 mi Qi ) is non-special to conclude that also the general

system L(−
∑n

i=1 mi Pi ) is non-special. In general, we try to put the points Pi in a
special enough position that we can compute the dimension, but not so special that the
dimension will rise.

EXAMPLE 8. Consider, for example, the system L5(27). Its expected dimension
is 20− 7 · 3 = −1; in other words, we expect that this system (of quintics with seven
general double points) is empty. Put three of the seven points on a line l. In this case,
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by Bezout’s Theorem, every element in L contains the line. Then one has

L = l + L4(2
4, 13)

and so the dimension is equal to the dimension of the system L4(24, 13) (where the
three simple points are collinear). Now if C is a conic through the four points that
appear with multiplicity 2 in L4(24, 13) and through one of the three points with mul-
tiplicity 1, one has

C · L4(24, 13) = 8− 8− 1 = −1

and therefore C must be a base curve of the system. Since there are three such curves,
we see that this system has a sextic in its base locus; but it only has degree four. We
conclude that the system must be empty.

Unfortunately, very often, convenient particular positions of the points do increase
the dimension of the system. Therefore this technique has its limitations.

In [35], Hirschowitz was able to improve this degeneration technique, introducing
the Horace Method (la méthode d’Horace). This technique is not only applicable to
the planar case, but can be used on every projective variety.

Using a refined version of the Horace Method, (the so-called differential Horace
Method, see [6]), Alexander and Hirschowitz were able to prove the following asymp-
totic result:

THEOREM 5 (ALEXANDER–HIRSCHOWITZ, 1998). Given any projective, re-
duced variety X and an ample line bundle L on it, there is a function d(m) such that if
mi < m, i = 1, . . . , n, and d > d(m) then L⊗d(−

∑n
i=1 mi Pi) is non-special.

The prototype for results of this sort is the following theorem of Hirschowitz ([36]):

THEOREM 6. The system Ld(−
∑n

i=1 mi Pi ) in P2 is non-special as soon as

⌈

(d + 3)2

4

⌉

>

n
∑

i=1

(

mi + 1
2

)

.

Returning to the general Harbourne–Hirschowitz Conjecture, we mention some
other recent results.

If we pass to the quasi-homogeneous case, i.e. all m i ’s equal to m except one, the
Harbourne–Hirschowitz Conjecture is proved for m = 2, 3 by Ciliberto and Miranda
[22] and for m = 4 by Siebert and (independently) Laface (see [38]).

The following theorem is due to T. Mignon in his thesis ([46], [47]) and it is based
on the use of the Horace method:

THEOREM 7 (T. MIGNON,1998). Let L = L2,d(−
∑n

i=1 mi Pi ). Then:

(i) if mi ≤ 4 then the Harbourne–Hirschowitz Conjecture 3 holds;
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(ii) if gL ≤ 4 and ν(L) ≥ 0 then the Harbourne–Hirschowitz Conjecture 3 holds;

(iii) if mi ≤ 3, d ≥ 33, ν(L) ≥ 0 and gL ≥ 0 then the Harbourne–Hirschowitz
Conjecture 3 holds.

Recently, S. Yang was able to generalize part (i) of the previous result to m i ≤
6. She uses a combination of the Ciliberto–Miranda degeneration with a particular
specialization of the points on a fixed line with a fixed point (see [52]).

Another result to mention is the following

THEOREM 8 (L. EVAIN, 1998). Ld(mn) is never special if n is of the form n = 4k .

The same result was obtained in [11] by A. Buckley and M. Zompatori using a
degeneration technique; moreover they proved the same statement for the case n = 9k ,
and for products of powers of 4 and 9.

Recently, Ciliberto and the second author, using a particular degenerations tech-
nique (which we will describe in sections 5 and 6) were able to prove the following
(see [23]):

THEOREM 9 (CILIBERTO–MIRANDA,1998). The Harbourne–Hirschowitz Con-
jecture holds in the quasi-homogeneous cases Ld(m0, mn), m ≤ 3 and in the homoge-
neous cases Ld(mn), m ≤ 12.

Another result of Ciliberto and Miranda in [22] is the full classification of homo-
geneous (−1)−special systems.

THEOREM 10 (CLASSIFICATION OF THE HOMOGENEOUS (−1)−SPECIAL SYS-
TEMS). The only homogeneous linear systems Ld(mn) which are (−1)−special are:

Ld(m2) with m ≤ d ≤ 2m − 2

Ld(m3) with 3m
2 ≤ d ≤ 2m − 2

Ld(m5) with 2m ≤ d ≤ 5m−2
2

Ld(m6) with 12m
5 ≤ d ≤ 5m−2

2

Ld(m7) with 21m
8 ≤ d ≤ 8m−2

3

Ld(m8) with 48m
17 ≤ d ≤ 17m−2

6

For homogeneous systems, with all multiplicities equal, the Harbourne –
Hirschowitz conjecture is then equivalent to stating that the only such systems that
are special are on the above list. In particular, the conjecture implies that for nine or
more points, there are no special homogeneous systems.
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REMARK 3. The way Ciliberto and Miranda degenerate the systems can be seen
as a way to degenerate the set of points P1, . . . , Pn by putting b of them on a line,
and letting the line split from the curves of the linear system k times. This approach
seems to be very systematic and, in [26] C. Ciliberto, F. Cioffi, R. Miranda and F.
Orecchia applied a more refined computational algebra approach to improve the bound
m ≤ 12. In particular they have been able to work out a computer program to test the
Harbourne–Hirschowitz Conjecture for Ld(mn) and to prove it for m ≤ 20.

2.7. Higher dimensions and Waring’s problem

As we said in the first section, the general problem of computing the dimension of a
system with imposed multiple points can be formulated in any dimension and for any
ambient variety X , not only in the plane. But, unfortunately, just in the simplest case
of X = Pr , r ≥ 3 very little is known. In this setting we fix notation and define
Lr,d := |OPr (d H )|.

The most important result is a theorem due to Alexander and Hirschowitz which
classifies the special linear systems with imposed double points Lr,d(2n).

THEOREM 11 (ALEXANDER–HIRSCHOWITZ, 1996). The linear system Lr,d (2n)

is non-special unless r , d, and n are in one of the columns of the following table:

r any 2 3 4 4
d 2 4 4 4 3
n 2, . . . , r 5 9 14 7

The original proof of this theorem requires the Horace method, and occupies a
whole series of papers [1], [2], [3], [4], [5]. Another proof, somewhat shorter, was
recently given by K. Chandler in [19]. She still used the Horace method but in a
particularly efficient way, specializing part of the points to a hyperplane.

Let us analyze the systems in Theorem 11. It is very easy to show that linear
systems Lr,2(2n) with 2 ≤ n ≤ r are special. We know that every quadric hypersurface
is defined by a quadratic polynomial, which, if we homogenize, can be considered as
a quadratic form in r + 1 variables. This in turn can be considered as a symmetric
matrix Q of size r + 1. We can choose coordinates so that the first r + 1 points (if
there are that many) occur at the “coordinates points” whose homogeneous coordinates
correspond to the standard basis vectors, i.e. the points (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0),
etc. For the quadric hypersurface to have multiplicity at least two at (1, 0, 0, . . . , 0),
the first row (and column) of the matrix Q must be zero. This clearly imposes r + 1
conditions, as we expect. However, for the quadric to have multiplicity at least two
at the second point (0, 1, 0, . . . , 0), the second row and column of Q must be zero.
If the first row and column are already zero, the first entries of the second row and
column are automatically zero, so there are only r additional entries that must be zero.
Hence the second point imposes only r conditions and the dimension of Lr,2(2n) is one
larger than the expected. This phenomenon continues until there are r + 1 points, in
which case the matrix Q is all zero and there are no nontrivial quadratic polynomials
satisfying the conditions: if n ≥ r + 1 then Lr,2(2n) is empty as we expect.
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The cases L2,4(25), L3,4(29) and L4,4(214) are similar. The first one is already
treated in example 7. For L3,4(29) and L4,4(214) we observe that both have expected
dimension −1, but there is an element given by the double of the quadric respectively
in P3 and P4 through the 9 and the 14 points.

Finally consider the system L4,3(27). Its virtual dimension is −1 whereas it is not
empty. In fact there is an unique rational normal quartic curve C4 through 7 general
points P1, . . . , P7 in P4. Let X be the first secant variety of C , i.e. X := Sec1(C).
Then X is a cubic hypersurface and it is singular along C ; therefore it is singular at
P1, . . . , P7. Thus X sits in L4,3(27).

More recently, some results on the higher dimension case are given by Bocci (Pr

and Pr1 × · · · × Prt ), Catalisano, Geramita and Gimigliano (Pr1 × · · · × Prt ) and De
Volder, Laface and Ugaglia (P3).

Let Q = [qo : · · · : qr ] ∈ Pr . We define the differential operator 1Q =
∑

qi
∂

∂xi
.

Moreover, given a set of n points {Q i}, we define

Ad(
∑

Qi ) = {
∑

Mi1
d−1
Qi

, deg(Mi ) = 1}.

Thus we have a pairing

{differential operators of degree ≤ d} ←→ {polynomials of degree ≤ d}
∪ ∪

Ad(
∑

Qi ) Ld(−
∑

2Qi)

By Terracini’s Lemma, with this pairing, Ad(
∑

Qi ) and Ld(−
∑

2Qi) annihilate each
other.

If we let W be the d-Veronese variety of P
r , the space Ad(

∑

Qi ) can be identified
with the tangent space to the n-secant variety to W (at the point corresponding to the
n points Qi ). Therefore information about the dimension of Ld(

∑

2Qi ) will give
information about the dimension of this secant variety. In particular, when this secant
variety is the whole space, then the general form of degree d can be written as a sum of
n pure d-th powers of linear forms. This is a version of Waring’s Problem for Forms,
and is a beautiful application of the Alexander–Hirschowitz theorem.
Recently, in [13], Carlini proposed an interesting generalization of Waring’s problem.

3. Lecture two: the matrix approach I

3.1. Visualizing Birkhoff interpolation

In the previous lecture we did not mention the results of Lorentz and Lorentz [42] and
others, which use a different technique based on a detailed study of the interpolation
matrix. We will now present the essential features of this approach.

Although the technique can be used more broadly, we will present the main ideas by
concentrating on the study of linear systems in two variables with prescribed multiple
base points, i.e., Hermite interpolation in two variables. We recall that a polynomial f
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has multiplicity at least m at a point P if all derivatives of f , up through order m − 1,
are zero at P.

The technique for Hermite interpolation however immediately leads to consider-
ations of the more general Birkhoff interpolation, where one considers a general set
of derivatives (which may be considered as “monomial” differential operators) to be
zero at a given point. Using suitable coordinates centered at the point in question, this
means that the polynomial is contained in an ideal generated by monomials, which de-
fines a zero-dimensional scheme. A graphical representation of such an ideal is often
useful, where one uses the lattice of all monomials (in the first quadrant of the plane)
and indicates those monomials which are not in the ideal.

If, for example, the ideal is given by < y2, x2y, x4 >, one may visualize it as
follows:

...

y4

y3

y2

y1 • •
y0 • • • •

x0 x1 x2 x3 x4 . . .

One may ask two natural questions about these zero-dimensional schemes:

1) How do these zero-dimensional schemes degenerate ?

2) How do these zero-dimensional schemes collide?

If the movement is along an axis, the answer is obtained by just “stacking” the
monomials. In other words, if an ideal I1 has the monomials {x i y j | 0 ≤ j < ri } not
in it, and a second ideal I2 has the monomials {x i y j | 0 ≤ j < si } not in it, then the
flat limit of these two zero-dimensional schemes, if they approach each other along the
y-axis, has the monomials {x i y j | 0 ≤ j < ri + si} not in it. (This is a relatively easy
exercise which we encourage the reader to attempt.)

This stacking algorithm however is not the only type of collision that can occur
with such monomial ideals, and the question of what actually is possible to obtain as a
flat limit is quite delicate. For example, if one stacks two ordinary double points, one
obtains the tacnode ideal generated by {y2, x2y, x4} drawn above, which has the six
monomials {1, y, x, xy, x2, x3} not in it. Are there other possibilities for the collision
of two double points? Flatness requires that the codimension of the ideals must be
preserved; since a double point ideal has codimension three, the collision of two double
points must have codimension six. Is a triple point (which also has codimension six)
possible? We will see later that the collision of two double points can not be a triple
point, even though both have codimension six: a triple point scheme is not the (flat)
limit of two double point schemes.
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2P =

...

y2

y1 •
y0 • •

x0 x1 x2 . . .

2Q =

...

y2

y1 •
y0 • •

x0 x1 x2 . . .

9

...

y2 •
y1 • •
y0 • • •

x0 x1 x2 . . .

2P =

...

y2

y1 •
y0 • •

x0 x1 x2 . . .

2Q =

...

y2

y1 •
y0 • •

x0 x1 x2 . . .

→

...

y2

y1 • •
y0 • • • •

x0 x1 x2 x3 . . .

Another limit that is not so obvious is the following one, of four multiple points on
a line approaching a single point:

s

s

s

s

s

���������������

6

@
@

@
@

@
@@

@@I

HHHHHHHHHH
HHY

XXXXXXXXXXXXXXXXy

We can ask for example what is the limit here as the points come together.

3.2. The interpolation matrix (revisited)

Going back to our interpolation problem, fix a vector space V of bivariate polynomials
which are spanned by monomials x i y j indexed by a set of lattice points S. This means
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that a typical polynomial in V has the form

f (x, y) =
∑

(i, j)∈S

ai, j · x i y j

where the numbers ai, j are the coefficients of the term x i y j .

Birkhoff interpolation (at a point P = (x P, yP)) would impose some (monomial)
differential operators A at P, i.e. L( f (P)) = 0, for L ∈ A. Therefore A is spanned by
monomial differential operators, e.g.

1 = ∂a+b

∂xa∂yb
.

Define
Tm = {(r, s)|r ≥ 0, s ≥ 0, r + s < m}

to be the “triangle” of derivatives orders at most m − 1. Thus, with Hermite interpola-
tion, for any i , Ai = Tmi for some integer m i . We can write f ∈ V as a row-column
product:

f =
∑

ai, j x i y j =
(

. . . x i y j . . .
)









...

ai, j
...









.

To analyze the condition that 1( f )(P) = 0, one takes the row vector of monomials
(

. . . x i y j . . .
)

,

applies 1, and evaluates at P:
(

. . . 1(x i
P y j

P) . . .

)

.

This gives a new row, and finally we ask the product

(

. . . 1(x i
P y j

P) . . .

)









...

ai, j
...









has to be zero.

The generalization of this process lead us to the definition of the Matrix of the
Interpolation Problem. For that, consider

1. an integer n, the number of points;

2. for each i , 1 ≤ i ≤ n, a point Pi := (xi , yi);

3. For each i , 1 ≤ i ≤ n, a finite set Ai of (monomial) differential operators.
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From now on we assume that dim(V ) =
∑n

i=1 dim(Ai) so that we have a square
linear problem. Denote by A := {Ai}ni=1. Let us denote the matrix corresponding
to the linear system by MS(A1, . . . , An) or MS(A) and its determinant by DS(A) =
det(MS(A)). The columns of MS(A) are indexed by the monomials x j yk in V . The
rows of M(A) are doubly indexed by i and then by single partial differential operators
in Ai . Thus the (i, r, s)− ( j, k) entry of MS(A) is given by

∂r+s x j yk

∂xr∂ys
(Pi ) = r !s!

(

j

r

)(

k

s

)

x j−r
i yk−s

i .

The interpolation matrix itself is then

MS(A) =

A1

{

P1

A2
{

P2

A3
{

P3

...
...

.

Note that if the coordinates of the Pi ’s are undetermined, then DS(A) is a polyno-
mial in 2n variables x1, . . . , xn, y1, . . . , yn . For consistency we will order the mono-
mials and the derivatives in degree lexicographic order. Every vector (. . . , ai, j , . . . )

such that

MS(A)









...

ai, j
...









= 0

is the vector of coefficients of a polynomial satisfying the condition of the given inter-
polation problem, i.e.

ker MS(A) = { f ∈ V |L( f )(Pi ) = 0 ∀L ∈ Ai , ∀i}.

EXAMPLE 9. Consider the system L2(22). We obtain

(x1, y1)

(x2, y2)

1 x1 y1 x2
1 x1y1 y2

1
0 1 0 2x1 y1 0
0 0 1 0 x1 2y1

1 x2 y2 x2
2 x2y2 y2

2
0 1 0 2x2 y2 0
0 0 1 0 x2 2y2

















a0,0
a1,0
a0,1
a2,0
a1,1
a0,2

















= 0.
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DEFINITION 2. The interpolation problem is called

1. regular if the determinant DS(A) is a non-zero constant, i.e., for any set of points
{Pi} there is no nonzero polynomial in V satisfying the interpolation conditions;

2. almost regular or generically non-special if the determinant DS(A) is a non-
constant polynomial in the xi ’s and yi ’s, i.e., for a general set of points, there is
no nonzero polynomial in V satisfying the interpolation conditions;

3. singular if the determinant DS(A) is identically zero, i.e., there is always a
nonzero polynomial P ∈ V satisfying the interpolation conditions.

The determinant DS(A) of an interpolation problem is in general a polynomial in
the 2n variables x1, . . . , xn, y1, . . . , yn . To prove that the interpolation problem is non-
singular one must show that this determinant is not identically zero.

3.3. Derivatives of D and shifts

It suffices to show that a derivative of the determinant is not identically zero; this leads
us to analyze such derivatives in more detail. Let us introduce the following notation,
for any matrix M whose entries are functions of a variable x :

∂(p)

∂x
M := matrix obtained by applying

∂

∂x
to the pth row in the matrix M .

REMARK 4. The product rule for derivatives implies that, if M is a square matrix,

∂

∂x
(det M) =

∑

p

det(
∂(p)

∂x
M)

where the sum is taken over all rows p of M .

From now we denote DS(A) simply by D. Applying the previous remark to our
interpolation matrices, we obtain

(3)
∂

∂xi
DS(A) =

∑

(r,s)∈Ai

det

(

∂(i, r, s)

∂xi
MS(A)

)

,

recalling that the rows are indexed by triples (i, r, s). We note that the sum is taken
over only those rows in the Ai part because the other rows do not involve the variable
xi , and hence the derivatives all vanish as does the determinant. The similar equation
holds for taking yi derivatives also.

Next we note that apply ∂
∂xi

to the rows is the same thing as replacing partial deriva-
tives in Ai by partial derivatives with one additional x-derivative.

row −−−−→ ∂a+b

∂a x∂b y




y





y

∂
∂x − row −−−−→ ∂a+b+1

∂a+1x∂b y
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Thus we can write

∂(i, r, s)

∂xi
MS(A1, . . . , Ai , . . . , An) = MS(A1, . . . , A∗i , . . . , An)

where A∗i is the result of replacing the (r, s) lattice point with the (r + 1, s) lattice
point: we are simply taking one more derivative with respect to x i . The equation above
is actually only true up to a possible re-ordering of the rows in the i -th part, since we
may have to re-order to put the A∗i rows in degree lex ordering. If (r + 1, s) is already
in Ai , this leads to a matrix with two identical rows, whose determinant is therefore
zero. In addition, if (r + 1, s) is no longer in the lower closure of S, (that is, the set of
lattice points to the left and below some lattice point of S), we will have a matrix with
an identically zero row whose determinant is therefore zero. Similarly, the derivatives
with respect to yi leads to replacing the (r, s) point in Ai with (r, s + 1). This leads us
to the following concept; let A be the set of lattice points, such as one of the sets Ai of
derivative orders as above.

DEFINITION 3. A right shift of A moves a point (r, s) ∈ A to the position (r+1, s).
An up shift moves a point (r, s) ∈ A to the position (r, s + 1). A right or up shift gives
a collision if the resulting lattice point (r + 1, s) or (r, s + 1) is already in A. A right
or up shift gives an exit if the resulting lattice point leaves the lower closure of the set
S.

EXAMPLE 10. Consider shifts of the set A1 = T2 = {(0, 0), (1, 0), (0, 1)}. Let
us index these by 1 = (0, 0), 2 = (1, 0), and 3 = (0, 1). Consider ∂

∂x1
and apply it

respectively to the elements 2, 3 ∈ A1. These right shifts can be visualized as follows:

y2

y1 3
y0 1 2

x0 x1 x2 . . .

∂

∂x1−−→

y2

y1 3
y0 1 2

x0 x1 x2 . . .

y2

y1 3
y0 1 2

x0 x1 x2 . . .

∂

∂x1−−→

y2

y1 3
y0 1 2

x0 x1 x2 . . .

We note that the right shift of the element 1 of A1 gives a collision (with the element
2) and need not be considered in the determinant formula.

Using this notation, (3) becomes

(4)
∂

∂xi
DS(A1, . . . , Ai , . . . , An) =

∑

right shifts
A∗i of Ai

without collision
or exit

µDS(A1, . . . , A∗i , . . . , An)
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where µ = ±1 depends on the particular right shift and comes from the possible re-
ordering of the rows as noted above.

3.4. Higher-order derivatives and iterated shifts

We want to understand higher-order derivatives of the determinant, which leads to iter-
ated shifts. Number each lattice point of the set Ai , using as the index set the integers
1, . . . , |Ai |. For any given index `, denote by (r(`), s(`)) that element of Ai . A right
(respectively up) shift of the `-th element of Ai simply increments r(`) (respectively
s(`)) by one, and will be denoted by R` (respectively U`). Applying a right shifts (of
the elements indexed by `1, . . . , `a , with duplication allowed) followed by b up shifts
(of the elements indexed m1, . . . , mb, duplicates allowed) to Ai will be denoted by

Umb · · ·Um1 R`a · · · R`1 Ai

and will be called an iterated (a, b)-shift of Ai . Such an operation has a collision if at
any stage of the process, one of the separate a + b shifts do.

With this notation, (4) applied a + b times gives

(5)
∂b

∂yb
i

∂a

∂xa
i

DS(A1, . . . , Ai , . . . , An) =
∑

(m,`)∈Ab
i ×Aa

i
giving iterated (a, b)-shifts

without collisions
or exits

µ(m,`)DS(A1, . . . , Umb · · ·Um1 R`a · · · R`1 Ai , . . . , An)

where µ(m,`) = ±1 comes from possible re-orderings of the rows.

Re-organize the sum above based on the final set resulting from the various iterated
shifts gives:

(6)
∂b

∂yb
i

∂a

∂xa
i

DS(A1, . . . , Ai , . . . , An) =
∑

final positions
A∗i

∑

(m,`)∈Ab
i ×Aa

i
giving iterated (a, b)-shifts
without collisions or exits

ending withA∗i

µ(m,`)DS(A1, . . . , A∗i , . . . , An)

=
∑

final positions
A∗i

ε(A∗i )DS(A1, . . . , A∗i , . . . , An)
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where
ε(A∗i ) =

∑

(m,`)∈Ab
i ×Aa

i
giving iterated (a, b)-shifts
without collisions or exits

ending withA∗i

µ(m,`)

is an integer.

We say that the shifts resulting in a given A∗i are non-cancelling if ε(A∗i ) 6= 0.

EXAMPLE 11. Consider (2, 2)-shifts of the set A = T2 = {(0, 0), (1, 0), (0, 1)}.
Let us index these by 1 = (0, 0), 2 = (1, 0), and 3 = (0, 1).

y2

y1 3
y0 1 2

x0 x1 x2 . . .

One possible final position is the set A∗ = {(2, 0), (1, 1), (0, 2)}. There are only four
iterated shifts without collisions leading to this final position: U3U1 R1 R2, U1U3 R1 R2,
U1U1 R3 R2, and U1U1 R2 R3. All four end up with 2 in the position (2, 0). The first two
have 3 in position (0, 2) and 1 in position (1, 1), while the last two have these reversed.

y2

y1 3
y0 1 2

x0 x1 x2 . . .

U3U1 R1 R2−−−−−−−→

y2 3
y1 1
y0 2

x0 x1 x2 . . .

y2

y1 3
y0 1 2

x0 x1 x2 . . .

U1U3 R1 R2−−−−−−−→

y2 3
y1 1
y0 2

x0 x1 x2 . . .

...

y2

y1 3
y0 1 2

x0 x1 x2 . . .

U1U1 R3 R2−−−−−−−→

...

y2 1
y1 3
y0 2

x0 x1 x2 . . .

...

y2

y1 3
y0 1 2

x0 x1 x2 . . .

U1U1 R2 R3−−−−−−−→

...

y2 1
y1 3
y0 2

x0 x1 x2 . . .

Therefore two of the µ’s are equal to 1 and two are equal to −1, and the resulting
ε is zero. Therefore this is a cancelling set of shifts.
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4. Lecture three: the matrix approach II

4.1. Coalescence

Suppose D = D(x1, . . . , xn, y1, . . . , yn) is a polynomial in these 2n variables. De-
note by coal(D) the polynomial obtained by coalescing the variables (x1, y1) with the
variables (x2, y2): this is essentially setting x2 = x1 and y2 = y1:

coal(D) = D(x1, x1, x3, . . . , xn, y1, y1, y3, . . . , yn).

Note that coal is a linear operation.

Let us apply this to the determinants of the interpolation matrices that we are con-
sidering. Coalescing the first two variables in DS(A) exactly means that we are requir-
ing the second set of derivatives A2 to vanish at the first point P1 = (x1, y1). If there is
overlap between A1 and A2, then the interpolation matrix will have two identical rows
after this coalescence. Otherwise, we simply have the union of A1 and A2 at the first
point. This proves the following:

LEMMA 1.

coal
(

DS(A)
)

=
{

±DS
(

A1 ∪ A2, A3, . . . An
)

, if A1 ∩ A2 = ∅;
0, if A1 ∩ A2 6= ∅.

Applying coalescence to both sides of (6) gives the following, using Lemma 1.

(7) coal
∂b

∂yb
2

∂a

∂xa
2

DS(A1, A2, . . . , An) =

=
∑

final positions
A∗2 such that
A1∩A∗2=∅

±ε(A∗2)DS(A1 ∪ A∗2, . . . , An)

4.2. Minimal shifts

Our goal is to reduce the sum in the above formula to a single determinant. We observe
that a and b are determined by the final position A∗2. In particular we can give the
following

DEFINITION 4. (a, b) is a minimal shift with final position A∗2 for the pair
(A1, A2) if A∗2 is the unique final position for an (a, b)-shift of A2 for which A1∩ A∗2 =
∅ and ε(A∗2) 6= 0.

COROLLARY 1. Suppose (a, b) is a minimal shift for (A1, A2) with final position
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A∗2. Then

coal

(

∂a+b

∂xa
2 ∂yb

2

DS(A)

)

= εDS(A1 ∪ A∗2, A3 . . . , An).

for some nonzero constant ε.

The main application we have for this is the following.

PROPOSITION 1. Suppose that (a, b) is a minimal shift for (A1, A2) with final po-
sition A∗2. Suppose that the interpolation problem for S and A′ = {A1∪ A∗2, . . . , An} is
non-singular. Then the original interpolation problem for S and A = {A1, A2, . . . , An}
is non-singular.

The goal is ultimately to reduce to the following situation, using the above Propo-
sition.

PROPOSITION 2. Suppose that S is lower closed. Then the determinant DS(A1)

with A1 = S is nonzero.

EXAMPLE 12. Consider A1 and A2 both equal to {1, ∂
∂x , ∂

∂y }. If we apply a (5, 0)-
shift and coalesce P1 and P2, then the only final position for A∗2 which is disjoint from

A1 is A∗2 = {
∂2

∂x2 , ∂3

∂x3 , ∂2

∂x∂y }. Thus

coal

(

∂5

∂x5
1

DS(A1, A2, . . . , An)

)

= εDS(A1 ∪ A∗2, A3 . . . , An).

for some nonzero constant ε, where A1 ∪ A∗2 is {1, ∂
∂y , ∂

∂x , ∂2

∂x2 , ∂2

∂x∂y , ∂3

∂x3 }.

4.3. Shifts of T1 and T2

In this section we first suppose that A2 = T1 = {(0, 0)}. With only one element in
A2, the only condition for (a, b) to be a minimal shift is that the resulting A∗2 (which is
{(a, b)} of course) is disjoint from A1. Hence it is a trivial matter, if A2 = T1, to apply
Proposition 1 and simply add the lattice point (a, b) to A1.

Next we suppose that A2 = T2 = {(0, 0), (1, 0), (0, 1)}. This case is already quite
a bit more complicated. The following lemma, proved in [30], at least gives us good
information about when an (a, b) shift of T2 is non-cancelling:

LEMMA 2. The final position A∗2 for initial position A2 = T2 is cancelling if and
only if the three elements of A∗2 are collinear.

The proof of this is a rather involved computation of the contributions to the ε

factor.

We have already seen an example of this in Example 11 in the previous Lecture.
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We note that if the final position A∗2 has two lattice points on one row and one on
another, then they cannot be collinear, and the shift will be non-cancelling. This is the
primary type of shift that is necessary to consider in most applications.

When is a shift of T2 minimal? This question is equivalent to asking: when is a final
position A∗2 (which is disjoint from A1) unique, given the numbers a and b of right and
up shifts, respectively? This is an easier question to address in most circumstances,
and we simply note the following.

Suppose that S is lower closed, and that A1 ⊂ S is also lower closed. Suppose
that the first k lowest rows of A1 are equal to the first k lowest rows of S, and that the
k + 1-st row of A1 is not equal to the k + 1-st row of S.

LEMMA 3. Suppose that there are at least two elements of S in the k + 1-st row
which are not in A1, and at least one element of S in a higher row that is not in A1.
Then the shift of T2 placing (0, 0) and (1, 0) into the first two elements of the k + 1-st
row of S which are not in A1, and which places (0, 1) in the first element of the next
higher row of S which has an element not in A1, is a minimal shift.

LEMMA 4. Suppose that there is exactly one element of S in the k+1-st row which
is not in A1, and in the next higher row of S that has elements not in A1, there are at
least two elements of S that are not in A1. Then the shift of T2 placing (0, 0) into the
final element of the k + 1-st row of S which is not in A1, and which places (0, 1) and
(1, 0) in the first two elements of the next higher row of S which has the two elements
not in A1, is a minimal shift.

To prove the above two lemmas, the readers need only convince themselves that
these final positions are the unique ones disjoint from A1 for A2 = T2; for this we use
up shifts first, then right shifts.

EXAMPLE 13. We give here a visualization of the final position A∗2.

Suppose A1 fills completely the lattice indexing monomials in V untill the row k
and it has some element at the row k + 1. In the next figures we indicate the elements
in A1 with a bullet • while the elements in A2 = T2 are marked with ◦ j .

As a first case, we suppose there are at least two free boxes in the (k + 1)st−row.

...

k + 1 • . . . •
k • • • • . . . •
...

3 • • • • • • . . . •
2 • • • • • • • . . . •
1 ◦3 • • • • • • • . . . •
0 ◦1 ◦2 • • • • • • • . . . •

0 1 2 3 4 . . . . . . . . . . . . . . . . . .
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Then we start with all the up shifts and we reach the position

...

k + 2 ◦3
k + 1 ◦1 ◦2 •

k • • • • . . . •
...

3 • • • • • • . . . •
2 • • • • • • • . . . •
1 • • • • • • • • . . . •
0 • • • • • • • • • . . . •

0 1 2 3 4 . . . . . . . . . . . . . . . . . .

After that, we move to right, performing all the right shifts:

...

k + 2 ◦3
k + 1 • . . . • ◦1 ◦2

k • • • • . . . •
...

3 • • • • • • . . . •
2 • • • • • • • . . . •
1 • • • • • • • • . . . •
0 • • • • • • • • • . . . •

0 1 2 3 4 . . . . . . . . . . . . . . . . . .

and this is the final position for A∗2.
We suppose now there is only one free box in the (k + 1)st−row.

...

k + 1 • • . . . •
k • • • • . . . •
...

3 • • • • • • . . . •
2 • • • • • • • . . . •
1 ◦3 • • • • • • • . . . •
0 ◦1 ◦2 • • • • • • • . . . •

0 1 2 3 4 . . . . . . . . . . . . . . . . . .
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Again we start with all the up shifts and we reach the position

...

k + 2 ◦3 ◦2
k + 1 ◦1 • . . . •

k • • • • . . . •
...

3 • • • • • • . . . •
2 • • • • • • • . . . •
1 • • • • • • • • . . . •
0 • • • • • • • • • . . . •

0 1 2 3 4 . . . . . . . . . . . . . . . . . .

After that, we move to right, performing all the right shifts, and we get the following
as final position for A∗2.

...

k + 2 ◦3 ◦2
k + 1 • • . . . • ◦1

k • • • • . . . •
...

3 • • • • • • . . . •
2 • • • • • • • . . . •
1 • • • • • • • • . . . •
0 • • • • • • • • • . . . •

0 1 2 3 4 . . . . . . . . . . . . . . . . . .

4.4. The paving strategy

Let us now specialize the interpolation problem and assume the following: S is a lower-
closed set, A1 is a lower-closed set, and all Ai sets for i ≥ 2 are either T1 or T2. A
strategy for proving that such an interpolation problem is nonsingular is to perform a
minimal shift to A2 and coalesce it with A1, thereby reducing the number of Ai sets.
If we can reduce to the case where there is only one such set, A1, then A1 = S and the
problem is nonsingular by Proposition 2.

The minimal shifts of T1 and of T2 will be all of the type introduced above. In
particular, those of T2 will be to place two elements on one row and one on another,
systematically filling up the rows of S from the bottom up.

We refer to this strategy as “paving” the set S by the sets Ai .

EXAMPLE 14. Consider the system of conics with two double points, namely the
linear system L2(22). In this case we have S = T3, and A1 = A2 = T2; S has six
elements, and both of the Ai ’s have three elements. We see that in this case, the paving
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strategy introduced above fails, since the three elements in S − A1 (namely (2, 0),
(1, 1), and (0, 2)) are collinear, and the shift placing A2 into these elements as a final
possible position A∗2 is cancelling, by Lemma 2. We are not particularly surprised that
the paving strategy has failed in this case, since we know that the interpolation problem
is indeed singular!

To continue the discussion, it is useful to illustrate the paving strategy by visualiz-
ing the set S (representing the basis of the underlying vector space V ) and the succes-
sive increasingly larger sets A1 (obtained by coalescing the next Ai set in its turn) as
the algorithm using the paving strategy proceeds.

For example, Consider now the system of cubics with three double points and one
simple point; we have dim(V ) =

∑

dim(Ai) = 10, with S = T4, A1 = A2 = A3 = T2
and A4 = T1:

S =

3 •
2 • •
1 • • •
0 • • • •

0 1 2 3

first A1 =

3
2
1 ◦
0 ◦ ◦

0 1 2 3

second A1 =

3
2
1 ◦ ◦
0 ◦ ◦ ◦ ◦

0 1 2 3

third A1 =

3
2 ◦ ◦
1 ◦ ◦ ◦
0 ◦ ◦ ◦ ◦

0 1 2 3

fourth A1 = S =

3 ◦
2 ◦ ◦
1 ◦ ◦ ◦
0 ◦ ◦ ◦ ◦

0 1 2 3

In this case the paving strategy has succeeded. We note that in creating the second
A1, we have executed a (5, 0) minimal shift of the T2, moving two elements into the
first row (filling it up) and one element into the second row. In creating the third A1, we
have executed a (2, 4) minimal shift of the T2, placing one element into the second row
(filling it up) and two elements into the third row (filling it up also). Finally in creating
the fourth A1, we have executed a (0, 3) minimal shift (namely three up shifts) of the
T1, placing the element into the fourth row at the top, and paving the entire set S.

It is more efficient to encode all of this a bit more simply as follows:
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S =

3 4
2 3 3
1 1 2 3
0 1 1 2 2

0 1 2 3

Here the numbers filling in the elements of S represent which Ai contribute to the
final paving of that particular element. Another way of saying this is that the n-th A1 in
the paving strategy algorithm consists of the union of all of the elements labeled with
integers between 1 and n.

EXAMPLE 15. In a similar way, if we consider the system of quartics with five
double points, we again get stuck, in a similar way to the case of L2(22). Indeed,
applying the paving strategy as above, the fourth A1 is

fourth A1 =

4 •
3 4 •
2 4 4 •
1 1 2 3 3
0 1 1 2 2 3

0 1 2 3 4

and in order to finish paving S, we would need to make a minimal shift into the final
three collinear elements, which is not possible by Lemma 2.

EXAMPLE 16. The paving strategy works very well for the system L5(27) of quin-
tics with seven double points:

5 7
4 7 7
3 5 6 6
2 4 5 5 6
1 1 2 3 4 4
0 1 1 2 2 3 3

0 1 2 3 4 5

This proves that L5(27) is non-special.

4.5. Proof of the Double Points Theorem in dimension two

The matrix approach that we are presenting here is powerful enough to prove that,
except for conics and quartics with two and five double points respectively, all linear
systems with simple and double points are non-special.

THEOREM 12 (ALEXANDER–HIRSCHOWITZ FOR P2). Suppose that d ≥ 5 and
S = {(i, j)|i + j ≤ d} (i.e. S represents all monomials of degree ≤ d) and all Ai are
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T2 or T1. Then DS(A) 6≡ 0 and the linear system Ld(1r , 2s) is non-special whenever
r + 3s ≤ (d + 2)(d + 1)/2.

The proof is simply an analysis of the paving strategy, proving that it does work and
in this case, with d ≥ 5, it never requires the three collinear elements for a minimal
shift.

One uses the strategy of always moving two elements on the lowest unfilled row,
and one on the next, whenever possible; if there is only one element left on the lowest
unfilled row, one shows that there are at least two elements on the next unfilled row.
This is relatively simple as long as there are more than four unfilled rows left, since
using this algorithm, the lowest unfilled row fills up twice as fast as the next unfilled
row, and hence when it does get near the end (with only zero or one element left) there
are at least two unfilled elements in that next row.

Thus the first remark to make is that one get “near the top” using this algorithm
without any problems. The next remark is that, when we have exactly filled the sixth-
to-last row, there is at least one element filled in the fifth-to-last row. This again follows
from the considerations above: one cannot simultaneously exactly fill the seventh-to-
last and the sixth-to-last rows.

Finally one simply checks by hand that if there is at least one element filled in the
fifth-to-last row, one can finish the paving of S from that point on. Since this fifth-to-
last row has only five elements in it total, there are really only four cases to check:

One element in fifth-to-last row:

d 6
d − 1 4 5
d − 2 3 4 4
d − 3 1 2 3 3
d − 4 • 1 1 2 2

d − 4 d − 3 d − 2 d − 1 d

Two elements in fifth-to-last row:

d 5
d − 1 4 4
d − 2 3 3 4
d − 3 1 2 2 3
d − 4 • • 1 1 2

d − 4 d − 3 d − 2 d − 1 d

Three elements in fifth-to-last row:
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d 4
d − 1 4 4
d − 2 2 3 3
d − 3 1 2 2 3
d − 4 • • • 1 1

d − 4 d − 3 d − 2 d − 1 d

Four elements in fifth-to-last row:

d 5
d − 1 3 4
d − 2 2 3 3
d − 3 1 1 2 2
d − 4 • • • • 1

d − 4 d − 3 d − 2 d − 1 d

These four simple computations finish the proof of the Theorem.

EXAMPLE 17. One can use this method to study the problem in P1×P1 instead P2.
This time S is given by d1×d2 boxes, arranged in a rectangle; these are the monomials
in the complete linear systems on P1 × P1.

S =

d1
...

1
0

0 1 . . . d2

Assume d1 = 2. If A1 = A2 = T2 we have

2 2 2
1 1 2
0 1 1

0 1 2 . . . d2

Thus two double points fill exactly two columns. If d2 is even, we have an odd num-
ber of columns (i.e. d2 + 1) and the system is special. In Dent’s thesis the case of
rectangular S is analyzed more completely; see also [30]

The matrix approach presented here has several variations, and has been used to
prove that several classes of interpolation problems are non-special. See [43] for a
recent survey.

Dent, in her thesis ([29]), has used the method to prove the Alexander-Hirschowitz
Theorem for three variables.

It would be a wonderful project to systematically relate these matrix approach
methods for studying interpolation problems, to degeneration techniques coming from
a more standard algebro-geometric approach, using upper semicontinuity.
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5. Lecture four: degenerations of the plane

5.1. Blowing up the trivial family of planes

We already spoke, in Lecture One, about various specialization techniques to attack
the interpolation problem. Since the dimension of a system with imposed multiple
points is upper-semicontinuous in the position of the fat points {Z i}, we can consider a
degeneration of Z1 and Z2 to a suitable Z1 ∪ Z2. In this way one reduces the study of
H 0(XS,L⊗IZ1⊗IZ2⊗· · ·⊗IZn ) to the study of H 0(XS,L⊗IZ1∪Z2⊗IZ3⊗· · ·⊗IZn ).

In the next two lectures we will explain the essential features of a particular spe-
cialization technique introduced by Ciliberto and Miranda in [22].

Although related closely to other specializations, the new feature is that the de-
generation is not of sets of points, but, instead, we degenerate the surface where these
points live. The idea is based on a degeneration method used by Z. Ran ([48]) to study
enumerative problems on singular curves and consists in degenerating the plane to a
reducible surface. The restriction of the limit linear system to the components of the
surface are hopefully easier to understand than the system that we began with.

In more detail, let 1 be a complex disc around the origin. We consider the trivial
family of planes which is the product V = P2 ×1, with its two projections p1 : V →
P2 and p2 : V → 1. We denote the fiber over t ∈ 1 by Vt = p−1

2 (t) = P2 × {t}.
Consider a line L ⊂ V0 and blow it up to obtain a three-fold X with maps f : X → V ,
π1 = p1 ◦ f : X → P2 and π2 = p2 ◦ f : X → 1. The map π2 is a flat family
of surfaces over 1: for t 6= 0, X t = Vt = P2, while, for t = 0, X0 is the union of
the proper transform P of V0 (which is again isomorphic to P2) and of the exceptional
divisor F of the blow-up (which is isomorphic to a Hirzebruch surface F1). They are
joined transversally along a curve R which is a line L in P and is the exceptional curve
on F.

Q
Q

Q
QQ

Q
Q

Q
QQ

F

R
L

P

-1
1

5.2. The triple point formula

Note that we have (R2)F + (R2)P = 0. This is a special case of the so-called Triple
Point Formula for double curves of the special fiber of a degeneration of surfaces. In
fact, let X be a smooth 3-fold with a map π : X → 1, whose general fiber is a smooth
surface and whose central fiber X0 is the union∪Ai of smooth Ai meeting transversally
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along smooth curves Ri j ⊂ Ai . The Triple Point Formula states that with this situation,
one has:

(8) (R2
i j )Ai + (R2

i j )A j = −(numbers of triple points on Ri j ).

Proof. This is rather elementary intersection theory on the threefold X . First note that
A2

i ·A j can be viewed as taking the self-intersection of the surface Ai , then restricting to
A j . Restriction is a homomorphism of the intersection product, and so we can restrict
Ai to A j first (obtaining R j i ) and then take the self-intersection. Hence

(A2
i · A j )X = (R2

j i)A j .

Now consider Ai · A j · X0. On the one hand this is zero, since X0 ≡ X t and, for t 6= 0,
X t is disjoint from the Ai ’s. Using that X0 =

∑

k Ak , we have

0 = Ai · A j · X0 = Ai · A j ·
∑

k

Ak = A2
i · A j + A2

j · Ai +
∑

k 6=i, j

Ai · A j · Ak .

The sum on the right is the number of triple points on Ri j . This and the identification
above of A2

i · A j proves the Triple Point Formula (8).

5.3. The degeneration of the linear system

We pass now to analyzing the invertible sheaf on X0. The Picard group of X0 is the
fibered product of Pic(P) (generated by O(1)) and Pic(F) (generated by the class H of
a line and the class R of the exceptional divisor) over Pic(R). Since H · R = 0 and
R · R = −1, we have

OF(H )|R ∼= OR

and
OF(R)|R ∼= OR(−1).

Hence if χ is a line bundle on X0 given by χP and χF, in order that the restrictions
to R agree, one must have χP

∼= OP(d) and χF
∼= OF(cH − d R) for some c and

d; we denote this line bundle on X0 by χ(c, c − d). In particular for any d and k,
χ(d, k)|P = OP(d − k) and χ(d, k)|F = OF(d H − (d − k)R).

Let OX (d) be the line bundle π∗1 (OP2(d)). If t 6= 0 then the restriction to X t is
isomorphic to OP2(d) and the restriction to X0 is the line bundle χ(d, 0). Since the
normal bundles of P and F on X are respectively −L and −R we have OX (P)|P =
OP(−1) and OX (P)|F = OF(R).

Consider now the line bundle OX (d, k) := OX (d) ⊗ OX (kP); from the previous
discussion we have

OX (d, k)|Xt
∼= OP2(d) t 6= 0

OX (d, k)|X0
∼= χ(d, k)

and we therefore have that all line bundles χ(d, k) on X0 are flat limits of line bundles
OP2(d) on the general fiber X t in this degeneration.
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Fix a positive integer n and a non-negative integer b ≤ n. We now consider n − b
general points P1, . . . Pn−b in P and b general points Pn−b+1, . . . Pn in F. These points
are viewed as limits of n general points P1,t , . . . , Pn,t on X t . Our goal is to understand,
on X t , the linear system Ld(−

∑n
i=1 mi Pi,t ).

To this end we now consider the system L(k, b) on X0 which is formed by divisors
on |χ(d, k)| with the prescribed multiplicities at the points Pi , i = 0, . . . , n. Then
L(k, b) can be regarded as a flat limit on X0 of the desired system Ld(−

∑n
i=1 mi Pi,t )

and we call this a (k, b)−degeneration of the linear system. We can observe that
L(k, b) restricts to P as Ld−k(−

∑n−b
i=1 mi Pi ) and to F as a system of the form

Ld(−(d − k)Q0 −
∑n

i=n−b+1 mi Pi) where Q0 is a point in P2 at which we blow
up to obtain F. (Here we are viewing the surface F as a blowup of the plane, and the
corresponding line bundle on F as a linear system of the same form as the others we
are considering.)

We note that the restricted system on R in which they must agree is given by
OR(d − k).

5.4. The computation of the limit linear system

A global section of L(k, b) is a section on P of Ld−k(−
∑n−b

i=1 mi Pi ) and a section on
F of Ld(−(d − k)Q0 −

∑n
i=n−b+1 mi Pi ) which agree on the intersection curve R. In

other words, H 0(X0,L(k, b)) is the fiber product of

H 0(P,Ld−k(−
n−b
∑

i=1

mi Pi))

and

H 0(F,Ld(−(d − k)Q0 −
n

∑

i=n−b+1

mi Pi))

over the restriction to R, which is H 0(R,OR(d − k)).

If we denote by l0 the dimension of L(k, b), by semicontinuity we have

l0 ≥ dim(Ld(−
∑n

i=1 mi Pi )) ≥ ε(Ld(−
∑n

i=1 mi Pi )).

Therefore we have the following

LEMMA 5. If

l0 = ε(Ld(−
n

∑

i=1

mi Pi))

then Ld(−
∑n

i=1 mi Pi ) is non-special.

This is the basis of the approach: given the degree d and the multiplicities m i ,
choose an appropriate k and b and make a computation of the limit dimension l0. If
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that limit dimension is equal to the expected dimension of the system, then it is non-
special.

This method has the capability of reducing the problem for the original linear sys-
tem into two easier linear systems on P and F, of the same general sort. On P the
degree has gone down (if k > 0) and the number of points is less (if b > 0); on F the
number of points is less (if b < n). We can hope to determine their dimensions by a
process of induction, and complete the analysis of the limit dimension by a transver-
sality argument which allows the easy computation of the relevant fibered product of
systems.

5.5. Results from this method

This was the approach taken by Ciliberto and Miranda in [22] and [23], which resulted
in the proof of the following theorem:

THEOREM 13. For any m0 and any m ≤ 3 the Harbourne–Hirschowitz Conjecture
holds in the quasi-homogeneous cases Ld(m0, mn). For any m ≤ 12 this Conjecture
holds in the homogeneous cases Ld(mn).

Later this has been extended via a more efficient computer algebra component, by
Ciliberto, Cioffi, Miranda, and Orrechia [26], and we now have:

THEOREM 14. The Harbourne–Hirschowitz Conjecture holds in the homogeneous
cases Ld(mn) for m ≤ 20.

One reason that a computer algebra technique needed to be developed for this is that
unfortunately the degeneration procedure as described above, by computing the space
of global sections of the limiting linear system, does not work in all cases, even for
these low multiplicities. For example, to study the Dixmier example L19(610) worked
out by Hirschowitz with the Horace method, there are no integers k and b which have
the limit bundle having no global sections, as expected. For these cases, which are
finite in number for any fixed m, the result above relied on a separate computer algebra
computation.

In the next Lecture we will describe a recently developed technique which seems
to offer some promise to avoid the computer algebra methods and to give a more sys-
tematic approach.

6. Lecture five: refined matching conditions

6.1. The fiber product condition

As noted in the previous lecture, a section of the relevant limit line bundle L0 on the
reducible surface X0 = P ∪ F is a section over P and a section over F which agree on
the double curve R. In other words, if we denote by LP the line bundle on P and by
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LF the line bundle on F, one has natural restriction maps

ρP : H 0(P,LP) −→ H 0(R,OR(d − k))

and
ρF : H 0(F,LF) −→ H 0(R,OR(d − k))

and the global sections of the limit line bundle may be identified with the fiber product

H 0(X0,L0) :={(α, β) ∈ H 0(P,LP P)× H 0(F,LF )

| ρP(α) = ρF(β) in H 0(R,OR(d − k))}.

Thinking in terms of divisors on the two surfaces, this condition means that if we
have a divisor A ∈ |LP| on P and B ∈ |LF| on F, in order that they patch together
to give a divisor on X0, we must have that A|R = B|R as divisors on the curve R.
For example, if A is tangent to R at a point r ∈ R, so that A|R contains r with some
multiplicity, then B|R must also contain r with that multiplicity, which implies B must
have some tangency (at least) with R at r .

However it could be the case that A has a singularity at r , which is not distinguish-
able from a tangency, when one only looks at the restriction to R. For example, if A
has a triple point at r , with no tangent in the direction of R, then A|R will contain the
divisor 3r , and this will then force B to have a flexed tangent at r along R. It will not
force B to have a triple point though.

Should the possible “extra” singularity of the divisor A have an effect on the divisor
B, if we assume that the union A ∪ B is a limit of curves in the general surface? This
is a relevant hypothesis, for the following reason.

All of the dimension problems in interpolation theory that we have been consider-
ing can be reduced to proving that a certain linear system is in fact empty. Indeed, if
the expected dimension is e > −1, then adding e + 1 simple base points to the linear
system will result in a linear system which is expected to be empty; if it is, then the
original linear system will have the correct (expected) dimension also.

6.2. Refined matching conditions

Now suppose that we are trying to prove that a certain linear system L is empty, using
the degeneration method. We fix the geometric part of the degeneration (namely the
number of points b that go to the F surface) and assume on the contrary that it is not.
Thus there will exist a family of curves C → 1 such that Ct is an “unexpected” curve
in X t and C0 is the curve in the central fiber, i.e., C0 is the union of a curve A in P and
a curve B in F. Then C0 must be a divisor for one of the limit bundles, i.e. there must
exist an integer k for which A and B are divisors in the corresponding bundles on P

and F, and which agree on R (as sections of OR(d − k)).

Thus it is enough to show that for every k there are no sections in the fiber product
which are different from zero in both factors, and which could be limits of curves Ct in
the general fiber.

From now, assume that C0 is given by A + B, where A ⊂ P and B ⊂ F.
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What we have been able to show is that if B has a multiple component which is a
(−1)-curve in F, and which meets R at a point r , then A must have a singularity at the
point r . Precisely, we have been able to show the following:

LEMMA 6. Suppose E ⊂ F is a (−1)-curve meeting R at a point r ∈ R, and
E · B = −σ < 0. Then B contains E as a component with multiplicity σ , and
multr(A) ≥ σ .

The idea of the proof is to blow up the threefold X along E and analyze the proper
transform C ′ of the family C. For details see [25].

6.3. Cremona transforms and the Three-Point Lemma

In studying linear systems of plane curves with general multiple base points, the oppor-
tunity of applying a Cremona transformation of the plane is available at any time, and
may indeed be useful in certain situations to reduce the degree or otherwise make the
system more amenable to analysis. Let L be the system of plane curves of degree d with
base points of multiplicity m1, . . . , mn. Compute s = m1+m2+m3; performing a Cre-
mona transform based at these three points results in a linear system of curves of degree
2d−s and with base points of multiplicity m1−s+d, m2−s+d, m3−s+d, m4, . . . , mn .
In particular if s > d then both the degree and the first three multiplicities will drop
under the Cremona transform.

Instead of applying a Cremona transformation to the system, let us degenerate it,
putting the three points on the F surface. If we are interested in showing that the general
system is empty, applying the technique explained above, we must show that for any
integer k, there is no limit curve A + B possible in the (k, 3)-degeneration. It is not
hard to see that the only k that needs to be checked is k = s − d, so let us focus on this
case.

Let P1, P2, P3 be the three points on F with multiplicity m1, m2, m3 such that s =
m1 + m2 + m3 > d. Let F1, F2, and F3 be the corresponding fibers of the ruling of F

through the three points. The linear system on F that any limit curve B must belong to
is the system |d H − (2d− s)R−m1 P1−m2 P2−m3 P3|. We note that if F is the class
of the ruling, we have H ·F = R ·F = 1. Therefore B ·Fi = s−d−m i = m j+mk−d.
We may assume that this is negative, else the line joining P j and Pk must split off the
system anyway, and we would have reduced the degrees and multiplicities to consider
already. Hence we can apply Lemma 6 and conclude that the curve A on the P surface
must have a point of multiplicity d − m j − mk at the point R ∩ Fi .

In order to show that there are no such limits, we are therefore put into a position
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of showing that the system on P, namely curves of degree d − k = 2d − s, with n − 3
points of multiplicity m4, . . . , mn , has no divisors A with three additional points of
multiplicity d − m1 − m2, d − m1 − m3, and d − m2 − m3, lying on the line R.

This is exactly the numerology of applying a Cremona transformation to the orig-
inal system! The possible advantage to doing this instead of applying a Cremona
transformation is that any geometric relationships between the other points would be
preserved intact with this operation (e.g., if some subset of the others are not in fact
general, but lie on a line), while applying a Cremona transformation would spoil this.

We call this the Three-Point Lemma.

LEMMA 7 (THREE-POINT LEMMA). Suppose that the first three multiplicities of
the original system L are m1, m2, and m3, and set s = m1 + m2 + m3. Suppose that
the virtual dimension of this system is negative. In order to show that it is in fact empty,
it suffices to show that the system obtained by replacing the degree d by 2d− s, and by
replacing these first three multiplicities by d−m1−m2, d−m1−m3, and d−m2−m3,
and by enforcing that these three points are collinear, is empty.

6.4. The Four-Point Lemma

In a similar way we can try to use four points on F, and make a similar analysis.

Again set s = m1 + m2 + m3 + m4, assume that s > d, and write s − d = 2t + e,
with e = 0, 1. Again it is not hard to see that the relevant k to analyze is k = t + e
(i.e. we drop the degree on P by t + e). The four fibers through the four points on
F have intersection number with B equal to −(m i − t − e), and there is a fifth (−1)-
curve (namely the conic through the four points and the point blown up to R) which
has intersection number with B equal to −t . Using Lemma 6, we therefore have the
following.

LEMMA 8 (FOUR-POINT LEMMA). Suppose that the first four multiplicities of the
original system L are m1, m2, m3, and m4, and set s = m1 + m2 + m3 + m4. Write
s − d = 2t + e as above, with e = 0 or 1. Assume that t + e ≤ d and t + e ≤ m i for
i = 1, . . . , 4. Suppose that the virtual dimension of this system is negative. In order to
show that it is in fact empty, it suffices to show that the system obtained by replacing
the degree d by d − t − e, by replacing these first four multiplicities m i by mi − t − e,
by adding one additional point of multiplicity t, and by enforcing that these five points
are collinear, is empty.

It turns out that the virtual dimension of this reduced system is exactly the same as
the virtual dimension of the original system.

6.5. The Five-Point Lemma

One can continue in this vein; let us present one more case, that of putting five points
on the surface F.
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Again set s = m1+m2+m3+m4+m5, assume that s > d, and write s−d = 2t+e,
with e = 0, 1. Again it is not hard to see that the relevant k to analyze is k = t + e (i.e.
we drop the degree on P by t + e). The five fibers through the five points on F have
intersection number with B equal to−(m i− t−e). Using Lemma 6, we therefore have
the following.

LEMMA 9 (FIVE-POINT LEMMA). Suppose that the first five multiplicities of the
original system L are m1, m2, m3, m4, and m5, and set s = m1+m2+m3+m4+m5.
Write s− d = 2t + e as above, with e = 0 or 1. Assume that t + e ≤ d and t + e ≤ m i

for i = 1, . . . , 5. Suppose that the virtual dimension of this system is negative. In order
to show that it is in fact empty, it suffices to show that the system obtained by replacing
the degree d by d − t − e, by replacing these first five multiplicities m i by mi − t − e,
and by enforcing that these five points are collinear, has the expected dimension.

In the Five-Point Lemma, the virtual dimension of the system may go up; if it
becomes non-negative, it is necessary to show that it has the expected dimension (not
of course that it is empty).

6.6. Examples

Using the Three-, Four-, and Five-Point Lemmas, which incorporate the more refined
matching conditions as explained above, we can handle several cases which were only
possible using the computer algebra packages.

We have focused our attention on homogeneous systems with ten points, which
is the first case of interest. Those with virtual dimension equal to −1 should be the
hardest to prove are actually empty. The number theory to determine which degrees and
multiplicities give virtual dimension −1 for ten points was worked out by A. Malone
in her Master’s degree paper [44]. The smallest one has d = 19 and m = 6, and the
next smallest has d = 38 and m = 12. The third smallest has d = 174 and m = 55.
The methods presented here are sufficient to handle the first two, but not the latter one.

The first such example was the one that Dixmier proposed, and that we referred to
before; Hirschowitz was successful in using the Horace Method with this system, but
we could not provide a proof using the original version of (k, b)-degenerations of the
plane, with the naive matching conditions.

EXAMPLE 18. Consider the linear system L19(610) of curves of degree 19 with ten
general points of multiplicity six. The virtual dimension of this system is −1, and so
we expect the system to be empty.

Start by applying a four-point lemma with four of the m = 6 points. Here s = 24,
d = 19, so that s − d = 5, and hence t = 2 and e = 1. Therefore we reduce to the
system of curves of degree 16 with six general points of multiplicity 6, and five other
collinear points, four of multiplicity 3 and one of multiplicity 2.

We then apply another four-point lemma, to one of the m = 3 points and three of
the m = 6 points. Now s = 21, d = 16, so again s − d = 5, t = 2, and e = 1.
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We therefore reduce to the system of curves of degree 13, with three general points of
multiplicity six, and eight other base fat points, lying on two lines. Each of the two
lines has a point with m = 2 and three points with m = 3. The intersection point
between the two lines started as a point with m = 3, but the multiplicity was reduced
by three, and therefore eliminated.

Apply another four-point lemma, to two of the m = 6 points, and two of the m = 3
points (one on each of the lines). Again since s = 18 and d = 13, we have s − d = 5
and t = 2, e = 1 as before. We reduce to the system of curves of degree 10, with one
general m = 6 point, and nine other base fat points, lying on three lines; each of the
lines has two m = 3 points and one m = 2 point. (Again the original two m = 3 points
used in the four-point lemma application are removed by this process.)

Finally do one more four-point lemma, with the final m = 6 point, and one m = 3
point from each of the three lines. Again s − d = 15 − 10 = 5, t = 2, and e = 1.
We reduce to the system of curves of degree 7, with eight general base fat points,
four m = 3 points and four m = 2 points, lying on four general lines, one m = 3
and one m = 2 point on each line. (Again the three m = 3 points used in the four-
point application are removed by this process.) At this point the eight points are in
fact general points! We have reduced the problem to showing that the linear system
L7(24, 34) of septic curves with four general triple points and four general double
points is empty.

Performing a Cremona transformation at three of the four triple points gives the
system L5(13, 24, 3). Performing a second Cremona transformation at the triple point
and two of the double points gives the system L3(14, 22). At this point one notices that
the line joining the two double points must split off this system, and the residual system
is the system L2(16) of conics through six general points, which is indeed empty.

This series of relatively simple applications of the Four-Point Lemma, followed by
some Cremona transformations, suffices to prove that the original system L19(610) is
empty.

EXAMPLE 19. Consider the linear system L38(1210) of curves of degree 38 with
ten general points of multiplicity twelve. The virtual dimension of this system is −1,
and so we expect the system to be empty. This system was analyzed in Gimigliano’s
thesis.

Call the points P1, . . . P10. Start by applying a Four-Point lemma with P1, P2,
P3 and P4. Here s = 48, d = 38, so that s − d = 10, and hence t = 5 and e =
0. Thus we reduce to the system of curves of degree 33 with six general points of
multiplicity twelve, and five other collinear points, four of multiplicity 7 and a point
P11 of multiplicity 5, lying on a line r1.

Apply a Four-Point Lemma with P5, P6, P7 and P11. We reduce to the system of
curves of degree 29 with three points of multiplicity twelve, four points of multiplicity
seven on the line r1, three points of multiplicity eight (i.e. P5, P6 and P7) and a new
point of multiplicty four (i.e. P12) on a line r2. The intersection between r1 and r2 is
the simple point P11, having m = 1.
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Apply a Four-Point Lemma with P4, P7, P8 and P9. Here s = 39, and we reduce
to a system of curves of degree 24. We have a new point P13 of multiplicity m13 = 5.
Moreover P4 becomes a double point and P7 a triple point, while P8 and P9 drop their
multiplicity to m8 = m9 = 7. The points P4, P7, P8, P9 and P13 lie on the line r3.
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Apply a Four-Point Lemma with P3, P6, P9 and P10. Here s = 34; thus the degree
of the system drops to 19. We have a new point P14 of multiplicity m14 = 5. The
points P3 and P9 become double points, while P6 drops its multiplicity to m6 = 3, and
P10 drops to m10 = 7. The points P3, P6, P9 P10 and P14 lie on the line r4.
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Finally apply another Four-Point Lemma with P2, P5, P8 and P10. In this way
we reduce to a system of curves of degree 14. We have a new point P15 of multiplic-
ity m15 = 5. The points P2, P8 and P10 become double points, while P5 drops its
multiplicity to m5 = 3. The points P2, P5, P8 P10 and P15 lie on the line r5.
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From this moment we can try to move the points in such a way that we only put
three of them on a line at any one step. We start by putting P13, P14 and P15 on a line
r6.
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Since m13 + m14 + m15 = 15 > 14, r6 splits off. We then reduce to a system of
curves of degree 13. The points P13, P14 and P15 now have multiplidity m13 = m14 =
m15 = 4.
Now r1 splits off once from the system (since m1 + m2 + m3 + m4 + m11 = 7+ 2+
2 + 2 + 1 = 14). The point P11 drops its multiplicty to 0. The points P2, P3 and P4
become simple points while P1 has multiplicity m1 = 6.
The degree of the system is now 12. Consider now the line r2; we have m5 + m6 +
m7 + m12 = 13. Thus also r2 splits off, leaving curves of degree 11. Moreover, the
points P5, P6 and P7 now have multiplicity m5 = m6 = m7 = 2 and P12 has m12 = 3.
Now, since m13 + m14 + m15 = 12, the line r6 splits once again from the system.
Thus we reduce to a system of curves of degree 10 with the following configuration of
points.

r1

s6P1

sP2
s

P3

s

P4

r2 s

2P5
s

2P6
s

2P7
s

3P12

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

r3
s2P8

s

2P9

s

3P13

�������������������������������

r4
s

2P10

s
3P14








































r5

s

3P15

hhhhhhhhhhhhhhhhhhhhhhhhr6

Now move the points such that P1, P8 and P14 lie a line r7 and P1, P9 and P15 lie
on a line r8. Since m1 +m8 +m14 = 6+ 2+ 3 = 11 we can split the line r7 from the
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system leaving curves of degree 9. On r8 we now have m1+m9+m15 = 5+2+3 = 10;
hence also r8 splits. Thus the residual system has degree 8. Moreover we have P1 with
m1 = 4, P8, P9 with m8 = m9 = 1 and P14, P15 with m14 = m15 = 2.

Now the line r2 splits (m5 + m6 + m7 + m12 = 9) and we reduce to a system of
curves of degree 7. The points P5, P6 and P7 have multiplicity m = 1 while P12 has
m12 = 2.

Now move P1, P5 and P13 such that they lie on a line r9. Since m1+m5+m13 = 8
the line r9 splits. We pass to a system of curves of degree 6 in which P1 has m1 = 3,
P13 has m13 = 2 and P5 has m5 = 0. Now, the line r4 with points P3, P6, P9, P10
and P14 splits (m3 + m6 + m9 + m10 + m14 = 1+ 1+ 1+ 2+ 2 = 7). Thus we can
cancel the points P3, P6 and P9 (since they have m = 0), while P10 and P14 drop their
multiplicity to m10 = m14 = 1. The degree of the curves of the system drops to 5.

Move P1, P10 and P12 in such a way they lie on a line r10. Since m1+m10+m12 =
3+ 1+ 2 = 6, the line r10 splits and we reduce to a system of curves of degree 4. The
point P1 has m1 = 2, P12 has m12 = 1, while P10 can be canceled since m10 = 0.

Now, since m4+m7+m8+m13 = 1+ 1+ 1+ 2 = 5 > 4, the line r3, with points
P4, P7, P8 and P13, splits. Thus we can cancel the points P4, P7, P8. The point P13
now has multiplicity m13 = 1. We reduce to a system of curves of degree 3.

Finally, we split the line r6 with points P13, P14 P15 (m13+m14+m15 = 1+1+2 =
4) and we reduce to the system of conics double at P1 and passing through P2, P12,
P15. These give three distinct lines which must split off a system of degree two. We
conclude that the system must be empty.

EXAMPLE 20. In a similar way to the previous examples we can treat the linear
system L158(5010) of curves of degree 158 with ten general points of multiplicity fifty.
This was posed by J. Roe during the workshop as an interesting unknown case for the
Nagata problem. The virtual dimension of this system is −31, and so we expect the
system to be empty. We prove that, in fact, L158(5010) is empty. We just give the
essential steps and we leave the details to the reader.

We represent the system L158(5010) by the following table

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

158 50 50 50 50 50 50 50 50 50 50

We start applying a four-point lemma to P1, P2, P3 and P4. Since s = 200 and
s − d = 200− 158 = 42, we have t = 21 and e = 0. Thus we reduce to the system
with the following data

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

137 29 29 29 29 50 50 50 50 50 50 21
1 1 1 1 1 0 0 0 0 0 0 1

Here we have indicated that the points are no longer all general in the third row, by
indicating the curve (in this case a line, of degree one) which passes through P1, P2,
P3, P4, and P11. Apply now a Cremona transformation centered at P5, P6 and P7.
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Apply a second Cremona centered at P8, P9, and P10. Apply a third Cremona centered
at P5, P6 and P7, and finally a fourth Cremona centered at P1, P2, and P3. We obtain

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

83 27 27 27 29 24 24 24 24 24 24 21
7 3 3 3 1 2 2 2 2 2 2 1

so that the resulting system has degree 83 with the indicated multiplicities, and the
points lie on a curve of degree 7 with the indicated multiplicities. (The curve of degree
7 is the image of the line under the four Cremona transformations.)

Now execute a Four Point Lemma with points P4, P5, P6, and P7, which results in:

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

74 27 27 27 20 15 15 15 24 24 24 21 9
7 3 3 3 1 2 2 2 2 2 2 1 0
1 0 0 0 1 1 1 1 0 0 0 0 1

Apply two more Cremona transformations. The first one is centered at P1, P2 and
P3 and the second one is centered at P8, P9 and P10. The result is:

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

62 20 20 20 20 15 15 15 19 19 19 21 9
4 1 1 1 1 2 2 2 1 1 1 1 0
4 1 1 1 1 1 1 1 2 2 2 0 1

The two quartics indicated above are the Cremona images of the septic and the line in
the previous table.

At this point, we can use the four-point lemma on P1, P2, P3 and P11. We reduce
to the system represented by

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

52 10 10 10 20 15 15 15 19 19 19 11 9 9
4 1 1 1 1 2 2 2 1 1 1 1 0 0
4 1 1 1 1 1 1 1 2 2 2 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1 0 1

At this point one notices that the second quartic splits off the system, three times; and
then the line splits off once. This results in the system of degree 39 indicated by:

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

39 6 6 6 17 12 12 12 13 13 13 10 6 8
4 1 1 1 1 2 2 2 1 1 1 1 0 0
4 1 1 1 1 1 1 1 2 2 2 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1 0 1

Now apply three Cremona transformations respectively centered at (P4, P8, P9),
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(P4, P5, P10) and (P4, P6, P7). This reduces the system to

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

30 6 6 6 8 9 10 10 9 9 10 10 6 8
4 1 1 1 1 2 1 1 2 2 1 1 0 0
4 1 1 1 1 1 2 2 1 1 2 0 1 0
4 1 1 1 3 1 1 1 1 1 1 1 0 1

where now the constraints on the points are that they lie on the indicated three quartic
curves.

Now execute a Four Point Lemma with P10, P11, P12, and P13, to obtain the system

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

28 6 6 6 8 9 10 10 9 9 8 8 4 6 2
4 1 1 1 1 2 1 1 2 2 1 1 0 0 0
4 1 1 1 1 1 2 2 1 1 2 0 1 0 0
4 1 1 1 3 1 1 1 1 1 1 1 0 1 0
1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

At this point the first quartic splits off the system, then the second quartic splits
off, then the line splits off; at this point the first quartic splits off again, then the third
quartic splits, then finally the line splits again. This leaves us with the system of degree
ten:

d P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

10 2 2 2 2 3 5 5 3 3 1 3 1 3 0
4 1 1 1 1 2 1 1 2 2 1 1 0 0 0
4 1 1 1 1 1 2 2 1 1 2 0 1 0 0
4 1 1 1 3 1 1 1 1 1 1 1 0 1 0
1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Now three Cremona transformations, centered respectively at (P6, P7, P11),
(P5, P8, P9) and (P3, P6, P13), give a system of cubics which are double at P1, P2,
P4, and P7, and passing simply through P5, P8, P9, P10, P12, and P13. This system is
clearly empty (the six lines passing pairwise through the four double points must split
off; but the degree of the system is only three).

Since this system is empty, the claim follows for L158(5010).

7. Lecture six: special effect varieties

This section is devoted to the definition and the study of two different kinds of varieties
called special effect varieties. The α−special effect variety is defined by requiring
some numerical conditions, while the definition of h1−special effect variety concerns
cohomology groups. We will start with the case of special effect curves in P2. As
we will see, the existence of these curves is related to the speciality of a given linear
system. This suggests two new conjectures for special systems in the planar case.
Whenever not otherwise specified, we work over the field C.
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7.1. Basic definitions

α−Special effect curves

We start with some preliminary definitions.

DEFINITION 5. Let L := L2,d(−
∑h

i=1 mi Pi ) and L′ := L2,d ′(−
∑s

i=1 c ji Pji ) be
two linear systems in P

2. We will write L′ <L S L if

1) d ′ ≤ d;

2) {Pj1, . . . Pjs } ⊆ {P1, . . . Ph};

3) c jk ≤ m jk for all k = 1, . . . , s.

Let Y ⊂ P2 be a curve. Then we write Y <L S L if the degree of Y is less than or equal
to d and multPi (Y ) ≤ mi for each i .

DEFINITION 6. Let L := L2,d(−
∑h

i=1 mi Pi ) be a linear system of curves of
degree d passing through the points Pi with multiplicity at least m i . Let Y be an
irreducible curve passing through the points P j1, . . . , Pjs with multiplicity at least
c j1, . . . , c js , such that Y <L S L. Then Y has the weak special effect property for
L if

(iP) ν(|Y |) ≥ 0,

(iiW) ν(L− Y ) ≥ ν(L).

Moreover, we will say that Y has the special effect property for L if the inequality in
(i i W ) is strict, i.e.

(iiP) ν(L− Y ) > ν(L).

EXAMPLE 21. Let L := L2,d(−
∑h

i=1 mi Pi) and consider a (−1)−curve E such
that L · E = −N < 0. Thus L = N E +M, where E ·M = 0. Using Riemann-Roch
it is easy to prove

ν(M) = ν(L)+
(

N
2

)

.

Hence E has the special effect property if N ≥ 2 and the weak special effect property
if N = 1.

EXAMPLE 22. Let L be the system L2,6(−
∑9

i=1 2Pi). The only element in L is
the double cubic through the nine points C = 3H −

∑9
i=1 Pi . Since

ν(L) = 6 · (3+ 6)

2
− 9 · 3 = 0

and

ν(L− C) = ν(C) =
3 · (3+ 3)

2
− 9 = 0

we conclude that the cubic C has the weak special effect property for L.
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EXAMPLE 23. Let L be the system L2,9(−6P1 − 6P2 − 6P3). The only element
in L is 3Y , where Y is the union of the lines passing through two of the three points,
i.e. Y = L12 + L13 + L23, where L i j is the line through Pi and Pj . We claim that
each of the lines L i j has the special effect property. We prove this for L12. Obviously
one has ν(|L12|) ≥ 0; indeed, it is a (−1)-curve. Moreover L − L12 is the system
L′ := L2,8(−5P1 − 5P2 − 6P3) and its virtual dimension is

ν(L′) := 8 · 11

2
− 2

5 · 6
2
− 6 · 7

2
= 44− 30− 21 = −7

while ν(L) = −9. So the claim follows.

It is clear, now, in which way we proceed. If Y has one of the special effect proper-
ties, we substitute the system L with L− Y and we investigate this new system.

DEFINITION 7. Let L be a system as above. Fix a sequence of (not necessarily
distinct) irreducible curves Y1, . . . Yα , such that any two distinct members are disjoint.
Suppose further that

(1) Y j has the weak special effect property for L−
∑ j−1

i=1 Yi , for j = 1, . . . , α,

(2) there exists at least one index j such that Y j has the special effect property for

L−
∑ j−1

i=1 Yi ,

(3) ν(L−
∑α

i=1 Yi) ≥ 0.

Then X :=
∑α

i=1 Yi is called a special effect configuration for L. In particular we
write X :=

∑r
i=1 αi Yi if r is the number of distinct curves and Yi occurs αi times in the

list. We call both X and {Y1, . . . , Yr } an (α1, . . . , αr )−special effect configuration.
Finally, when Y1 = Y2 = · · · = Yα = Y we write X = αY and we call both X and Y
an α−special effect curve.

Let us analyze the three requirements. Since L−
∑α

i=1 Yi is nothing else than the
(residual) system L′ := |(d−

∑α
i=1 deg(Yi ))H−

∑h
i=1(mi−

∑si
k=1 c jik

)Pi |, condition
(3) says thatL′ is not empty. Conditions (1) and (2) are surely the most interesting. As a
matter of fact they tell us that the number of conditions imposed on the system of curves
of degree d by imposing the curves Y1, . . . , Yα and the points Pi with multiplicity
mi −

∑si
k=1 c jik

(such that the final multiplicity at the point Pi is at least mi , i =
1, . . . , n) is less than the number of conditions imposed to the same system |d H | only
imposing each Pi with multiplicity at least m i , i = 1, . . . , n. This sounds like a crazy
requirement because, in general, we expect that a positive dimensional variety imposes
more conditions than a zero-dimensional variety. It is important to notice the similarity
with the “strange” requirement in the case of (−1)−curves (see for example [21]). We
asked there for a curve C whose double is not expected to exist.

We recall that the existence of a (−1)−curve C such that L := NC +M leads us
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to the inequality

dim(L) = dim(M) ≥ ν(M) = ν(L)+
(

N
2

)

which, under the assumption ν(M) ≥ 0 and N ≥ 2, implies that L is special. Also the
existence of α−special effect variety or special effect configuration X for a system L

forces the system itself to be special. In fact we have the following chain of inequalities:

dim(L) ≥ dim(L− X) ≥ ν(L− X) > ν(L)

and, together with condition (3), one has dim(L) > ε(L).

EXAMPLE 24. Let L := L2,2(−2P1 − 2P2) be the linear system of conics with
two double points. Let Y be a line through P1 and P2, i.e Y = H − P1 − P2. Since

ν(L) = −1

and
ν(L− Y ) = ν(Y ) = 0

we conclude that Y has the special effect property for L and it has the weak special
effect property for L− Y . From ν(L− 2Y ) = 0 it follows that the line through P1 and
P2 is a 2−special effect curve for L and so L is special.

EXAMPLE 25. Consider again the system L := L2,9(−6P1 − 6P2 − 6P3). We
prove that X = 3L12+ 3L13+ 3L23 is a (3, 3, 3)−special effect configuration. Recall
that ν(L) = −9. In Example 23 we proved that L12 has the special effect property for
L because

ν(L− L12) = ν(|8H − 5P1 − 5P2 − 6P3|) = −7.

Define now L′ := L− L12. We have

ν(L′ − L12) = ν(L− 2L12) = ν(|7H − 4P1 − 4P2 − 6P3|) = −6

so that L12 has the special effect property for L′ = L− L12. Define L′′ := L′− L12 =
L−2L12. If we compute the virtual dimension of L′′− L12 we discover that it is again
−6. Thus L12 has the weak special effect property for L′′. We can go ahead and apply
the previous procedure with L13 and L23. We obtain:

ν(L− 3L12 − L13) = ν(|5H − 2P1 − 3P2 − 5P3|) = −4
ν(L− 3L12 − 2L13) = ν(|4H − P1 − 3P2 − 4P3|) = −3
ν(L− 3L12 − 3L13) = ν(|3H − 3P2 − 3P3|) = −3
ν(L− 3L12 − 3L13 − L23) = ν(|2H − 2P2 − 2P3|) = −1
ν(L− 3L12 − 3L13 − 2L23) = ν(|H − P2 − P3|) = 0.

ν(L− 3L12 − 3L13 − 3L23) = 0.

Thus X = 3L12 + 3L13 + 3L23 is a (3, 3, 3)−special effect configuration for
L2,9(−6P1 − 6P2 − 6P3).
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DEFINITION 8. A special system arising from the existence of an α−special effect
curve (or an (α1, . . . αr )−special effect configuration) is called Numerically Special.

Finally, we can state the following

CONJECTURE 5 ((NSEC) “NUMERICAL SPECIAL EFFECT” CONJECTURE). A
linear system of plane curves L2,d(−

∑h
i=1 mi Pi) with general multiple base points is

special if and only if it is numerically special.

h1−Special effect curves

The second class of curves we introduce are defined via some particular conditions on
certain cohomology groups. The original idea for these curves comes from a detailed
analysis of the base locus in the special systems listed in Theorem 11, that is, linear
systems with imposed double points in Pn , n ≥ 2.

DEFINITION 9. Let L := L2,d(−
∑h

i=1 mi Pi ) be a linear system of plane curves
with general multiple base points. An irreducible curve Y ⊂ P2, with OP2(Y ) 6∼= L, is
an h1−special effect curve for the system L if the following conditions are satisfied:

(a) h0(L|Y ) = 0;

(b) h0(L− Y ) 6= 0;

(c) h1(L|Y ) > 0.

EXAMPLE 26. Let L := L2,2(−2P1 − 2P2) be the linear system of conics with
two double points. Let Y be a line through P1 and P2, i.e Y = H − P1 − P2. Since
L · Y = −2 the restricted system L|Y has no effective divisors and h0(L|Y ) is empty.
By Riemann–Roch we easily compute h1(L|Y ) = gY −1−deg(L|Y ) = 1 > 0. Finally
L− Y is |H − P1 − P2|, so that h0(L− Y ) 6= 0. Hence the line Y through P1 and P2
is an h1−special effect curve for L.

Let L := L2,d(−
∑h

i=1 mi Pi ) and consider, on the blow-up of P2 at the points Pi

i = 1, . . . , n, the exact sequence

0→ L− Y → L→ L|Y → 0

which gives the following long exact sequence in cohomology:

0→ H 0(L−Y )→ H 0(L)→ H 0(L|Y )→ H 1(L−Y )→ H 1(L)→ H 1(L|Y )→ 0.

Conditions (a) and (b) assure us that H 0(L) 6= 0, while condition (c) implies H 1(L) 6=
0. Thus the existence of such Y forces the system L to have h0(L) · h1(L) 6= 0 so that,
by (2), L is special. Again, we can give a particular name to this kind of system:

DEFINITION 10. A special linear system arising from the existence of an
h1−special effect curve is called Cohomologically Special.
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And again we can state a conjecture:

CONJECTURE 6 ((CSEC) “COHOMOLOGICAL SPECIAL EFFECT” CONJEC-
TURE). A linear system of plane curves L := L2,d(−

∑h
i=1 mi Pi ) with general mul-

tiple base points is special if and only if it is cohomologically special.

The four conjectures

In the previous sections we introduced two new conjectures for the characterization of
special linear systems in the planar case. At this point it is natural to ask if these new
conjectures are equivalent to the Segre and Harbourne–Hirschowitz conjectures. The
answer is given in the following

THEOREM 15. Conjectures (SC) [1], (HHC) [3], (NSEC) [5] and (CSEC) [6] are
equivalent.

The proof of the previous theorem can be found in [10], Chapter 3. Here one
can find additional interesting evidence relating these ideas with other conjectures for
special systems on surfaces, in particular on Hirzebruch and K3 surfaces.

7.2. Results in higher dimensions

As already mentioned in Section 2, very little is known for special linear systems on a
variety X with dim(X) > 2, even when X = Pn . In this last case the most important
result is the classification of the homogeneous special systems for double points given
by Alexander and Hirschowitz in Theorem 11.

Continuing with Pn, n ≥ 3 we can notice that there is not a precise conjecture.
Although the Segre Conjecture can be generalized in every ambient variety using the
statement concerning H 1 6= 0, there is nothing that characterizes the special systems
from a geometric point of view as, for example, in the case of (−1)−curves in P2.

A worthy goal would be to find a conjecture (C) in P
n, [or in a generic variety X]

such that, when we read (C) in P2, (C) is equivalent to the Segre (1) and Harbourne–
Hirschowitz (3) Conjectures.

This goal is one of the main topics in [10]. Here we can see how both Numerical
Special Effect Conjecture and Cohomological Special Effect Conjecture are potential
candidates for the above-mentioned goal. Unluckily, in both cases it could be difficult
to work with a generic special effect variety Y of codimension c > 1; we do not have,
for example, a precise definition of virtual dimension of L − Y or it could be hard to
compute h2(L− Y ).

Thus it is not so easy to define the special effect varieties in Pn with n ≥ 3. Obvi-
ously, when the α−special effect variety Y is a divisor on Pn (but in general, on every
variety) we can generalize the definitions given in section 7.1 most easily. In [10] there
are some different approaches to avoid the previous problem and, although there is
not yet a general theory for the higher dimension case, several examples of α−special
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effect varieties are shown. In particular we have the following theorem

THEOREM 16 ([10], THEOREM 4.1.17). There exists a 2−special effect variety
Y for each of the special systems listed in Theorem 11.

EXAMPLE 27. Consider the system L := L3,4(29). One has ν(L) = −2. Let
Q the quadric in P3 through the nine points. Since ν(L − 2Q) = 0 > ν(L), Q is a
2−special effect variety for L.

We turn now to analyzing h1−special effect varieties in higher dimension. Let
L := Ln,d(−

∑h
i=1 mi Pi ) be a linear system of hypersurfaces with general multiple

base points and let X be the blow-up of P
n at the points {Pi }. Let L̃ be the strict

transform of L. In general, if confusion cannot arise, we will denote both L and L̃

by L. If we denote by Ỹ the strict transform of a variety Y ⊂ Pn, then we define
L − Y := L⊗ IỸ . The definition of the h1−special effect variety is slightly modified
by respect to the planar case.

DEFINITION 11. Let L and Y be as above with Y irreducible. Moreover, if
codim(Y, Pn) = 1 then we require OPn (Y ) 6∼= L. Then Y ⊂ Pn is an h1−special
effect variety for the system L if the following conditions are satisfied:

(a) h0(L|Y ) = 0;

(b) h0(L− Y ) 6= 0;

(c) h1(L|Y ) > h2(L− Y ).

The h1−special effect varieties seem easier to treat than the α−special effect va-
rieties. In fact, we do not need to define the virtual dimension, but we just work with
elements in cohomology. However, in several situations, it is very difficult to compute
some cohomology groups, in particular h2(L− Y ).

As in the case of α−special effect varieties, we do not have problems when Y is a
divisor since h2(L− Y ) = 0 if L− Y is effective. To see this, write L as L := |d H −
∑h

i=1 mi Pi | and Y := eH−
∑h

i=1 ci Pi ; then L−Y = |(d−e)H−
∑h

i=1(mi −ci)Pi |,
with d ≥ e and m i ≥ ci . Hence the system L − Y has the form L − Y = |aH −
∑h

i=1 si Pi |, with a ≥ 0. Define Z as the union of the fat points si Pi ; then we have the
following exact sequence

0→ IZ ⊗OPn (a)→ OPn (a)→ OZ → 0.

where L − Y is exactly IZ ⊗ OPn (a). When we consider the cohomology groups,
we have hi (OZ ) = 0 for i ≥ 1, since Z is a zero-dimensional scheme. Moreover,
hi (OP2(a)) = 0 for i ≥ 1. Thus hi(L − Y ) = 0 for i ≥ 2 (this motivates also
conditions (c) in the planar case).

Unluckily, when Y is a divisor, it can be difficult to study the behaviour of L|Y .
Instead, when codim(Y, Pn) ≥ 2, the groups hi(L − Y ), i = 1, 2 can be computed
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on the blow-up of Pn along Y , but we need a deep understanding of the geometry and
cohomology of Y .

In any case there is interesting evidence of the relationship between special systems
and h1−special effect varieties; in particular, we have the following:

THEOREM 17 ([10], CH 4, THEOREM 4.2.2). There exists an h1−special effect
variety Y for each of the special systems listed in Theorem 11.

We conclude this section with some examples of α−special effect varieties on
X = Pn1 × Pn2 × · · · × Pnt with t ≥ 2 and ni ≥ 1 for i = 1, . . . , t . In [10] the
case mainly explored concerns m = α = 2 and Y is a divisor. Surely this does not
exhaust all possible special effect varieties on X , but we can observe how our results
fit with the ones by Catalisano, Geramita and Gimigliano on secant varieties of prod-
ucts of projective spaces ([15], [16], [17], [18]). We suppose that the reader knows
the relationship between special systems and defective varieties; we suggest [20] as
reference.

Also in the case of X = Pn1 × Pn2 × · · · × Pnt we have some interesting evidence.
First of all we recall a result by Catalisano, Geramita and Gimigliano.

THEOREM 18 ([18], THEOREM 2.1). Let L := La1,a2(2
h) be the linear system

in P1 × P1 of divisors of bidegree (d1, d2) with h imposed double points. Then L is
non-special unless

a1 = 2d, a2 = 2, d ≥ 1, and h = 2d + 1.

From the study of α−special effect varieties on Pa × Pb we are able to prove the
following

THEOREM 19. There exists a 2−special effect curve for each of the special systems
listed in Theorem 18.

The second result we mention is related to the study of P1 × P1 × P1.

THEOREM 20 ([18], THEOREM 2.5). Let a1 ≥ a2 ≥ a3 ≥ 1, α ∈ N and V = Va
be a Segre–Veronese embedding of P1 × P1 × P1. Then Seck(V ) has the expected
dimension, except for:

(a1, a2, a3) = (2, 2, 2) and k = 6;

(a1, a2, a3) = (2α, 1, 1) and k = 2α.

In these cases Seck(V ) is defective, and its defectivity is 2 in the first case and 1 in the
second.

Once again we can try to check if there are special effect varieties for the special
systems corresponding to the defective varieties listed before. It is easy to observe that,
by numerical reasons, the second case cannot be treated with a 2−special effect variety.
However, using special effect configurations we can state a result as Theorem 19.
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THEOREM 21. There exists a 2−special effect variety or a (1, 1)−special effect
configuration for each of the special systems listed in Theorem 20.

The Theorems 19 and 21 follow from a deep studying of the combinatorial be-
haviour of α−special effect varieties on X = Pn1 × Pn2 × · · · × Pnt . In particular we
can prove the following results.

PROPOSITION 3. Let Y ⊂ P
n1 × P

n2 be a divisor of bidegree (e1, e2), with ei 6= 0
for at least one i ; then Y is a 2−special effect variety for L(d1,d2)(2

h), with d1 ·d2 6= 0,
in the following cases

Pn1 × Pn2 (d1, d2) (e1, e2) h
P

1 × P
1 (2, 2e2) (1, e2) 2e2 + 1

P
1 × P

1 (2e1, 2) (e1, 1) 2e1 + 1
P1 × Pn2 (2e1, 2) (e1, 1) m1(e1, n2) ≤ h ≤ M1(e1, n2)

P2 × Pn2 (2, 2) (1, 1) m2(n2) ≤ h ≤ M2(n2)

P3 × P3 (2, 2) (1, 1) 15
P3 × P4 (2, 2) (1, 1) 19

where

m1(e1, n2) := b (2e1+1)(n2+1)
2 c m2(n2) := b 3n2

2+9n2+5
n2+3 c

M1(e1, n2) := e1n2 + e1 + n2 M2(n2) := 3n2 + 2.

PROPOSITION 4. Let t ≥ 3. Let L := L(d1,...dt )(2
h) be a linear system of multide-

gree (d1, . . . , dt), with di 6= 0 for i = 1, . . . , t , on X = Pn1×· · ·×Pnt passing through
h double points in general position and let Y be a divisor of multidegree (e1, . . . , et )

on X with ei 6= 0 for i = 1, . . . , t . Then Y is a 2−special effect variety on X for L
only if t = 3 and for the following values:

Pn1 × Pn2 × Pn3 (d1, d2, d3) (e1, e2, e3) h
P1 × P1 × P1 (2, 2, 2) (1, 1, 1) 7
P1 × P1 × P2 (2, 2, 2) (1, 1, 1) 11
P

1 × P
1 × P

3 (2, 2, 2) (1, 1, 1) 15

We conclude with a short list of interesting special effect varieties.

• A curve of type (n, 1) [resp. of type (1, n)] on a quadric Q ⊂ P
3 is a 2−special

effect variety on Q for the system L(2n, 2)(22n+1) [resp. for L(2, 2n)(22n+1)];

• the line in P
3 is a 2−special effect curve for L3,2(22);

• the conic in P3 is a 2−special effect curve for L3,2(23);

• the union of the
(

n+1
2

)

lines passing through the coordinate points in Pn, n ≥ 3,
is an (n − 1)−special effect variety for Ln,n+1(nn+1);

• the quadric Q ⊂ P3 is both a 1−special effect variety and an h1−special effect
variety for the Laface–Ugaglia example (see [39]).
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en degré quatre, Inventiones Mathematicae 107 (1992), 582–602.

[3] ALEXANDER J. AND HIRSCHOWITZ A., Un lemme d’Horace différentiel: application aux singularités
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