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MIXED PROBLEMS AND EDGE CALCULUS
SYMBOL STRUCTURES

Abstract. Mixed problems, i.e., boundary value problems with condgitimat have a jump
along a submanifol@ of the boundary of codimension 1, may be interpreted as boyndar
value problems on a manifold with ed@e We investigate the symbol hierarchy of general
mixed problems under the aspect of the edge operator calcotusliacuss, in particular,
the role of additional conditions of that depend on weights and satisfy an analogue of the
Shapiro - Lopatinskij condition.

Introduction

Boundary value problems on configurations with (geomesiojularities and with
discontinuous coefficients are motivated by models of appdiciences and engineer-
ing, for instance, mechanics, elasticity, crack theorgttecing theory and numerical
mathematics. Precise and satisfying solutions in termsacdpetrix constructions or
the characterisation of regularity and asymptotics inadli weighted Sobolev spaces
belong to the program of a corresponding pseudo-diffeaknélculus. In fact, para-
metrices to elliptic boundary value problems for diffeiehbperators in smooth do-
mains are pseudo-differential operators (more precipsigudo-differential boundary
value problems with the transmission property).

The present paper studies mixed elliptic problems in a sindoimain, where
the boundary conditions are admitted to be discontinucarsged smooth submanifold
of the boundary of codimension A classical example is the Zaremba problem for the
Laplacian with a jump from Dirichlet to Neumann conditions.

The idea is to interpret the jump of conditions as an edge anapply the
pseudo-differential calculus of boundary value problemsaomanifold with edges.
The model cone of wedges in our case is a half-plane, regasledcone with base
[0, =] and axial variable € R, from polar coordinates iR2.

Numerous authors have contributed results to mixed prablender different
aspects, see, for instance, Eskin [9], Rempel and Schube[fZ], and the references
there.

The purpose of this paper is to make the relations betweeedmroblems and
edge operators as transparent as possible, starting frolhepns for differential op-
erators with mixed differential boundary conditions. Foneenience we mainly con-
sider scalar operators, though all methods and resultsdraggident generalisation to
systems (or operators on a manifold acting between spadistobutional sections of
vector bundles). Mixed and crack problems are formallyekasach other, see, for in-
stance, Kapanadze and Schulze [18], and one may treat treammmextent in a unified
way. Nevertheless, if one is interested in concrete quesfimm applications, it seems
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advisable to investigate them separately. Another poitttas mixed problems in the
present form are more regular than operators in the largebeh of edge-degenerate
problems; the latter one also admits the jump to be an eddreafinfiguration. In that
sense mixed problems are specialisations of boundary yabhldems on manifolds
with edges (with the transmission property along the smeatits of the boundary).
The case of mixed problems is characterised by additiogailaety properties of the
coefficients in the operators which are not typical for theegal case.

The idea of the present paper is to give the background foeeifsppseudo-
differential algebra of mixed problems that contains adilgems for differential op-
erators (with differential conditions) as well as the pae#tices of elliptic elements.
In a forthcoming paper we continue this program and studyairticular, regularity
of solutions with asymptotics in weighted edge spaces. Naewhen the boundary
conditions are smooth (i.e., without jumps) we have thedstesh situation of pseudo-
differential boundary value problems with the transmisgiwoperty, see, Boutet de
Monvel [4] or Rempel and Schulze [24]. Regularity with asyatjes in this case cor-
responds to regularity in standard Sobolev spaces (witlygl6Ffeasymptotics” up to
the boundary). In our case we will have such asymptoticsideithe jumpZ of the
conditions, while we get typical edge asymptotics in a nemithood ofZ.

In smooth boundary value problems it is customary to reduders to get the
same orders in operators and boundary conditions. Ordeciregl operators induce
isomorphisms between Sobolev spaces; in the smooth casddh®t disturb results.
Order reductions can also be constructed for mixed (and meneral edge bound-
ary value) problems; they represent, in fact, very nice el@sin the edge pseudo-
differential calculus. Unfortunately, their constructicequires a separate paper, see,
for instance, Behm [3] for the analogous simpler situatibopmerators on manifolds
with edges without boundary. In addition, if one is not catghe meromorphic Mellin
symbolic ingredients of order reductions may affect asyitiptiata; this is highly un-
desirable in concrete situations. For that reason we aeoidations of orders here and
formulate operators in analogy to Douglis-Nirenberg syste

We characterise the symbolic hierarchy of mixed problerasstruct scales of
spaces and operator conventions that yield continuoustipsrin these spaces (espe-
cially, a Mellin operator convention), and we discuss adddl conditions along the
jump Z of the mixed conditions that complete a given mixed problera Fredholm
operator in weighted Sobolev spaces. For simplicity, weternourselves with con-
stant discrete asymptotics. The material in Section 2.4-ad 3.1 - 3.3 prepares
the structures (symbols as well as spaces) that reflect thetwste of parametrices
and elliptic regularity with asymptotics. Our results harmlogues for the case of
continuous asymptotics. In a forthcoming paper we consfratametrices of elliptic
elements. Parametrices will be elements of a correspondirgion of edge algebra.
This algebra consists of 8 3 block matrix operators, where the lower rightx22
corners belong to the (pseudo-differential) algebra afigmaission problems on the
boundaryY with the interfaceZ. Restricting that algebra to, say, thesideY.. of the
boundary, the transmission algebra may be regarded as eafisation of the algebra
of pseudo-differential boundary value problemsYon(whereZ is the boundary), cf.
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Harutjunjan, Schulze, Witt [16], or Schulze and Seiler [41]

1. Mixed problems for differential operators

1.1. Basic constructions

Mixed boundary value problems for differential operataesfarmulated as follows:

Let X be a compacC* manifold with boundaryy, and suppose that is
subdivided intdC* manifoldsYy. with common boundary, i.e.,Y =Y, UY_, Z =
Y+ N Y_.On X we consider an equation

(1) Au=f
with an elliptic differential operatoA of orderm and elliptic boundary conditions
(2 Tiu = g+ on intYy,

where Ty are assumed to be of the forfiB. with differential operatorsB. with
smooth coefficients in a neighbourhoodY6f, where # denotes the operator of re-
striction to inty. = Y. \ Z. More preciselyB.. are vectors

©) By = (B}, ..., B

of differential operators of orden’i, j =1, ..., N. The manifoldX can be regarded

as a manifold with boundary that has an edgeAccording to the general ideas from
the edge operator calculus, cf. [40] or [18], we then pas$é¢ocassociated stretched
manifoldX and to corresponding weighted Sobolev spad&s (X), cf. the construc-
tions in Section 2.3 below. Similarly, the manifolds with smooth boundary will

be regarded as manifolds with edggthese are the same as their stretched versions).
We then also have the spacas*” (intY+). Our mixed boundary value problem then
represents an operator

stm,yfm(x)
@
A _ _
@ A={T | — el wsmoErmodnty,) |
@N WS M5 T (nty_)

that is continuous for a6 € R (here, in the case of differential operators, also for all
y € R).

Let us now pass to the local description in polar coordinates define the
symbol hierarchy of the operatof. Let us represenk in a neighbourhood) of a
point of Z in local coordinates as

Ki xQ 3 {(ZXn—1, %) €ER": Xn > 0, Xn_1 € R, z€ Q},
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whereQ € R"2 is an open set. More precisely, is chosen in such a way that there
isacharty : U — @i x Q,wherey :UN Z — Qisachartorz, and@i represents
locally the normal half-plane t@, generated by the inner norm&l. and the normal

to Z tangential toy. Let (r, ¢) € R4 x [0, =] be polar coordinates Eﬁi \ {0}. Then,
the given differential operator

A= D> a,(x)Dy

la|<m

with smooth coefficients in a neighbourhoocﬂﬁ)i x Q takes the form

_ -m O KDV
(5) A=r1T" > agrn2)(-r-) Dy
k+[fl<m

with operator-valued coefficientas(r,z) € C®(Ry x Q, Diff ™ &+ ([0, z])).
Similarly, the operatorBj_L that are in local coordinates given by

BL = > bi, 00D

loe| < m

with smooth coefficients in a neighbourhoodRof x Q take the form

J

. -m . a
6) Bl =r 2. bl Dy

K+181<ml,

with operator-valued coefficientﬁjlﬁ,kﬂ e C®(R, x Q, Diff mjf("*‘ﬁ‘)([o, 71)), and
then

I

. B _ 5
) TL=ror™ > b, z)(—ra—r)k(rDZ)/f.

ket < ml,

We now establish some symbol structures that are connedtiedhs operators
(A, Ty, T_). First, in coordinates € R" with covariables’ we have the respective

homogeneous principal symbolsAfind BJ_L of ordersm andmi, respectively, namely

j .
(8) sMAX,E)  and o, (BL(X, &),
¢ # 0. These induce corresponding boundary symbols
9) s (A, 1) = oA, Y, Dt, )

for n # 0, wherex := (t, y) with t := xp, ¥ := (Xn—1, ), and the covariablé splits
into (z, ). Similarly, we set

e Lo
oy A(Th.n) = rfe," (BHO.y. Dr. 1)
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for n £ 0andy = (z, Xn—1), Xn—1 > 0, Xn—1 < 0, respectively (according t&- at
the operators). This gives us the homogeneous principaiday symbob;(A) =
(05,+(A), 05— (A)) of Ain local coordinates, namely

S (A, 7)
(10) 05, £(A)Y, 1) == ( 4 ! )

for xp—1 > 0, xn—1 < O, respectively,z € Q andy # 0. These are families of
continuous operators

HSM(R,)
(11) oA ) HEY) — @
C

for all s € R, wheres — ml_L — % > 0 for all j. The specific choice o will be

unessential, in fact, it suffices to takesufficiently large. Instead of (11) we also may
consider the families continuous operators

_ S(Ry)

(12) oA, n) : SRy) — ®

(CN
Writing (x,u)(t) := /I%u(/lt), L € Ry, we have
(13) Ay, ) = Ao ANy, kgt
and

[ i [

(14) o= 2Ty, Ay = A ae 2 (T (y, et

for all 2 € R4. Our basic assumption in mixed problems is the ellipticityAah the
standard sense, i.er.;/“(A)(x, &) # Oforall x and allé # 0, together with the ellip-
ticity of the boundary conditions ow., i.e., that the operators (11) (or, equivalently,
(12)) define isomorphisms for ajl on the respective side of and for ally # O.
Note that although we want to control symbols and weightsttridutions on in..,
the coefficients in the boundary conditions are (by assuompimooth up t&Z and the
isomorphisms (11) (or (12)) are required including Z.

ExampLE 1. If A = A is the Laplace operator, an example for mixed ellip-
tic boundary conditions is the case Dirichlet conditions¥on Neumann conditions
on Y_. We also may impose oblique derivative conditions on botlessidvhere the
coefficients have a jump ofd (with smoothness from the respective sides ug}o

We now formulate so-calleddge symbolsassociated with the operators (5),
(6), whereZ is regarded as an edge. To this end welset [0, =] and form the open
stretched coné” := R, x | with basel. We then have the weighted Sobolev spaces
K37 (1) as well asC®” (R4), s,y € R, that are defined as follows:
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We first have the weighted Sobolev spaées’ (R, ) andHS” (X*), respec-
tively, whereH>? (R) and’H>” (X") are as usual, cf. [39],[40]. Her¥ is a closed
compactC>®- manifold andX” = R, x X. In particular, forX = St (the unit circle
in R?) we identifyR?\ {0} with R, x S*and writeHS? (R?\ {0}) = H>” (R4 x Sb).
Identifying intl = (0, 7) with St = StNR2, R? = {(Xn_1, Xn) : Xn > O}, we then
get

HS (1) := HS (R2) = {u IR2: U € HS (R?\ {0})).
Moreover,
(15) K37 (Ry) := {wu+ (A —w): ueHS (Ry), v € H3(RL)},

wherew(r) is any cut-off function (thoughout this papercat-off functionis a non-
negative functiono(r) € C5°(Ry) such thato(r) = 1in a neighbourhood of = 0),
and

KS7 (1% := K57 (R%) :=
(16) {ou+ (L—wp: ueH (R3), v e HSR?)).
Similarly, we can form the space
(17) KSRy x SH:i={wu+ 1 —w)p: ueH R; x S, v e HSR?)).

Notice thatthem — u |Ri defines a continuous operaf6t” (R, x S) — K37 (1)
andu(r, ) — u(r, po) for fixed pg € S a continuous operatde>” (R, x S') —
KS27-2(Ry) fors > 3,y € R,

On the spacek>7” (1) and onkCS? (R..) we consider groups of isomorphisms
{xf}ie& and{x;},cr, , respectively, namely

(18) (k) u)(r, @) == Au(ir,p), ue K>’ (1),
(19) (0)(r) := A20(A1), v e KST(Ry).
We set
m o -m LN YN
(20) N (A@ ) =T k%(makﬁ(o, 2)(—r )0,

(z,0) € Q x (R"2\ {0}), regarded as a family of continuous operators
e (A)NZ, ) : K37 (M) — KSM7=Mah),

for any fixedy € R. Also heres € R is taken sufficiently large (precise conditions will
be given below). Moreover, we set

i1 : mi j 0
oD@ = 3T bl 02T ko),
k+ipl<ml
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(here, ¥ denotes the restriction operatoro_, the corresponding boundary compo-
nent of | *, where{0} x R corresponds to the-, {z} x R, to the— sign)(z,¢) €
Q x (R"2\ {0}), regarded as families of continuous operators

i . ) )
o 2Tz o) P KST (1) — KT3I (R ),

fors —m} — 3 > 0. Similarly to (13), (14) we have

(21) oAz, 20) = Mo MA@z, ) (k))
and
(22) o™ (T2 20) = A e ™ (T 2 ) )

for all 2 € R. The operator family

Az 0)
(23) oA (A2 0) = ( ; ¢ )

represents a parameter-dependent boundary problem onfihiéei (stretched) cone
I *, where; € R"=2\ {0} is the parameter armle Q an additional variable. Writing

]Csfm,yfm“ A)
&)
(24)  oa(D@0) K1) — @ KT TRy
)

ml 21, i1
@)L M2 T (R
we shall choose in such a way that (24) is a family of Fredholm operators. Taregs
homogeneity of the operator function (24) in the sense of\{&8can also write
(25) oAN(Z 40) = MR oA ANz O D) T

where{x]'};cr, is as before, whilgx}'},cr, is a diagonal block matrix of isomor-
phisms, acting on corresponding direct sums of spaceség®titur on the right hand
side of (24)), namely,

K5 _ 0
(26) &} = diag(A™*2 ™) 21,

.....

1.2. Conormal symbols

The choice ofy in (24) depends on the so-callednormal symbglnamely, the family
of maps

m
(O-MUA

M(A)(z,
(27) oMOA(A)(Z, w) = ( omo(A)(Z, w) )

] +;L .
2Tz, w))j=1...N
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where
m
(28) oma(A)(Z, w) = D a0, 2wk,
k=0
. mj
i1 . .
(29) omon® 2(TH(z w) = rF > bl (0, 2wk,
k=0
w € C. We then have
Hsfm(|)
(30) omon(A)(Z, w) : H3(1) — @ .
cNecN

Note that (30) is a holomorphic operator functioninsmoothly dependent ane Q.

PrRopPOSITION 1. Under the above-mentioned ellipticity conditions on the
mixed boundary value problem, given by the operafé(sT_, T ), the operatorg30)
represen{(for every fixed z Q) a holomorphig(in w e C) family of Fredholm oper-
ators for every se R, where s—m > —3 and s— m}. — > Ofor all j. Moreover,
for every compact subset K Q and every c< ¢’ there is an M> 0 such that the

operators(30) are isomorphisms for all z K, ¢ < Rew < ¢’ and|iImw| > M.

Proof. First, the operators (30) a@> in (z, w) € Q x C and holomorphic inv. They
are elliptic as boundary value problems on the intetvahd parameter-dependent el-
liptic with Im w as parameter, for every = Rew. Ellipticity entails the Fredholm
property of (30), while parameter-dependent ellipticityeg rise to isomorphisms be-
tween the respective spaces ffon w| sufficiently large. Because of the smoothness of
coefficients inz € Q andp € R, for every compact s C Q x R the operators (30)
are isomorphisms for allm w| > M for a suitable choice df1. This is a consequence
of parameter-dependent ellipticity, cf. [18]. O

PrROPOSITION2. For every fixed = Q there exists a countable set(D) c C,
where Dz) N {w : ¢ < Rew < '} is finite for every c< ¢, such that the operators
(30) are isomorphisms for alb € C\ D(z) and for se R, where s— m > —% and

s—m} — % > 0.
This is a well-known result on holomorphic families of Fretth operators, cf.
[40, Theorem 1.2.33].

A
THEOREM1. LetA=| T4+ | beamixed problem iﬁi x Q that is elliptic

T
with respect tav" and o5 + (i.€., al’;(A)(x,;“) = au’j‘(A)(x,g“) # 0 for all x and
¢ # 0andog,+ (A)(Y, 1) defines bijective operatofd 1) or (12)for all y and#n # 0).
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Then the edge symb(®4) is a Fredholm operator for a point z Q and arbitrary
¢ #0ifand only ifl1 —y ¢ {Rew : w € D(2)} (with the set @z) from Proposition
2)foralls—m> -3, s—ml -3 >0

Proof. We shall show the Fredholm property under the requiredtlifp conditions
on the symbols which is the essential point here; the coaveil be dropped. The
operator family (24) belongs to a Douglis-Nirenberg anagf the cone algebra of
boundary value problems on*, cf. [29],[30], where the ellipticity with respect to
O-VT’ 05,4+ andomo . guarantees the existence of a parametrix. Moredveis a man-
ifold with conical exit to infinity (r — oo) and forg # 0 the exit symbols are also
elliptic. This is a similar effect as in the boundarylesse;ad. [40, Theorem 3.5.1].
Near infinity we can apply a Douglis-Nirenberg analogue ef parametrix construc-
tion from [18, Chapter 3]. This gives us altogether a paramet, (P)(z, ¢) of (24)
globally onl”, whereo, (A)oA(P) — id as well ass . (P)ox(A) — id are compact in
the respective Sobolev spaces. This entails the Fredhapepy. O

REMARK 1. If (24) is a Fredholm operator, we have

dim kero,(A)(z,¢{) = dim kero,(A)(z, é_l)’

dim cokeros(A)(z, ¢) = dim cokeron(A)(z, %).

This is a direct consequence of the relation (25). In facthexe

oA ) = 1E TG oA Oxfy

forall ¢ £ 0.

1.3. Examples

EXAMPLE 2. Let X = Ki = {X: X = (X3, X2,...,%Xn) € R™; x,
0L Yy ={X: X=(X,X2,...,%) € R"; Xn = O, Xp-1 > 0}, Y_ = {x : X
(X1, X2, ..., %) € R Xy = 0,%—1 < 0}, Z =Y, N Y. =R"2 = {x: x

v

A
(X1, X2, ..., Xn—2, 0, 0)}. Let us consider the Zaremba problem = ( Ty ) for
T

the LaplacianA whereT,u = rtu, T_u = —r*%.ln polar coordinatesr, ¢) €
R4 x [0, z] (with respect tox,_1, Xn) the entries of4 take the form

A

_ 0 o?
5P 5 ARG e+ DY),

1ou
T,u = Ulp—o, U= ~-—

r op lp=r -



168 G. Harutjunjan, B.W. Schulze

We then have

2
oMo (A)(w) = 56_402 +w? : H3(1) — HS (1)

and
O'MO'/%(lA)(U)) HS—2(|)
(31) omon(A)(w) = oma 2 (T4) DHS() — @ ,
oMo (T2) teot

1 3 i )
whereomo S (T4)u = U |y—0, omo S (T-)u = 2—; lo== . A simple argument gives us

ker(oma2(A)(w)) = {c1€™? 4+ ce7"? : ¢1, 00 € C).

Now (31) is an isomorphism if and only i € C satisfies the conditiom ¢ {n + % :
n € Z}. Hence, Theorem 1 tells us that

Icsz,y 72(| /\)
Ulf(A)(C) ®

B2) oA =] oLTIE) | K0~ KS27-3(Ry) ,
s 2(T)(©) ®

K23 RY)

2 o 1 3
wheresZ(A)(() = r_z(aa_(pz + (=1 £)2 =219, 0 2(THU = U |0, 02 (T-)U =
%5 ly=r, is a Fredholm operator for anye R, s > 3, ifandonlyify ¢ {n+ 3 :

nezl.

EXAMPLE 3. Let X, Y;, Y_, Z be as in Exampl@. For the Laplaciam we
A

consider a mixed problemd = ( T, |withT, =r*B,, T_=r"B_, where
T

n-2

B+ = Z aj DXi +a Dxn,l+}’ DXn’
i=1

n-2
B- = > AiDy + S Dy, +0Dx,.
i=1

The coefficients:, 8, y, d, aj, i are functions ok = (xg,...,X%n—2,0,0) € Z, and
we assume that, d are nowhere vanishing (the operatdrs satisfy the Shapiro-
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Lopatinskij condition). Similarly to Example 2 we get

A = r—2<(—ri)z+a—2—rz(D2 .+ DZ )
a¢2 X1 Xpn—2/72
T,u = 1(2 air Dy + Ir—+Z—) lp=0,
S gD, B0 o
Tu = r (Zﬂ.rDX, T |a¢)
Then
K‘S—Z,y —2(| /\)
asf(A)(o o
B3) O =] ofTIE) | K0 KS2773(Ry) ,
A(T- ®
a2 (T-)(©0) R Pt PR

3
wheres2(A)(¢) = 122, +<—r£,)2— r2l012), 0 2(To)(@) = r-2(k(y cosp —
a S'”(”)— - ;(V sing + a cosp)(—r =7 )+ r(a1i1+azi2 + ... + an—2en—2)),

A (T)(E) =1 (A cosp - f smw)—w—l(é sing + 8 cosp)(—1 &) +T (frc1+
524“2+ .+ Bn—2¢(n—2)). For the conormal symbol of (33) we have

ot He2(1)
B4  omoADzw) = | 05 -aw) =0 | HD > &
1(ﬂw_50¢) |(p = CoC

The operator(33) is Fredholm for alls € R,s > %’ and all¢ # 0 if and only if
1—y ¢ {Rew : 2iw?(coswr(ad — ypB) — sinwx (af + 7)) = 0}.

2. Calculus in weighted Sobolev spaces

2.1. Operator-valued symbols and abstract edge Sobolev spes

This section contains some necessary material on operalioed symbols and associ-
ated Sobolev spaces based on spaces with strongly consiguoup actions.

If a Hilbert spacekE is equipped with a strongly continuous group of isomor-
phismsx;, : E — E,1 € Ry, wherex,x;y = ;- forall 1,2 € R,, we say that
E is endowed with a group action. More generallyEifs a FEchet space, written as
a projective IimitJiLn E; of Hilbert spacesEj, j € N, with continuous embeddings
jeN
Ej+1 — E; for]all j, and if Eg is endowed with a group actiofx; },cg, that re-
stricts to a group action ok; for everyj € N, thenE is said to be equipped with a
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group action. IfE andE are Hilbert spaces endowed with group actiong;cr, and
{K:})er, , respectivelyS*(U x RY; E, E) for an open sey < RP denotes the set of
alla(z, ¢) € C®(U x RY, L(E, E)) such that

(35) 17 HDg D a(z, Okl pe. gy < Sl !

foralla € NP, 8 € N9 andz € K for arbitraryK cc U, ¢ € RY, with constants
¢ = c(a, f,K) > 0. The spaces“(U x RY; E, E) is Frechet in the semi-norm sys-
tem, given by the best constamt$n the symbol estimates (35). L&) (U x (RY \
{0}); E, E) be the space of alf (z,) € C®(U x (RY\ {0}), L(E, E)) such that
f(z, A¢) = AHk) T (2, ()x{l forall 2 e Ry, (z,¢) € U x (R9\ {0}). Then, if y(¢) is
any excision function ifR9, we have

2 (OSM(U x (RI\{0}); E, E) C S“(U x RY; E, E).

Now Sé‘l (U x RY; E, E) (the space otlassical symbolsis defined to be the sub-
space of ala(z, ¢) € S*(U x RY; E, E) such that there are elemerig _j)(z,¢) €
SH=D(U x (RY\ {0})); E, E), j € N, where

N
(36) az,0) — D xOau-j(z.¢) € - MNYU xRY E, E)
j=0

for all N € N. The semi-norms irS“~)(U x (RY \ {0}); E, E) from the unique
au-j)(z ), € N, as well as those from the remainders (36)Str N+D (U x
RY; E, E), N € N, tun (U x RY; E, E) into a Féchet space. If relations are valid
both for general and classical symbols we write “(cl)” asssuipt.

It is obvious that
(37) Sy (U x R% E, E) € §¢ (U xR% E, E)

for u > i (u — it € Nin the classical case).

Let E be a Féchet space written as a projective limit of Hilbert spades}j n
and endowed with a group actidr;};cgr,, we have the symbol spac&él)(u X

RY; E, E) for all j and then define
S U x RY E, E) = lim S, (U x RY; E, ED).
jeN

Also when bothE andE are Fechet spaces there is a notion of symbol spsg{@)w X

RY; E, E) that we tacitly use here; details may be found in [38] or [48rallel to the
symbol spaces we have “abstract” wedge Sobolev spac&®9, E) of smoothness
s € R. First, for a Hilbert spacé& with group action{x; },cr, we defineVs(R9, E)
to be the completion af (RY, E) with respect to the norm

1
[ / (Ol AQ)1E da]z.
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Here,0(¢) is the Fourier transform af(z). More generally, ifE = Lm E; is Frechet
jeN
with a group actior{x;},cr . We setWWS(R9, E) = lim WS(RS, Ej). Finally, for an
jeN

open sef) € RY we have adequate analogues of the standard “comp” and ‘fecEs,
here, denoted byVg,m(Q, E) andWp .(Q, E), respectively.

Recall from [38] or [40] that wheld = Q x Q with (z,Z) € Q x Q we have
spaces of pseudo-differential operators

L ey (€ E, E):= {Op@) : a(z,Z,¢) € Sey (@ x Q@ x RI E, E)}

and a corresponding calculus that extends the known scalemlgs in an adequate
way. In all these notations we did not indicate the groupoastc = {x;},cr,, ¥ =
{x.},er, though the various spaces depend of them. Usualgndx are known by
the context and fixed, otherwise we occasionally write

(38) SeyU x R% E, E) i, WIRI, E)y, ete

Let us finally note thaE = CN is admitted, too. In most cases the corresponding
group action is taken to be trivial in this case, i®,, = idgn, 4 € Ry. The basic
properties of (abstract) pseudo-differential operatath wperator-valued symbols are
similar to those with scalar symbols (i.e., whée= E = C and the group actions are
trivial, i.e., the identity operators for all).

THEOREM2. Givendz, Z,¢) € S"(QxQfo*; E, E) the associated pseudo-
differential operatorOp(a) : C5°(Q, E) — C*(Q, E) extends to continuous opera-
tors

Op(a) : Weomp(Q, E) > Wi " (Q, E)

for all s € R. In particular if a = a(¢) has constant coefficienfse., a is independent
of z and %), Op(a) induces continuous operators

Op(a) : W3(RY, E) - WS™#(RY, E)
foralls € R.

REMARK 2. If the coefficientsayg (r, 2) in (5) andbi’kﬂ(r, Z) in (6) are inde-
pendent of for larger (that can be done without loss of generality), and if we set

o -m 9k 8
az) =" > ag (o)
k+|fl<=m
and _ 5
j o pEp—m) i Kir V8
@z =rir ™ " B DT )Y
K+ B1< mk

we get families of operators

(39) a(z,o) K37 (7 — KM =m(
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and

(40) thz o) K57 (1M — ks me-br-mi-3 (g )

forse R, s—m) — 3 > 0. Then,

(41) a(z,¢) e SMQ x R"Z K37 (1), K57 "M(11Y)

and

(42)  thz o) e STH@ x RZKST (1Y), K5 br M-3R, )
forall j.

The latter relations in connection with Theorem 2 suggesfaiowing wedge
Sobolev spaces: We set

WS (1N x RY) := WSRY, K57 (1))

and
WS (R4 x RY) := WERY, K57 (Ry)),

whereks” (1) and K7 (Ry) play the role ofE, equipped with the respective group
actions (18) and (19), respectively. More generally, weehearresponding “comp”
and “loc” spaces for an open s@tC RY that we denote by

Weamp(1™ x Q), W,

Y
c(1Mx Q), etc,

where we keep in mind that “comp” and “loc” only refer zevariables inQ. Apply-
ing Theorem 2 to the operator-valued symbol consisting aflanan vector with the
components (41) and (42) we get continuous operators

(43)
Wi ™M x Q)
a &)
j S7 (1A N s—m}—3.y—m} -}
Op, | (t)j=1..N | : Weomp(l" x Q) = @j_1Wec Ry x Q)
t))j=1..N ®

s—m! —1

b _1y-m -1
692\1:1)/\400 : Z(R"‘ x Q)

for all real s such thats — m’i — % > 0 for all j. Clearly, we may write “comp” or
“loc” in the spaces on both sides, since we discuss herergliffal operators that are
also local inz.

2.2. Notation for Douglis-Nirenberg orders

We now fix some notation that is well-known in connection vatstems of Douglis-
Nirenberg type, here, adapted to our specific context. Theragty property (43) (that
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also holds in analogous form on operators globally on oufigoration with mixed
elliptic conditions, cf. Section 2.3 below) suggests toagatise our symbol spaces as
follows:

Let E := @M _EM, E := @N_ E" be direct sums of (say, Hilbert) spaces
with group actiongx"} ;e m=1,...m and{x]'} ,cr, n=1,.. .~ respectively. Moreover,
consider matrices of symbols

.....

f (Za Z/a () = (fnm(za Z/a ())n:l,‘..,N,m=l ,,,,, M
where fam(z, 7, ¢) € SU™(Q x Q x RY; E™M, EM) with ordersunm of the form
¢ cl)
Unm =t —om~+ fn

for given (a1, ...,am), (B1, ..., Bn). The numbersinm will also be referred to as
DN-orders(Douglis-Nirenberg orders). Then ©p) induces continuous operators

(44)  Op(f): @M Wsam(@, EMem — &N W (@, ENn

oc

for all's, cf. Theorem 2; here we used subscripgts:= {«["};cr, andc" := {&]'}1cr,
in the sense of notation (38). It may be advantegeous to onifgrs by a formal change
of the underlying group actions. In fact, instead of

k= diag({x"}ier, Im=1,..m and & :=diag{x;}ier, In=1,...,N

we may take

It is then easy to verify that
f(z7,0) ¢ s(*g,)(g x QxRY E,E), ;.

If we pass from the Sobolev spaces with subscrifitsand«" to those with subscript
x™ = (A%} g, andz" = {1k, },cr , . respectively, we get the spaces

Wgomp(gﬂ E)X = @r’\r/llzlw(ign%g(g’ Em))(m’
Wie@,B); = @p W M@, EMzn.
Then (44) takes the form

(45) Op(f) : WeomeQ, E), — Wi “(Q, E);.

p

2.3. Weighted Sobolev spaces for mixed problems

We now introduce the global weighted Sobolev spaces as tleegrmounced in the
formula (4). To this end we fix a system of charts X¥nassociated with a system of
coordinate neighbourhoods

(46) {Ug,...,U,U41,...,Um, UMm41, ..., UN},
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whereUjN Z #¢forl< j< L,UinZ=gandUjNnY #JforL+1< j< M,
UjnyY =¢forM+1 < j < N.Choose a partition of unit,, . .., N} subordinate
to (46). We then have charjg : U] — Ry x R"1for1 < j < M, where for
1< j < L we use the splittindk"~1 = R x R"~2 in the sense of the above notation,
whereyj(UjN Z) — R"—2. For simplicity we assume the transition diffeomorphisms
only dependent on the variable &~ in a neighbourhood ofxn_1, Xn) = O.

First we have the spac®sS(R"~2, K7 (1)), wherel " is identified Withﬂ_%i\
{0} and we now define

(47) W¥(X):={ue Héc(ZX \ 2) lintx:
(x)«(pju) € WSR2, 37 (1M) for all j,1<j <L}

Here, 2X denotes the double of, that is a closed compa€t™ manifold, obtained by
gluing together two copieX.. of X along their common boundaly (we then identify
X4+ with X).

Moreover, letM be any compadC® manifold with boundaryN, m = dim M.
Let {V1,..., VI, Vi11,...,V3} be an open covering d¥1 by coordinate neighbour-
hoods, wherey N N # gforl < i < ILVVNn N=¢gforl +1<i < J;
fix a partition of unity {w1,..., w3} on M subordinate to the covering and charts
ki : Vi > Ry xR"™Li = 1,...,1, where transition diffeomorphisms are inde-
pendent of the normal variabig, for smallx,,. Then we have the spaces

WS (intM) = {v € HZ(NtM) : (ki) (yiv) € WS@R™ L, K57 (R4))
for1<i < 1}.

Applying the latter notation td1 = Y. we get the spaces
(48) W37 (intYy) for all s,y €R.

The space3Vs” (X) and WS (int Y1) will be considered with Hilbert space norms.
In particular, we identify)/%9(X) with a weightedL? -space. More precisely, let

U, denote a neighbourhood & that is locally described bf2, = {x € Ki X
R"2 : |x1, X2| < ¢} andy : U, — Q, a corresponding diffeomorphism. Further,
letw € C°°(X) be a function that is equal to 1 ld;, and O outsideJ,, for certain

0 < &1 < gg. Then

oWOOX) = y*pr 2L2(1" x R"2),
wheregp is defined byw = y*¢, and
WOO(X) = oW®O(X) 4+ (1 — w)L2(X)

yields a scalar product in/%°(X). In a similar way we proceed with%9(intY..) and
fix scalar products in these spaces.
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REMARK 3. The spac€i°(X \ Z) := {u € C®(X) : suppun Z = @} is
dense inW>7 (X) for everys, y € R. Moreover,C3°(Y+ \ Z) := {v € C®(Y1) :
suppp N Z = ¢} is dense inV>7 (Y4 ) for everys, y € R. The restriction operators

£ CP(X\ Z) — C(Yx\ 2), rF:u— Ulintye,
extend as continuous operators
L WST (X) — WS273(intYy)

foralls> 3,y eR.

2.4. Subspaces with asymptotics

In this section we analyse subspaces with so-calledrete asymptoticsWe employ
notation from [38] that we briefly recall here, both for these® ; and then for the
(stretched) plane cone® with boundary. In addition, we formulate some useful new
information.

Letus fix aweighy € R and an associated weight stfipe C : %1—;/ +9 <
Rez < %—y}forsome—oo <9 < 0, where we set = 0 forR, andn = 1for|”.
Letg = (y, ®) for ® = (¢, 0]. For the case = 0 we define Agy) to be the set of all
,,,,, N C C x Nfor someN = N(P), whereN(P) < oo

for finite ¥, such thatrc P := {pj}j=o,.n C{z€C: 3 —y +9 <Rez< -y},
and Rep; — —oo asj — oo for the caseN (P) = oo. Similarly, forn = 1 we define
As([0, =1, g) to be the set of all sequenc®s= {(pj, mj, L)}j—o,...,
where(pj,mj) € C x N, andL; c C*([0, x]) is a subspace of finite dimension.
ConcerningrcP = {pj}j=o,..,n We requiretcP C {ze C: 1-y +9Y <Rez < 1-

y } and again R@pj — —oo asj — oo whenN(P) = oo. The element® € As(., g)
are calleddiscrete asymptotic typder the coneR, andl”, respectively, associated
with weight datag = (y, ©).

REMARK 4. We can formally unify the notation for= 0 andn = 1 by writing
As(g) = As({a}, g) for a pointa (that may be regarded as the base of the ®ne
e.g.,a = 1) and writeP € As(g) in the form P = {(pj, mj, C)}j—o,..n. Then,
for P = {(pj,mj, Lj}j—0o,...Nn € AS([0, 7], g) we have restriction maps to the end
points 0 andr induced byLj — C, f(p) — f(0)or f(p) — f(x). This gives us
corresponding restriction maps

(49) A[0,7],9) — As(Q).

Let us now introduce spaces with discrete asymptotics, fsayhe casel *;
the caseR; is easier and may be found, e.g., in [38]. Concerning asyticptypes
with a non-trivial cone base we may formally repld@ez | by the circleS* and talk
about coefficient spacds; C C>®(Sh) instead ofLj ¢ C*([0, z]). In other words,
we also have a notion of AS!, g) of evident meaning and then a restriction map
As(St, g) — As([0, 7], g) by restrictingLj — Lj 0. -
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ForS:= StandS" := R, x Swe first have spaces of flat functions

K:%V (S/\) = Em]cs,y—ﬁ—g(s/\)’

e>0

We consideriC%’y (8") in its natural Fechet topology. Now le® be finite, choose

P € As(S,9), g = (y, ®), written asP = {(pj, mj, Lj)}j—o,..,N, and set
(50)  &p(SY) =
N mj
{0 D> ciklp)r ~Pilogr : cjk e Lj, 0< k< mj,0< j < N}
j=0k=0

Here,w(r) is any fixed cut-off function. The spaés (S") is finite-dimensional, and
we obviously have
Kg' ()N ép(SY) = {0}

Moreover, we have
Ep(SY) C K7 (SH).

We now define

K37 (SY) == K57 (S") + Ep(SY)
in the Fiechet topology of the direct sum. F&r € As(S,g), g = (y, (—o0, 0]) we
choose an arbitrary sequengg < 0, Jx — —oo ask — oo, set®@y = (J, 0], form
Po:={(p,mL)e P: 1—y +dk <Rep <1—y}eAs(S g forge = (7, O),
and consider the associated spalééé (8"). Then we set

K37 (8" := lim K3/ (SY)
keN
in the topology of the projective limit. This space is indegdent of the choice of the

sequencédy)ken. Moreover, if R € As([0, 7], g) is the restriction ofP € As(S, g)
we set

Kg (7 = {ul1a: ue K3 (SH).
In particular, forrc R = ¢ we have
K/ (1™ = {ulia: ue Kg (SH).

In a similar (but simpler) way we can introduce the spalﬁ%% R4) for Q € As(g),
g= (v, ®), see, for instance, [38].

REMARK 5. The operator of restriction(r, ¢) — u(r, go) for arbitrary fixed
po € S which is continuous ag’s? (S") — ICS_%’V_%(RJF) fors > % induces
continuous operators

57 g s-37-4
Ky (8Y) — Kg 7" 2Ry
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for every P € As(S, g), whereQ is the restriction ofP in a similar sense as (49). In
particular, we have restrictions &Tf;y (1™, P € As([0, =1, g), namely

11
Ky (%) — Kp 2772 (Ry)
induced byu(r, p) — u(r, o), for every fixed 0< po < 7, s > 3.

For purposes below we now set
SH(SY) i={ou+(1—wp: ueky”(S"),ve SR x 9,
whereP € As(S,g), SR x S = S(R, C*(9)), and, similarly,
Sp(17) and SH(Ry)

by replacing the bas8 by [0, ] and a single point, respectively, for an asymptotic
type P belonging to the respective class.

To define wedge spaces with asymptotics we employ the fatthkaspaces
K37 (...), Sh(...) may be written as projective limits of Hilbert spacgs, j € N,
where the group action that is fixed &% (.. .) restricts to a group action ofj for
everyj.

Let us expresg;, for instance, for the case of spaceslidn For finite ® =
(v, 0] it suffices to set

(51) Ej = K700 4 gp (1,
Pi = {(pmL)eP:1—y+d+(1+]))" <Rep},

.....

Lj € C*([0, r]) is defined as in (50)) and

(62) B = (IR pep (0,
Pi = {(p.mLyeP:1—y+9+@+j)! <Rep),
for S5 (1) while for ¥ = —oo we replaced in formula (50) by—(1 + j) and P by

Pi={(p.mL)e P:2+j—y+(1+j)! <Rep}
We now define weighted edges Sobolev spaces with asymptotics

(53) W7 (X) and Wg' (intM)

of typesP € As([0, =], g) andQ € As(g), respectively, folg = (y, ®), by inserting
the spacedC}’ (1) instead ofkCS7 (1) in (47) andKCy (Ry) instead ofKS7 (Ry)
in (48). To make this more explicit, for instance, for the ggmonX, we first write

ICSP’V (" = I(m Ex with the scale of spacdsy in formula (52). Then we form
keN

Wl (X) = {ue H3.2X\ Z) linx: (x))«(pju) € WSR2, Ey)
forall j,1< j < L},
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where we have continuous embedding”; (X) < W, (X) for all k, and we then
set
W (X) = lim W7 (X).
keN
In a similar manner we proceed fér = (—oo, 0] as well in the case of spaces bh
All these spaces are &chet in the corresponding projective limit topologies.

REMARK 6. The spaces
(54) Wp” (X) and W3 (M)

are independent of the choice of the group actipifs}cr, and{x;};ecr,, respec-
tively. This makes the form of singular functions of diseretlge asymptotics particu-
larly simple.

2.5. Green symbols

In this section we introduce so-call&teen symbolsf the (local) pseudo-differential
algebra of mixed problems. These will be operator famijes ) that are pointwise
block matrices of the form

g11 91+ 01— 1o
9+1 G++ O+- G40
9-1 -+ O-—- Q-0
go1 Yo+ Jo- Qoo

9z = 20,

where the block matrix structure corresponds to mappingseotype

K57 (1) Sp (M
@ 69I 1
k 1 k 1 -m, —2
@&4=1K57n+7?’y7n+72(R+) ®|N:18é+’| * 2(R+)
(55 9z : Lo — ® ,
M k1, _pk_1 -m -1
Do IR ED LS Ry
<
Cl- |
C'+
foralls > —3.
Let us set
1 1
(56) si=(s;(s—nk - St Mo (5= nk — Sk=t.M)-

1 1
(57) 7= 0 =0 = Dkt 0 =K = D),
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1 1
(58) di=( =m @ —my = Dt N G =l = Dim )
and, for abbreviation
KS7 (1N, Ry M) =
M k 1 k 1 M k 1 k 1
K37 (1M @ QK™ 27 MRy @ PRS2 2Ry,
k=1 k=1
S3(1", Ry; N) =

N -m -1 N 1
S e @Sk iR ePSE | Ry

I=1 I=1
forP e As([0,7],0),0 = (4, ®), ® = (9, 0], —oo0 < ¥ < 0. Here and below we de-
note byAs([0, z1,9) for § = (e, ®), weightse = (ev; (&4+)i1=1....L,(E-)i=1,...L)
and® = (¢,0],—-c0c < ¥ < 0, the set of all tuples of asymptotic typés =
(P; (P+)i=1,..,L) such thatP e As([0, 7], go) for go = (ep, ®) andP| € As(g+,)
for g+ = (e, ®)=1,...N. Then the operator family (55) takes the form

K37 (17, Ry M) Sp(17, Ry N)
(59) 9(z0) : ® — ®
(CL (CLr

foralls > —1.
We also need (pointwise) formal adjoirg$(z, ¢), defined by

(9U, ) oo( gKoo®, c2MyeCH = (Us 070)x00( Mpr00®, .C2M)eC!-

forallu e CP((int1)") & CPR4, C?M)y @ C'-, v e CP((INt1)") @
CP R4, C?Ny @ C'+. Here, £%0(1") and K%O(R.,) are endowed with the scalar

products ofr _% L2(R4 x 1)grd, and L2(R;), respectively, andC®O(R, Cl) :=
KOOR,) @ Cl.
The non-degenerate pairing

(C(int 1)) & CP Ry, CH @ C') x {CP(INtT)) ® CP Ry, CHa '} — C

defined by(u, v) oo nyeroo®, clysc €XtENdS to a non-degenerate sesquilinear form

L L
K7 (1M o PLO Ry o CY x (K27 (1M e P> Ry @C'y - C
k=1 k=1
for arbitrary y, y1,...,yL € R. For that reason we also introduce dual tuples of

weights, namely
1 1
=y = ey Dkenme (7 0 D),

1 1
-6 = (=y +m;(—y +m'++§)|=1 N, (= +m'_+§)|:1 N)-

..........
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Concerning the smoothness in the spaces for conveniencetwe s

1 1
(60) t* = (s+m,(s+m'++§)|:1 N,(S+m'_+§)|:1 N)-

,,,,,,,,,,

1= (UK=0,... 2N+1k=0,. 2M+1,  Where  uy = yk—d

(yKk=0,...2m := 7y and(d )i=o,...2n := 0 are the sequences (57) and (58), respectively,
while yom+1:=y —landini1 =y —1—m.

In the following definition we seg = (y, ®; d, ®'), wherey andd are weight
tuples (57) and (58), respectively, amd = (¢,0] and ® = (¢¥’, O] fixed weight
intervals,—oo < 9,19’ < 0.

DEFINITION 1. REO(U x R"2 g;w) forw := (M,|_; N, 1), u € R,U C
R"-2 open, is defined to be the space of all operator fam{i& such that

KS7T(1M Ry M) SR(1M, Ry N)
61) 9z e S[UxR"% o : o
CI’ (CI+
and
. K29 R NY - S (17, Rys M)
62) g* @z e S [UxR™% ® : ®
(c|+ (CL

forall s > —% and for transposed matrix.* of x4 with tuples of asymptotic types
P e As([0,z],§) forg = (4, ®) andQ € As([0, z1, §) for § = (—y, ®) dependent
on the symbol gnot on 9.

In our application we sdtl = Q orU = Q x Q for an open se®2 € R"2 (in
the latter case we also writg, Z') instead ofz). As classical symbols Green symbols
have a unique sequence of homogeneous components

c“ )z (), jeN,

(here,u — | is the matrix with entriegik — j, # := (#ik)i=o0,....2N+1,k=0.,....2mM+1) that
areC* functions in(z, ¢) € U x (R"2\ {0}) with values in continuous operators
, K7 (17, Ry s M) S3(1", Rys N)
63 "D : @ — & ,
le (C|+

where the pointwise adjoints act in the same spaceg@s¢) in formula (62).
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Setting

wherer? = &% = k), ik = K3,k =1,...,2M, & =x;,1 = 1,..., 2N, 2 =

;L =
idei_, &Nt = id@, , and

whereag = fo = O, ax = MK + 3k =1,... ., Myax = M4 Lk = M +
Lo2M, g =m +3-ml=21... N g =mN+3-ml =N+
1, ey 2N, O2M+1 = ﬂ2N+1 =1, we have

0@z 20) = A"z W (@)@ Oz
forall (z,¢) € U x (R"2\ {0}), 4 € R,. Below we often set
o @z 0) = oWz 0)
whenQ =U or,forU =Q x Q 3 (z, Z)
o @@ 0) = 0@ Z,0) l7= -

REMARK 7. Letg(z¢) € Ré’o(u xR"=2; g; w) and choose diagonal matrices
of scalar symbols

rz,¢) = diag(ro(z ¢), (rk(z, O))k=1....2M+1),
f(z,) = diagfo(z ¢), (F1(z,))i=1,...,.2N+1),

wherer(z, ) € Sf(U x R"2) andfi(z,¢) € 6{ (U x R"2) are elliptic scalar
symbols of ordersy, v € R,k = 0,...,2M + 1,1 = 0,...,2N + 1, that are all
non-vanishing for al(z, ¢) € U x R"~2. Then, setting

0(z.¢) =1z )9z Or(z )

~ .0 _ ~ ~
we getg(z, ¢) € RE (U x R"2 g;w) for i = (fuk)i=o,...2N+1,k=0,...2M+1, Where
Ak = ik + vk + 1.

REMARK 8. Let f(z,¢) be aC® functionin(z,¢) € U x (R"2\ {0}) with
values in continuous operators

KS7 (17, Rys M) S3(1", Ry: N)
f (25 C) : ea I @ s
(CI, C|+
forall s > —%, such that the pointwise adjoirit*(z, ¢) defines &C*° family of maps
KE=9(7, Ry ; N) S’ (17, Ry; M)
f*(z,¢) : @ — o ,

C|+ le
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forall s > —31. Further, assume that

(64) f(z,20) = "7t @ Oxt
forallze Q,c € R" 2\ {0} and/ € R,. Then we have
1Oz ) € REAU x R"2; g;w)

for every excision functiony (¢) (i.e., x(¢) € C®[®R"?), y(¢) = 0 for || <
Co, x (¢) = 1for|¢| > cq for certain O< ¢y < €y).

REMARK 9. Let Rg’o(u x R"2; g; w)p.q denote the set of alfj(z,¢) €
Ré’O(U x R"2: g; w), where the tuple® andQ of asymptotic types are fixed , cf.

the notation in Definition 1. TheR’é’O(U x R"=2; g; W)p g is a Fechet space in a
canonical way, and

D¢D’ : REOU xR 2 gwipg — RE U x R™Z g wipg.

THEOREM 3. Let gj(z,¢) € R’é‘j’o(u x R"2: g; W)pg,j € N, be an ar-
bitrary sequence , wher® and Q are independent of.jThen there is a (¢, ¢) €
Ré’o(u x R"~2; g; w)p g such that

N
9z.0) — > gz 0) e RE MOU x R g wip g
j=0

for every Ne N, and gz, ¢) is unique modulo symbols of ordeio in ¢.

The proof is analogous to that for the existence of asympsotins in the stan-
dard sense (i.e., for operator-valued symbols in the setitlpgroup actions, cf. [40]),
and we writeg ~ Z?o:o gj, called anasymptotic sunof the corresponding Green
symbolsg;.

DEFINITION 2. The spacéz’é’d(u x R"=2: g; w) of Green symbols of order
and type de N is defined to be the space of all operator functions

d

9z ) = 0(z.0) + Y gz ¢) diag(®!, 0)
j=1

for arbitrary gj(z,¢) € Ré‘j’o(u X ]R”—Z;_g; w); here,diag(®/, 0) is the diagonal

matrix, where the upper left corn@r! := %,— is the only non-vanishing entry.

The above notation and results fbe= 0 can be generalised to arbitraty= N.
In particular, we have the spaces

RE4U < B2 g wp g
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which means that aljj in Definition 2 belong to the corresponding symbol classes
with subscriptP, Q.

Theorem 3 on asymptotic sums then has an evident versiontfdraay d (it
suffices to carry out asymptotic sums of the factors at ¢lialg 0) separately).

We do not formulate all relations for arbitradyexplicitly but tacitly use them
below. Let us only mention thagi(z, ¢) € Ré’d(u x R"2; g; W)p,q iS an operator-
valued symbol in the sense of relations (61) and (62), resedg for alls > d — %

3. Mellin symbols

3.1. Parameter-dependent operators on the interval

If X is any C>® manifold with boundary, we have the spaBé:9(X; v) of pseudo-
differential boundary value problems of orgere Z and typed < N, that are continu-
ous operators

Heomp(X, E) HS*(X, F)
(65) A . ® . o
Heorp(@X, J-) Hoo2 "(0X, 3p)

forallseR,s>d— % HereE, F andJ_, J; are smooth complex vector bundles on
X ando X, respectively, and is the abbreviation for the tuple of bundles. For simplic-
ity, in our application we assumie andF to be the trivial bundles of fibre dimension
1; thenE and F are omitted everywhere. In addition, because of our assangpin
boundary conditions (and then also in potential condijiams replace in our context
the bundles)_, J; by direct sums, and, accordingly, the Sobolev spaces bgtdivens

of spaces, where the smoothness indices in the componegtbardifferent. For the
moment we are mainly interested in the case tas simply the interval = [0, z].
Thené X consists of two point§0} and{z } and the Sobolev spaces at the boundary as
they occur in (65) are to be replaced by finite-dimensionatep. Because of boundary
and potential conditions with respect{@ and{z } the latter spaces are direct sums

cMpcM- and cM P,

respectively, wher&l,, N, belong to{0} andM_, N_ to {z }. Because of the nature of
our applications we may content ourselves with the ddse= M, = M_ andN :=

N+ = N_, because we start from mixed problems for elliptic diffei@noperators
with the same number of boundary conditions on both sideis. &quality then remains
preserved in all steps of the calculus. In other words, werdegeested in operators of
the classB*9d(1; w), wherew abbreviates the information on the dimensidisN;

we set in this cas&v = (M, N). For purposes below, we also need the parameter-
dependent analogue of these spaces, namely

(66) B w; RY)
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for a space of parameteRd s 7. The space (66) is Echet in a natural way and we
then also have the spaces
C™(U, B9(1; w; RY))

for any open sety € RP. For the applications below we generalise (66) to the case
of matrix-valued orders, where we replageby 1 = (uik)i=0,..., 2N k=0,...2m. The
spaceB“-4(1; w; RY) is defined to be the set of all block matrix - valued operators
A = (Aii=o,... 2N k=0....2M, Where ord4x = u|k inthe sense thadjx € Brad( ).
Note that integer orders are only assumed in the upper corner

3.2. Holomorphic Mellin symbols

DEFINITION 3. M"O’d(l :w; R"2) for w = (M, N) denotes the subspace of
all h(w, ¢) € A(C, B~9(1; w; R"~2)) such that

h(w, ¢) Irﬂanfz € B”’d(l sw; T'g x R”_Z)

for everyp € R, uniformly inc< g < ¢ for arbitraryc < .

The space\/l’(f)’d(l : w; R"~2?) is Frechet in a natural way, and we can also talk
about the spaces

d _
Co(U, M5 (1 w; R™2)
for any open set) < RP (or, similarly, withR, x U in place ofU).
An basic tool is then the following result.

THEOREM 4. For every f(z,w, ) € C®(U, B49(1; w; I'p x R"=2)) there
exists an Iz, w, ) € C®(U, M5 (1; w; R"2)) such that

hz w,0) Iy = f(z2w,¢) modC®(U, B~ w; Ty x R"%))

and h is uniquenod C**(U, M™% (1; w; R"2)).

Let
(67) h(r,z, w,¢) :== h(r,z,w,r¢)
for
(68) Atz w.¢) € CO®y x U, M5 w; R™)).

For purposes below we set
(69) ho(r, z, w, ¢) := h(0, z, w, r¢).

Choose cut-off functions (r ) anda(r ) and form the following family of pseudo-
differential operators

(70) Pz ) == o Zhr Fopy 2(h)(z e (),
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wherer 7% = (r=#k) _q  oNk=0...2m With ik = i forl = 1,...,2N, k =

L...,2M, jigp = poo, flio = mio — 3 forl = 1,...,2N, ok = pox + 3 for

k=1...,2M. Here,; — [¢] is a strictly positive function irC>(R"~2) such that

[¢c] = |¢]| for || = cfor a constant > 0, and opf,l(h) for any f € R denotes the

weighted Mellin pseudo-differential operator with resfteche Weight% — B, cf. [38].
The operators (70) induce continuous mappings

p(Z’C) : ’CS,Y(I/\’RJF, M) — ICS(;(IA,RJ’,, N)

,,,,,

s, y, 0 are as in Section 2.5, and

Ics—m,y—m(l /\)
@
KS0N Ry N = @y K527 ™3 Ry
@

DN kM2 3Ry

Assume for a moment that= h(z, o, ¢) is independent af. We then have the
following homogeneity:

(71) Pz 20) = AP Ox;
foralll>1andallze U, || > c.
PrROPOSITION3. Given Hr, z, w, ¢) in the sense qf67) we have
P(z,¢) € YU x R"Z K87 (1, Ry M), K39(17, Ry; N))

with respect to the grouply;},cr, and{y;},er, . respectively. In particular, if is
independent of,rthe symbol &z, ) is classical.

Proof. By definition p(z, ¢) is a block matrix of entries

_ _1
Pk(z. O) == o(r[ZDr "*opy 2(hik)(z O [£]),
| =0,...,2N, k=0,...,2M. The assertion consists of

Pk(z,0) € SK(U x RN Ko7~k (Ag), K AM7~A=M(pg)),
k=0,...,2M, 1 =0,..., 2N,

whereA; andAy arel * or R, according to the meaning of indicks anday, i, k =
0,....,2M,l = 0,...,2N, are as in Section 2.5. However the latter relations are
known. O
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With p(z, ¢) (for the case € Q with Q € R"~2 open) we associate the homo-
geneous principal edge symbol

_ 1
ol (P)(z,¢) == w(rlél)r_”opfw 2 (ho)(z, )a(r )
forall (z,¢) € T*Q\ 0, and we get a family of maps
ah(P(Z.¢) : K37 (17, Ry: M) — K317, Ry N)
foralls > d — 3, where
ol (p)(2, 1) = "ol (P Ot

forall (z,¢) € T*Q\ 0 and1 € R.. In addition, forp(z, ¢) we form a subordinate
principal conormal symbol

(72) omal (p)(z, w) := ho(0, z, w, 0)

that we consider for € Q andw € I'1_, as a family of operators

HS(int1) HSM(int 1)
(73) oMok (P)(z, w) : & — ®
cMgecM cNecN

foralls > d — 3.

As an example we want to express the local expressions 5, (Wixed prob-
lems for differential operators in terms of operator-valiellin symbols and operator-
valued amplitude functions. Without loss of generality vesuame the coefficients

aks(r, 2) andbjE I(r,f(r, 2),j =1,..., N, to be independent of for larger, and we let
z vary on an open s& C R"~2. We then form the column vector

(74)  f( ) >kt p1<m Ag (1, DK ()
r,Z, w, — T
" (ri 2k pl<ml bi,kﬁ(r’z)wk(ré)ﬂ)j: N

that equal(r, z, w, ¢) in the sense of notation of Theorem 4.

.....

PROPOSITION4. Set
_1
az,¢) = r~Mopy *(H)(z0),
with f(r, z, w, ¢) being given by74)and r—™ = diag(r —™, (r‘mji)jzl n). Then

,,,,,

az, ) : K57 (1) — K307, Ry N),

. m
belongs to 8(Q x R"2; K57 (1), KS°(1", Ry N)), u = ( (mi + 5ic1N )
2)j=1,..,
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Note that when the coefficientg andbjt’kﬁ are independent of we have
a(z,¢) € S(Q x R™Z K7 (1), K57 (17, Ry N)).
We have even in this case
az i) = A"pae ox)
forall (z,¢) e T*Q\ 0andl € Ry.

3.3. Smoothing Mellin operators

Parallel to spaces with discrete asymptotics we now defineespof Mellin symbols
with a meromorphic structure.

DEFINITION 4. LetAsd(1; w) for w = (M, N) denote the set of all sequences
wherezcR := {rj}jcz has the propertyrc RN {w : ¢ < Rew < ¢’} finite for every

c=<cd,njeNandlj C B~4(1; w) is a finite-dimensional subspace for all
j € N.
DEFINITION 5. The space/\/lgoo’d(l ;w) for R € Asd(1; w) is defined to be
the set of all
h(w) € AC\ zcR, B~°%(1; w))
such that
(i) for everyzc R- excision functiory (w) we have
x()h(w) |rye ST, B(1; w))
for everyp € R, uniformly inc< g < ¢ forarbitraryc < ¢,
(if) h(w) is meromorphic with poles afj rof multiplicity nj + 1 and Laurent coeffi-
cients at(z — rj)~®*+b pelonging to j forall 0 < k < nj and all j € Z.
REMARK 10. M;f’o’d(l ; W) is a nuclear Fechet space.

REMARK 11. Let w(r), @(r) be arbitrary cut-off functions andh(w) €
MZ>9(1; w) with 7cRN Ty, = @. Then

(76) w(r)op{[%(h)(b(r) CKST (N, Ry; M) — K001, Ry; N)

is continuous fos > d — % Moreover, for eveny? € As([0,z], @) for§ = (y, ©)
there exists & € As([0, =1, d) for § = (4, ®) such that (76) induces a continuous
operator

_1
o[opy 2(ar) : Ka' (17, Ry M) — SS(1", Ry N)

forallseR,s>d - 3.
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PROPOSITIONS. Let j e N,a € N2, |«| < j, and set

I _1
Pz, ) == r F o [chopy 2 (@[],

where r A+ = (r=Aktly g onk—o....2m, and we assume(l, ) €
C>®U, M;fo’d(l - w)) for some Re As(I; w) andzcRN I'1—, =¢. Then we have

(77) P(z.¢) € SHU x R"Z K57 (1M, Ry M), S, Ry: N))
forevery s> d— % and for everyP € As([0, ], §) for § = (y, ®) with some resulting

Q € As([0, 7], 0) for § = (6, ©"). Herem = (Mk)i—o,....2N k=0,...2m With mg = m
foralll =0,...,N,k=0,..., M.

Proof. By virtue of (37) we prove that
(78)  p(z.0) e § MU x R (11, Ry M), SS(17, Ry N)),

whereu — j + |a| = (uik — | + lal)i=o,....2N.k=0,...,2m. Now it is clear that it suffices
to prove

Bz o) = rerlehop, 2@ar)

(79) € U xR"HL (1M Ry M), {174, R N))
(cf. Remark 7).
Let
k1, _pk_1
]CSF;V(l/\):MEJ’ ’Ciili 3,y —hy Z(R ):MEik’k_l’ ,M,
jeN jeN
. wom _1 .
Sy =1lmFlL SO TPy =limFLL I =1,.0N,
jeN ' jeN

(cf. (51),(52)), for sequences of Hilbert spades F! and Ei,k, Fiﬁ, with strongly
continuous groups of isomorphism$ andx;, respectively, for allj € N. Then we
have

P(z,0) € C®U x R"2, £(EMi, EM))
for everyn; € N and for some resulting; € N (here,E™ is EJ or Eji,k andFNi is
FlorF{ ). Further
Pz i) = TPz Ox 't

forallze U, |¢] > ¢, A > 1 with anc > 0. This completes the proof. O
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4. Construction of elliptic edge conditions

4.1. Elliptic mixed problems

We now return to mixed problemd for differential operatorsA with differential
boundary conditiond_. in the notation of Section 1.1. By virtue of Proposition 4
our operatot4 is continuous in the sense of a map (4). This follows from teire of
weighted edge Sobolev spaces, cf. formula (47) and Remakd3general continuity
results of pseudo-differential operators with operatzgd symbols, cf. Theorem 2.

With .4 we have associated the tuple of principal symbols
(80) o (A) = (oy(A), 00,+(A), oA (A)),

whereo, (A) := al;”(A), cf. formulas (8),(10),(23). In addition, we have the sulpord
nate conormal symbol (30).

In the literature on concrete mixed problems, e.g., for thplace operator with
the Zaremba problem or the L&nsystem with other types of boundary conditions,
e.g., jumping oblique derivative conditions, it is custoynto call A elliptic if Ais
(oy,00,+)- elliptic, i.e., avr}“(A)(x,f) £ 0(or derayr,“(A)(x,é) # 0 in the case of
systems) for(x, ) € T*X \ 0, and the boundary conditiong. satisfy the Shapiro-
Lopatinskij condition on thet parts intY. which means that (11) are isomorphisms
for all sufficiently larges, for (y, ) € T*(intYy) \ O.

However, this does not imply, in general, the Fredholm priypef the operator
(4). To associate with (4) a Fredholm operator we have to @ssa elliptic conditions
on the inner boundary = Y, N Y_. This requires an additional assumption on the
weight y, namely, that (30) is a family of isomorphisms for all € I';_, and all
z € Z, cf. Proposition 1. Herel's = {w € C : Rew = g}, f € R. By Theorem 1
we then know that the principal edge symbol is a family of Fadth operators for all
(z,0) e T*Z\ 0.

In the following section we construct additional entriesadflock matrix

A K WS (X) Vs—m,y—m(X)
(81) M::(T Q): ® — ® ,
H4(Z, ) HS"1"™(Z, 3;)

where J. are smooth complex vector bundles @nand H' (Z, J1) corresponding
Sobolev spaces of distributional sections in the respettiindles of smoothnesse
R, while
Ws—m,y—m(X)
7
—m.y — N s—ml 1y -ml 1.
PYSTMY—M(X) = @j:1W +7 27 M T2 (intYy) |
69Ij\lzlvvs—mj,—%,y—m’,—%(imYJ
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4.2. Additional edge conditions and the Fredholm property

To summarize the information so far, we assume the mixedgmod to be(sy,, 05, +) -
elliptic, and we choose a weight € R such that (30) is a family of isomorphisms for
allze Zandw € T';_, (that is also assumed to be possible and guaranteed in many
concrete examples). We then have our family of Fredholmaipes

(82) on(ANZ,0) : K37 (1) — £3Mr=M( 7
for (z,¢) e T*Z\ 0, s > mi+%f0rall j=1,...,N, where
Ics—m,y—m“ /\)
. @ .
LMty = @I KSR TRy
©®

i

@E\l:l ,Cs—m',—%,y—m —% (R+)

By virtue of the homogeneity (25) it suffices to assune= 1, i.e.,(z,¢) €
S*Z, whereS*Z is the unit cosphere bundle inducedbyZ. SinceZ is compact, also
S*Z is a compact topological space.

As is well-known the dimensions of kex (A)(z, ¢) and cokeb A (A)(z, ¢) are
not necessarily constant with respect(f¢) € S*Z. However, using the theory of
elliptic boundary value problems on the infinite cone, cfpaadze and Schulze [18,
Chapter 3], we have the following result:

PROPOSITIONG. Thereisanl € N and a map

CERy x 1)
(5]
k:C- — B CE®RY)
(&)
DL, CE®Ry)
such that
Ks,y(l/\)
®3)  azo)= AR ki @ — LMIIMN
(C,

is a family of surjective operators for allz, ) € S*Z and all s > mi_L + %, i =
1,....N.

Proof. First we know that kernels and cokernels of (82) are indepehaf the specific
s, cf. [18, Section 1.2.7]. This allows us to fix any sufficienidyges € R. In this
proof let us simply seK := K57 (17), L := £5™7=M(1"), There is then a finite-
dimensional subspadd c L (of dimensionl_) and an isomorphisrk : C'- — M
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such that
K

(n(A)Z0) k: & — L
(CL

is surjective for alz, ) € S*Z. By virtue of the fact that the spadé := C;°(R; x
I )@@1251 Cy (R4 ) isdenseirL we can approximatke by an isomorphisri : C'- —
M such that

K
(84) azo): ® — L
Cl,

is also surjective for allz, ¢) € S*Z (here, we use that the space of surjective operators
between Hilbert spaces is open in the operator norm topldhygn, since the surjec-
tivity is independent o§, we also get the surjectivity of (83) for adl> ij + % j=
1,...,N. O

The operators of the family (84) are Fredholm and surjedtiveaall (z,¢) €
S*Z. Assume, for simplicity, thaB*Z is connected (otherwise, we may argue for the
connected components separately). Then dimakery) =: | is a constant, though
the directions of kea(z, ) smoothly vary in the spack @& C'-. As is well-known,
kera := | J{kera(z, ¢); (z,¢) € S*Z} form a vector bundlé  of fibre dimensior
on the spac&*Z.

A basic (topological) assumption on our problem is now thdtgn we choose
the above dimensioh. sufficiently large) the bundl& . is the pull-back of a bundle
Jy on Z with respect to the canonical projectien: S*Z — Z, n : (z,¢) — z
In other words, we require , = z*J;. If [L,, C'-]1 denotes the element in the-
group ofS*Z, represented by the pair of bundles andC'- (:= S*Z x C'-), then the
so-called index element

indszoA(A) == [Ly,C-]1 € K(S'2)

(that is independent of the choice of the above-mentioneal k& required to be in
the image under the pull-back* : K(Z) — K(S*Z). This is an analogue of the
well-known topological obstruction for the existence ofahio - Lopatinskij elliptic
boundary conditions in the standard theory of boundaryevptoblems, cf. Atiyah and
Bott [2], Boutet de Monvel [4].

We now construct a homomorphism

K
b: & — J,,
(Cl_

K
i.e., a smooth(z, ¢) - dependent family of linear magxz,¢) : & — J;;for
(CL
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every(z, ¢) € S*Z (with J ; being the fibre ofl; over the pointz) of the form

b:= bo P,
K
whereP is the family of orthogonal projectionB(z,¢) : @ — kera(z ¢) (with
(cl,
K
respect to any fixed choice of a scalar product i® ) andbp : kera — Ji an
CI,

arbitrary isomorphism. From the results of [38] or [18] weoknthat the elements
of kera(z, ¢) are vectors of the fornfu(r, ¢), c), whereu(r, ¢) € Sg,(l ) for some
discrete asymptotic typ® < As([0, z], (y, (—o0, 0])), (dependent orz), andc <
C'-. We may forget about the specifit when we are only interested in the nature of
additional conditions to be constructed here, but identify, ) with an element in
Séo(l M), wherePy € As([0, z1, (y, (—¢, 0])) encodes flatness of order> 0 with
respect to the weight, independent of € Z. Let Q C R"2 be an open set such that
kera(z, ¢) is trivial overQ (recall that this is always the case wh@ris a ball or any
other contractible open set). Choosing a base

(uj(r,(p;z,c))
@0 )iy

.....

of sections in kea(z, ¢) |o our mapb(z, ¢) can be written in the following form:

b(z,g)( 3 ) =

I
b u(f,(/))) (Uj(f,fﬂ;z,g“) )) (Uj(r,w;Z,C))
O(Z, C')le(( d > ¢ (Z, C) KTl ¢

forue K, deC'-.
We have constructed in this way a family of isomorphisms

K L
_(orDzo Kk :
(85) a1(z,¢) = ( bi(z,o) b2z, () ) ' CeP_ - J?z

smoothly dependent oz, ) € S*Z. Here,b(z, ¢) = (01(z, ¢), b2(z, ¢)).
The next step is to extend (85) fro&iZ to T*Z\ 0 to a family of isomorphisms

K L
(86) az,o): & — &
C|7 J+,z

such that

(87) a(z, o) = AMpaz Ok
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forall A € Ry, ¢ # 0, wherek; = diag(x}', idqi_). In other words, we set

(@8) a(z.0) = e Mtz Sk
Let us write
_ o onDEZO) km(©) )
(89) a(z, () - ( t(m) (z, C) d(m) (z, C) ’

We then set

t(z,¢) == x (Ot (Z, O, K@) = wx(Okm), Az ) = x(Om(z O)-

Herey (¢) is an excision function and(r) a cut-off function. Then

(0 kO
(%0) 92.¢) "(t(z,c) q(z,a))

is an operator-valued symbol in the sense

]CS,}/ (l A) £sfm,yfm(| /\)
9z e [@xR"% @ ® :
(CI_ (Cl+

where J; |o= Q x C+ is the chosen trivialisation ofl, over Q and u =
(11K)1=0,....2N+1,k=0,1, Where ik = yk — d with yo = y, y1 = y — 1 and the tu-
ple ((d)i=o,....2N, d2n+1) @S in Section 2.5.

Writing 9(z, ¢) = (gij (z, ¢)) we then form the block matrix

G := 0p,(9) = (Op,(gij))

of pseudo-differential operators with our operator-vdlggmbol (90). This refers first
to a fixedQ < R"~2 corresponding to any chagtj : Vj — Q on Z, whereV; :=
Uynz,j=1,...,L, cf. the beginning of Section 2.3. Lépy, ...,y } denote a
partition of unity onZ subordinate gV, . .., V. }. Furthermore, letys, ..., w} be
functionsyj € CS°(Vj) such thatyjyj = yjforall j =1,..., L.

Let kj () denote the above-mentioned symb@}) on Q that belongs to the
chartyj : Vj — Q. We then have the pull-back of the pseudo-differential cjpera
Op,(kj) to Vj, namely(x; 4).Op,(kj). We then set

L
K= D will D:0p(ki)ly
j=1

and obtain our potential entry

K:HSYZ, ) — V™ M(x),
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whereJ_ = Z x C'-. Similarly, lettj (z, ¢) andqj (z, ¢') denote the symbols belonging
to the chartyj : V; — Q. We then set

L L
(T Q) = [ D willy H0m)hwi D wil(r] H+0p,(@)}y;
j=1 j=1

and obtain in this way the second row of our block matrix (8&mely

WS (X)
7 9: ® — HS1"M(Z, 3,).
HS-1(Z,J.)

Clearly, in the pull-backs of operators undgrwe have tacitly integrated the cocycle
of the bundleJ,.. An important property of our construction is that the opersit

0 K WS7 (X) YS—Mmy —M(x)
(76) iy, = st
HS-1(Z, ) HS—1=m(Z, J;)

only change by compact operators when we change the exéisiotion y, the cut-off
functionw or the charts and the functions, ;.

THEOREM 5. If the additional conditiongC, 7 and Q to the operatorA are
chosen in the above-mentioned way, the operatois elliptic in the sense of edge-
boundary value problems and hen@) is Fredholm for all se R, s —m}, — 3 >

0,j=1...,N.

Proof. Our construction of elliptic edge conditiorts, 7 and Q to A has reached a
variant of the calculus of boundary value problems on a no#hifvith edges. In fact,

an inspection of the proof of [18, Theorem 4.5.11] shows tiratcan generalise the
arguments to the present case of Douglis-Nirenberg orders. O

REMARK 12. The difference of the situation considered in [18, Chipt,5]
and here lies in the fact that we consider the “realistic’ensdrom the problem, while
those in [18] are thought to be obtained by an order reductiimee construction of
order reducing objects within our operator spaces is aratflaminous program that
will be carried out in a future paper.
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