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MIXED PROBLEMS AND EDGE CALCULUS

SYMBOL STRUCTURES

Abstract. Mixed problems, i.e., boundary value problems with conditions that have a jump
along a submanifoldZ of the boundary of codimension 1, may be interpreted as boundary
value problems on a manifold with edgeZ. We investigate the symbol hierarchy of general
mixed problems under the aspect of the edge operator calculus and discuss, in particular,
the role of additional conditions onZ that depend on weights and satisfy an analogue of the
Shapiro - Lopatinskij condition.

Introduction

Boundary value problems on configurations with (geometric)singularities and with
discontinuous coefficients are motivated by models of applied sciences and engineer-
ing, for instance, mechanics, elasticity, crack theory, scattering theory and numerical
mathematics. Precise and satisfying solutions in terms of parametrix constructions or
the characterisation of regularity and asymptotics in suitable weighted Sobolev spaces
belong to the program of a corresponding pseudo-differential calculus. In fact, para-
metrices to elliptic boundary value problems for differential operators in smooth do-
mains are pseudo-differential operators (more precisely,pseudo-differential boundary
value problems with the transmission property).

The present paper studies mixed elliptic problems in a smooth domain, where
the boundary conditions are admitted to be discontinuous along a smooth submanifold
of the boundary of codimension 1. A classical example is the Zaremba problem for the
Laplacian with a jump from Dirichlet to Neumann conditions.

The idea is to interpret the jump of conditions as an edge and to apply the
pseudo-differential calculus of boundary value problems on a manifold with edges.
The model cone of wedges in our case is a half-plane, regardedas a cone with base
[0, π ] and axial variabler ∈ R+ from polar coordinates inR2.

Numerous authors have contributed results to mixed problems under different
aspects, see, for instance, Eskin [9], Rempel and Schulze [25], [27], and the references
there.

The purpose of this paper is to make the relations between mixed problems and
edge operators as transparent as possible, starting from problems for differential op-
erators with mixed differential boundary conditions. For convenience we mainly con-
sider scalar operators, though all methods and results havean evident generalisation to
systems (or operators on a manifold acting between spaces ofdistributional sections of
vector bundles). Mixed and crack problems are formally close to each other, see, for in-
stance, Kapanadze and Schulze [18], and one may treat them tosome extent in a unified
way. Nevertheless, if one is interested in concrete questions from applications, it seems
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advisable to investigate them separately. Another point isthat mixed problems in the
present form are more regular than operators in the larger algebra of edge-degenerate
problems; the latter one also admits the jump to be an edge of the configuration. In that
sense mixed problems are specialisations of boundary valueproblems on manifolds
with edges (with the transmission property along the smoothparts of the boundary).
The case of mixed problems is characterised by additional regularity properties of the
coefficients in the operators which are not typical for the general case.

The idea of the present paper is to give the background for a specific pseudo-
differential algebra of mixed problems that contains all problems for differential op-
erators (with differential conditions) as well as the parametrices of elliptic elements.
In a forthcoming paper we continue this program and study, inparticular, regularity
of solutions with asymptotics in weighted edge spaces. Notethat when the boundary
conditions are smooth (i.e., without jumps) we have the standard situation of pseudo-
differential boundary value problems with the transmission property, see, Boutet de
Monvel [4] or Rempel and Schulze [24]. Regularity with asymptotics in this case cor-
responds to regularity in standard Sobolev spaces (with “Taylor asymptotics” up to
the boundary). In our case we will have such asymptotics outside the jumpZ of the
conditions, while we get typical edge asymptotics in a neighbourhood ofZ.

In smooth boundary value problems it is customary to reduce orders to get the
same orders in operators and boundary conditions. Order reducing operators induce
isomorphisms between Sobolev spaces; in the smooth case they do not disturb results.
Order reductions can also be constructed for mixed (and moregeneral edge bound-
ary value) problems; they represent, in fact, very nice elements in the edge pseudo-
differential calculus. Unfortunately, their construction requires a separate paper, see,
for instance, Behm [3] for the analogous simpler situation of operators on manifolds
with edges without boundary. In addition, if one is not careful, the meromorphic Mellin
symbolic ingredients of order reductions may affect asymptotic data; this is highly un-
desirable in concrete situations. For that reason we avoid reductions of orders here and
formulate operators in analogy to Douglis-Nirenberg systems.

We characterise the symbolic hierarchy of mixed problems, construct scales of
spaces and operator conventions that yield continuous operators in these spaces (espe-
cially, a Mellin operator convention), and we discuss additional conditions along the
jump Z of the mixed conditions that complete a given mixed problem to a Fredholm
operator in weighted Sobolev spaces. For simplicity, we content ourselves with con-
stant discrete asymptotics. The material in Section 2.4 - 2.5 and 3.1 - 3.3 prepares
the structures (symbols as well as spaces) that reflect the structure of parametrices
and elliptic regularity with asymptotics. Our results haveanalogues for the case of
continuous asymptotics. In a forthcoming paper we construct parametrices of elliptic
elements. Parametrices will be elements of a correspondingversion of edge algebra.
This algebra consists of 3× 3 block matrix operators, where the lower right 2× 2
corners belong to the (pseudo-differential) algebra of transmission problems on the
boundaryY with the interfaceZ. Restricting that algebra to, say, the+ -sideY+ of the
boundary, the transmission algebra may be regarded as a generalisation of the algebra
of pseudo-differential boundary value problems onY+ (whereZ is the boundary), cf.
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Harutjunjan, Schulze, Witt [16], or Schulze and Seiler [41].

1. Mixed problems for differential operators

1.1. Basic constructions

Mixed boundary value problems for differential operators are formulated as follows:

Let X be a compactC∞ manifold with boundaryY, and suppose thatY is
subdivided intoC∞ manifoldsY± with common boundaryZ, i.e.,Y = Y+∪ Y−, Z =
Y+ ∩ Y−. On X we consider an equation

(1) A u = f

with an elliptic differential operatorA of orderm and elliptic boundary conditions

(2) T±u = g± on intY±,

whereT± are assumed to be of the form r±B± with differential operatorsB± with
smooth coefficients in a neighbourhood ofY±, where r± denotes the operator of re-
striction to intY± = Y± \ Z. More precisely,B± are vectors

(3) B± = (B1
±, . . . , BN

± )

of differential operators of orderm j
±, j = 1, . . . , N. The manifoldX can be regarded

as a manifold with boundary that has an edgeZ. According to the general ideas from
the edge operator calculus, cf. [40] or [18], we then pass to the associated stretched
manifoldX and to corresponding weighted Sobolev spacesWs,γ (X), cf. the construc-
tions in Section 2.3 below. Similarly, the manifoldsY± with smooth boundaryZ will
be regarded as manifolds with edgeZ (these are the same as their stretched versions).
We then also have the spacesWs,γ (intY±). Our mixed boundary value problem then
represents an operator

(4) A =





A
T+
T−



 : Ws,γ (X) −→

Ws−m,γ−m(X)

⊕

⊕N
j=1W

s−m j
+−

1
2 ,γ−m j

+−
1
2 (intY+)

⊕

⊕N
j=1W

s−m j
−−

1
2 ,γ−m j

−−
1
2 (intY−)

,

that is continuous for alls ∈ R (here, in the case of differential operators, also for all
γ ∈ R).

Let us now pass to the local description in polar coordinatesand define the
symbol hierarchy of the operatorA. Let us representX in a neighbourhoodU of a
point of Z in local coordinates as

R
2
+ ×� ∋ {(z, xn−1, xn) ∈ R

n : xn ≥ 0, xn−1 ∈ R, z ∈ �},
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where� ⊆ R
n−2 is an open set. More precisely,U is chosen in such a way that there

is a chartχ : U → R
2
+×�, whereχ : U ∩ Z→ � is a chart onZ, andR

2
+ represents

locally the normal half-plane toZ, generated by the inner normalR+ and the normal

to Z tangential toY. Let (r, ϕ) ∈ R+ × [0, π ] be polar coordinates inR
2
+ \ {0}. Then,

the given differential operator

A =
∑

|α|≤m

aα(x)D
α
x

with smooth coefficients in a neighbourhood ofR
2
+ ×� takes the form

(5) A = r−m
∑

k+|β|≤m

akβ(r, z)(−r
∂

∂ r
)k(r Dz)

β

with operator-valued coefficientsakβ(r, z) ∈ C∞(R+ × �, Diff m−(k+|β|)([0, π ])).

Similarly, the operatorsB j
± that are in local coordinates given by

B j
± =

∑

|α|≤m j
±

b j
±,α(x)D

α
x

with smooth coefficients in a neighbourhood ofR± ×� take the form

(6) B j
± = r−m j

±

∑

k+|β|≤m j
±

b j
±,kβ(r, z)(−r

∂

∂ r
)k(r Dz)

β

with operator-valued coefficientsb j
±,kβ ∈ C∞(R+ × �,Diff m j

±−(k+|β|)([0, π ])), and
then

(7) T j
± = r±r−m j

±

∑

k+|β|≤m j
±

b j
±,kβ(r, z)(−r

∂

∂ r
)k(r Dz)

β .

We now establish some symbol structures that are connected with the operators
(A, T+, T−). First, in coordinatesx ∈ R

n with covariablesξ we have the respective
homogeneous principal symbols ofA andB j

± of ordersmandm j
±, respectively, namely

(8) σm
ψ (A)(x, ξ) and σ

m j
±

ψ (B j
±)(x, ξ),

ξ 6= 0. These induce corresponding boundary symbols

(9) σm
∂ (A)(y, η) := σm

ψ (A)(0, y, Dt , η)

for η 6= 0, wherex := (t, y) with t := xn, y := (xn−1, z), and the covariableξ splits
into (τ, η). Similarly, we set

σ
m j
±+

1
2

∂ (T j
±)(y, η) := r±σ

m j
±

ψ (B j
±)(0, y, Dt , η)
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for η 6= 0 andy = (z, xn−1), xn−1 > 0, xn−1 < 0, respectively (according to± at
the operators). This gives us the homogeneous principal boundary symbolσ∂(A) :=
(σ∂,+(A), σ∂,−(A)) of A in local coordinates, namely

(10) σ∂,±(A)(y, η) :=

(

σm
∂ (A)(y, η)

(σ
m j
±+

1
2

∂ (T j
±)(y, η)) j=1,...,N

)

for xn−1 > 0, xn−1 < 0, respectively,z ∈ � and η 6= 0. These are families of
continuous operators

(11) σ∂,±(A)(y, η) : Hs(R+) −→

Hs−m(R+)

⊕

C
N

for all s ∈ R, wheres − m j
± −

1
2 > 0 for all j . The specific choice ofs will be

unessential, in fact, it suffices to takes sufficiently large. Instead of (11) we also may
consider the families continuous operators

(12) σ∂,±(A)(y, η) : S(R+) −→
S(R+)

⊕

C
N

.

Writing (κλu)(t) := λ
1
2 u(λ t), λ ∈ R+, we have

(13) σm
∂ (A)(y, λη) = λmκλσ

m
∂ (A)(y, η)κ

−1
λ

and

(14) σ
m j
±+

1
2

∂ (T j
±)(y, λη) = λ

m j
±+

1
2σ

m j
±+

1
2

∂ (T j
±)(y, η)κ

−1
λ

for all λ ∈ R+. Our basic assumption in mixed problems is the ellipticity ofA in the
standard sense, i.e.,σm

ψ (A)(x, ξ) 6= 0 for all x and allξ 6= 0, together with the ellip-
ticity of the boundary conditions onY±, i.e., that the operators (11) (or, equivalently,
(12)) define isomorphisms for ally on the respective side ofY and for allη 6= 0.
Note that although we want to control symbols and weighted distributions on intY±,
the coefficients in the boundary conditions are (by assumption) smooth up toZ and the
isomorphisms (11) (or (12)) are required includingz ∈ Z.

EXAMPLE 1. If A = 1 is the Laplace operator, an example for mixed ellip-
tic boundary conditions is the case Dirichlet conditions onY+, Neumann conditions
on Y−. We also may impose oblique derivative conditions on both sides, where the
coefficients have a jump onZ (with smoothness from the respective sides up toZ).

We now formulate so-callededge symbols, associated with the operators (5),
(6), whereZ is regarded as an edge. To this end we setI := [0, π ] and form the open
stretched coneI ∧ := R+ × I with baseI . We then have the weighted Sobolev spaces
Ks,γ (I ∧) as well asKs,γ (R+), s, γ ∈ R, that are defined as follows:
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We first have the weighted Sobolev spacesHs,γ (R+) andHs,γ (X∧), respec-
tively, whereHs,γ (R+) andHs,γ (X∧) are as usual, cf. [39],[40]. Here,X is a closed
compactC∞- manifold andX∧ = R+ × X. In particular, forX = S1 (the unit circle
in R

2) we identifyR
2 \ {0} with R+× S1 and writeHs,γ (R2 \ {0}) = Hs,γ (R+× S1).

Identifying int I = (0, π) with S1
+ = S1 ∩ R

2
+, R

2
+ = {(xn−1, xn) : xn > 0}, we then

get
Hs,γ (I ∧) := Hs,γ (R2

+) = {u |R2
+
: u ∈ Hs,γ (R2 \ {0})}.

Moreover,

(15) Ks,γ (R+) := {ω u+ (1− ω)v : u ∈ Hs,γ (R+), v ∈ Hs(R+)},

whereω(r ) is any cut-off function (thoughout this paper acut-off functionis a non-
negative functionω(r ) ∈ C∞0 (R+) such thatω(r ) ≡ 1 in a neighbourhood ofr = 0),
and

Ks,γ (I ∧) := Ks,γ (R2
+) :=

{ω u+ (1− ω)v : u ∈ Hs,γ (R2
+), v ∈ Hs(R2

+)}.(16)

Similarly, we can form the space

(17) Ks,γ (R+ × S1) := {ω u+ (1− ω)v : u ∈ Hs,γ (R+ × S1), v ∈ Hs(R2)}.

Notice that thenu→ u |
R2
+

defines a continuous operatorKs,γ (R+× S1)→ Ks,γ (I ∧)

andu(r, ϕ) → u(r, ϕ0) for fixed ϕ0 ∈ S1 a continuous operatorKs,γ (R+ × S1) →

Ks− 1
2 ,γ−

1
2 (R+) for s> 1

2, γ ∈ R.

On the spacesKs,γ (I ∧) and onKs,γ (R+) we consider groups of isomorphisms
{κ∧λ }λ∈R+ and{κλ}λ∈R+ , respectively, namely

(18) (κ∧λ u)(r, ϕ) := λu(λ r, ϕ), u ∈ Ks,γ (I ∧),

(19) (κλv)(r ) := λ
1
2 v(λ r ), v ∈ Ks,γ (R+).

We set

(20) σm
∧ (A)(z, ζ ) := r−m

∑

k+|β|≤m

akβ(0, z)(−r
∂

∂ r
)k(r ζ )β ,

(z, ζ ) ∈ �× (Rn−2 \ {0}), regarded as a family of continuous operators

σm
∧ (A)(z, ζ ) : K

s,γ (I ∧) −→ Ks−m,γ−m(I ∧),

for any fixedγ ∈ R. Also heres ∈ R is taken sufficiently large (precise conditions will
be given below). Moreover, we set

σ
m j
±+

1
2

∧ (T j
±)(z, ζ ) := r±r−m j

±

∑

k+|β|≤m j
±

b j
±,kβ(0, z)(−r

∂

∂ r
)k(r ζ )β ,
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(here, r± denotes the restriction operator toR+, the corresponding boundary compo-
nent of I ∧, where{0} × R+ corresponds to the+, {π} × R+ to the− sign) (z, ζ ) ∈
�× (Rn−2 \ {0}), regarded as families of continuous operators

σ
m j
±+

1
2

∧ (T j
±)(z, ζ ) : K

s,γ (I ∧) −→ Ks−m j
±−

1
2 ,γ−m j

±−
1
2 (R+),

for s−m j
± −

1
2 > 0. Similarly to (13), (14) we have

(21) σm
∧ (A)(z, λζ ) = λmκ∧λ σ

m
∧ (A)(z, ζ )(κ

∧
λ )
−1

and

(22) σ
m j
±+

1
2

∧ (T j
±)(z, λζ ) = λm j

±+
1
2κλσ

m j
±+

1
2

∧ (T j
±)(z, ζ )(κ

∧
λ )
−1

for all λ ∈ R+. The operator family

(23) σ∧(A)(z, ζ ) :=

(

σm
∧ (A)(z, ζ )

(σ
m j
±+

1
2

∧ (T j
±)(z, ζ )) j=1,...,N

)

represents a parameter-dependent boundary problem on the infinite (stretched) cone
I ∧, whereζ ∈ R

n−2 \ {0} is the parameter andz ∈ � an additional variable. Writing

(24) σ∧(A)(z, ζ ) : K
s,γ (I ∧) −→

Ks−m,γ−m(I ∧)
⊕

⊕N
j=1K

s−m j
+−

1
2 ,γ−m j

+−
1
2 (R+)

⊕

⊕N
j=1K

s−m j
−−

1
2 ,γ−m j

−−
1
2 (R+)

we shall chooseγ in such a way that (24) is a family of Fredholm operators. To express
homogeneity of the operator function (24) in the sense of (23) we can also write

(25) σ∧(A)(z, λζ ) = λmκ̃∧λ σ∧(A)(z, ζ )(κ
∧
λ )
−1,

where{κ∧λ }λ∈R+ is as before, while{κ̃∧λ }λ∈R+ is a diagonal block matrix of isomor-
phisms, acting on corresponding direct sums of spaces (as they occur on the right hand
side of (24)), namely,

(26) κ̃∧λ :=







κ∧λ 0

diag(λm j
++

1
2−mκλ) j=1,...,N

0 diag(λm j
−+

1
2−mκλ) j=1,...,N






.

1.2. Conormal symbols

The choice ofγ in (24) depends on the so-calledconormal symbol, namely, the family
of maps

(27) σMσ∧(A)(z, w) :=

(

σMσ
m
∧ (A)(z, w)

(σMσ
m j
±+

1
2

∧ (T j
±)(z, w)) j=1,...,N

)

,
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where

(28) σMσ
m
∧ (A)(z, w) :=

m
∑

k=0

ak0(0, z)w
k,

(29) σMσ
m j
±+

1
2

∧ (T j
±)(z, w) := r±

m j
±

∑

k=0

b j
±,k0(0, z)w

k,

w ∈ C. We then have

(30) σMσ∧(A)(z, w) : Hs(I ) −→
Hs−m(I )
⊕

C
N ⊕ C

N
.

Note that (30) is a holomorphic operator function inw, smoothly dependent onz ∈ �.

PROPOSITION 1. Under the above-mentioned ellipticity conditions on the
mixed boundary value problem, given by the operators(A, T−, T+), the operators(30)
represent(for every fixed z∈ �) a holomorphic(in w ∈ C) family of Fredholm oper-
ators for every s∈ R, where s−m > −1

2 and s−m j
± −

1
2 > 0 for all j . Moreover,

for every compact subset K⊂ � and every c≤ c′ there is an M> 0 such that the
operators(30)are isomorphisms for all z∈ K , c ≤ Rew ≤ c′ and|Imw| ≥ M.

Proof. First, the operators (30) areC∞ in (z, w) ∈ �×C and holomorphic inw. They
are elliptic as boundary value problems on the intervalI and parameter-dependent el-
liptic with Im w as parameter, for everyβ = Rew. Ellipticity entails the Fredholm
property of (30), while parameter-dependent ellipticity gives rise to isomorphisms be-
tween the respective spaces for|Imw| sufficiently large. Because of the smoothness of
coefficients inz ∈ � andβ ∈ R, for every compact set̃K ⊂ �× R the operators (30)
are isomorphisms for all|Imw| ≥ M for a suitable choice ofM. This is a consequence
of parameter-dependent ellipticity, cf. [18].

PROPOSITION2. For every fixed z∈ � there exists a countable set D(z) ⊂ C,

where D(z) ∩ {w : c ≤ Rew ≤ c′} is finite for every c≤ c′, such that the operators
(30) are isomorphisms for allw ∈ C \ D(z) and for s∈ R, where s−m > −1

2 and

s−m j
± −

1
2 > 0.

This is a well-known result on holomorphic families of Fredholm operators, cf.
[40, Theorem 1.2.33].

THEOREM 1. LetA =





A
T+
T−



 be a mixed problem inR
2
+×� that is elliptic

with respect toσm
ψ and σ∂,± (i.e., σm

ψ (A)(x, ξ) := σm
ψ (A)(x, ξ) 6= 0 for all x and

ξ 6= 0 andσ∂,±(A)(y, η) defines bijective operators(11) or (12) for all y andη 6= 0).
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Then the edge symbol(24) is a Fredholm operator for a point z∈ � and arbitrary
ζ 6= 0 if and only if1− γ /∈ {Rew : w ∈ D(z)} (with the set D(z) from Proposition
2) for all s−m> −1

2, s−m j
± −

1
2 > 0.

Proof. We shall show the Fredholm property under the required ellipticity conditions
on the symbols which is the essential point here; the converse will be dropped. The
operator family (24) belongs to a Douglis-Nirenberg analogue of the cone algebra of
boundary value problems onI ∧, cf. [29],[30], where the ellipticity with respect to
σm
ψ , σ∂,± andσMσ∧ guarantees the existence of a parametrix. Moreover,I ∧ is a man-

ifold with conical exit to infinity(r → ∞) and forζ 6= 0 the exit symbols are also
elliptic. This is a similar effect as in the boundaryless case, cf. [40, Theorem 3.5.1].
Near infinity we can apply a Douglis-Nirenberg analogue of the parametrix construc-
tion from [18, Chapter 3]. This gives us altogether a parametrix σ∧(P)(z, ζ ) of (24)
globally on I ∧, whereσ∧(A)σ∧(P)− id as well asσ∧(P)σ∧(A)− id are compact in
the respective Sobolev spaces. This entails the Fredholm property.

REMARK 1. If (24) is a Fredholm operator, we have

dim ker σ∧(A)(z, ζ ) = dim ker σ∧(A)(z,
ζ

|ζ |
),

dim cokerσ∧(A)(z, ζ ) = dim cokerσ∧(A)(z,
ζ

|ζ |
).

This is a direct consequence of the relation (25). In fact, wehave

σ∧(A)(z,
ζ

|ζ |
) = |ζ |−m(κ̃∧|ζ |)

−1σ∧(A)(z, ζ )κ
∧
|ζ |

for all ζ 6= 0.

1.3. Examples

EXAMPLE 2. Let X = R
n
+ = {x : x = (x1, x2, . . . , xn) ∈ R

n; xn ≥

0}, Y+ = {x : x = (x1, x2, . . . , xn) ∈ R
n; xn = 0, xn−1 ≥ 0}, Y− = {x : x =

(x1, x2, . . . , xn) ∈ R
n; xn = 0, xn−1 ≤ 0}, Z = Y+ ∩ Y− = R

n−2 = {x : x =

(x1, x2, . . . , xn−2,0,0)}. Let us consider the Zaremba problemA =





1

T+
T−



 for

the Laplacian1 whereT+u = r+u, T−u = −r− ∂ u
∂ xn

.In polar coordinates(r, ϕ) ∈
R+ × [0, π ] (with respect toxn−1, xn) the entries ofA take the form

1 = r−2((−r
∂

∂ r
)2+

∂2

∂ϕ2
− r 2(D2

x1
+ . . .+ D2

xn−2
)),

T+u = u |ϕ=0, T−u =
1

r

∂ u

∂ϕ
|ϕ=π .
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We then have

σMσ
2
∧(1)(w) =

∂2

∂ϕ2
+ w2 : Hs(I )→ Hs−2(I )

and

(31) σMσ∧(A)(w) =









σMσ
2
∧(1)(w)

σMσ
1
2
∧ (T+)

σMσ
3
2
∧ (T−)









: Hs(I )→
Hs−2(I )
⊕

C⊕ C

,

whereσMσ
1
2
∧ (T+)u = u |ϕ=0, σMσ

3
2
∧ (T−)u =

∂u
∂ϕ |ϕ=π . A simple argument gives us

ker(σMσ
2
∧(1)(w)) = {c1eiwϕ + c2e−iwϕ : c1, c2 ∈ C}.

Now (31) is an isomorphism if and only ifw ∈ C satisfies the conditionw /∈ {n+ 1
2 :

n ∈ Z}. Hence, Theorem 1 tells us that

(32) σ∧(A)(ζ ) =









σ 2
∧(1)(ζ )

σ
1
2
∧ (T+)(ζ )

σ
3
2
∧ (T−)(ζ )









: Ks,γ (I ∧)→

Ks−2,γ−2(I ∧)
⊕

Ks− 1
2 ,γ−

1
2 (R+)

⊕

Ks− 3
2 ,γ−

3
2 (R+)

,

whereσ 2
∧(1)(ζ ) = r−2( ∂

2

∂ϕ2 + (−r ∂
∂ r )

2 − r 2|ζ |2), σ
1
2
∧ (T+)u = u |ϕ=0, σ

3
2
∧ (T−)u =

1
r
∂ u
∂ϕ |ϕ=π , is a Fredholm operator for anys ∈ R, s > 3

2, if and only if γ /∈ {n+ 1
2 :

n ∈ Z}.

EXAMPLE 3. Let X,Y+,Y−, Z be as in Example2. For the Laplacian1 we

consider a mixed problemA =





1

T+
T−



 with T+ = r+B+, T− = r−B−, where

B+ =
n−2
∑

i=1

αi Dxi + α Dxn−1 + γ Dxn,

B− =
n−2
∑

i=1

βi Dxi + β Dxn−1 + δ Dxn .

The coefficientsα, β, γ, δ, αi , βi are functions ofz = (x1, . . . , xn−2,0,0) ∈ Z, and
we assume thatγ, δ are nowhere vanishing (the operatorsT± satisfy the Shapiro-
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Lopatinskij condition). Similarly to Example 2 we get

1 = r−2((−r
∂

∂ r
)2+

∂2

∂ϕ2
− r 2(D2

x1
+ . . .+ D2

xn−2
)),

T+u = r−1(

n−2
∑

i=1

αi r Dxi +
α

i
r
∂

∂ r
+
γ

i

∂

∂ϕ
)u |ϕ=0,

T−u = r−1(

n−2
∑

i=1

βi r Dxi −
β

i
r
∂

∂ r
−
δ

i

∂

∂ϕ
)u |ϕ=π .

Then

(33) σ∧(A)(ζ ) =









σ 2
∧(1)(ζ )

σ
3
2
∧ (T+)(ζ )

σ
3
2
∧ (T−)(ζ )









: Ks,γ (I ∧)→

Ks−2,γ−2(I ∧)
⊕

Ks− 3
2 ,γ−

3
2 (R+)

⊕

Ks− 3
2 ,γ−

3
2 (R+)

,

whereσ 2
∧(1)(ζ ) = r−2( ∂

2

∂ϕ2 + (−r ∂
∂ r )

2 − r 2|ζ |2), σ
3
2
∧ (T+)(ζ ) = r−1(1

i (γ cosϕ −

α sinϕ) ∂∂ϕ −
1
i (γ sinϕ + α cosϕ)(−r ∂

∂ r )+ r (α1ζ1+ α2ζ2+ . . .+ αn−2ζn−2)),

σ
3
2
∧ (T−)(ζ ) = r−1(1

i (δ cosϕ − β sinϕ) ∂∂ϕ −
1
i (δ sinϕ + β cosϕ)(−r ∂

∂ r )+ r (β1ζ1+

β2ζ2+ . . .+ βn−2ζn−2)). For the conormal symbol of (33) we have

(34) σMσ∧(A)(z, w) =







∂2

∂ϕ2 + w
2

1
i (γ

∂
∂ϕ − α w) |ϕ=0

1
i (β w − δ

∂
∂ϕ ) |ϕ=π






: Hs(I )→

Hs−2(I )
⊕

C⊕ C

.

The operator(33) is Fredholm for alls ∈ R, s > 3
2 and all ζ 6= 0 if and only if

1− γ /∈ {Rew : 2iw2(coswπ(αδ − γβ)− sinwπ(αβ + γ δ)) = 0}.

2. Calculus in weighted Sobolev spaces

2.1. Operator-valued symbols and abstract edge Sobolev spaces

This section contains some necessary material on operator-valued symbols and associ-
ated Sobolev spaces based on spaces with strongly continuous group actions.

If a Hilbert spaceE is equipped with a strongly continuous group of isomor-
phismsκλ : E → E, λ ∈ R+, whereκλκλ′ = κλλ′ for all λ, λ′ ∈ R+, we say that
E is endowed with a group action. More generally, ifE is a Fŕechet space, written as
a projective limit lim

←−−
j∈N

E j of Hilbert spacesE j , j ∈ N, with continuous embeddings

E j+1 →֒ E j for all j , and if E0 is endowed with a group action{κλ}λ∈R+ that re-
stricts to a group action onE j for every j ∈ N, thenE is said to be equipped with a
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group action. IfE andẼ are Hilbert spaces endowed with group actions{κλ}λ∈R+ and
{κ̃λ}λ∈R+ , respectively,Sµ(U × R

q; E, Ẽ) for an open setU ⊆ R
p denotes the set of

all a(z, ζ ) ∈ C∞(U × R
q,L(E, Ẽ)) such that

(35) ||κ̃−1
〈ζ 〉 {D

α
z Dβ

ζ a(z, ζ )}κ〈ζ 〉||L(E,Ẽ) ≤ c〈ζ 〉µ−|β|

for all α ∈ N
p, β ∈ N

q andz ∈ K for arbitraryK ⊂⊂ U, ζ ∈ R
q, with constants

c = c(α, β, K ) > 0. The spaceSµ(U × R
q; E, Ẽ) is Fŕechet in the semi-norm sys-

tem, given by the best constantsc in the symbol estimates (35). LetS(µ)(U × (Rq \

{0}); E, Ẽ) be the space of allf (z, ζ ) ∈ C∞(U × (Rq \ {0}),L(E, Ẽ)) such that
f (z, λζ ) = λµκ̃λ f (z, ζ )κ−1

λ for all λ ∈ R+, (z, ζ ) ∈ U × (Rq \ {0}). Then, ifχ(ζ ) is
any excision function inRq, we have

χ(ζ )S(µ)(U × (Rq \ {0}); E, Ẽ) ⊂ Sµ(U × R
q; E, Ẽ).

Now Sµcl(U × R
q; E, Ẽ) (the space ofclassical symbols) is defined to be the sub-

space of alla(z, ζ ) ∈ Sµ(U × R
q; E, Ẽ) such that there are elementsa(µ− j )(z, ζ ) ∈

S(µ− j )(U × (Rq \ {0}); E, Ẽ), j ∈ N, where

(36) a(z, ζ )−
N
∑

j=0

χ(ζ )a(µ− j )(z, ζ ) ∈ Sµ−(N+1)(U × R
q; E, Ẽ)

for all N ∈ N. The semi-norms inS(µ− j )(U × (Rq \ {0}); E, Ẽ) from the unique
a(µ− j )(z, ζ ), j ∈ N, as well as those from the remainders (36) inSµ−(N+1)(U ×
R

q; E, Ẽ), N ∈ N, turn Sµcl(U × R
q; E, Ẽ) into a Fŕechet space. If relations are valid

both for general and classical symbols we write “(cl)” as subscript.

It is obvious that

(37) Sµ̃(cl)(U × R
q; E, Ẽ) ⊂ Sµ(cl)(U × R

q; E, Ẽ)

for µ ≥ µ̃ (µ− µ̃ ∈ N in the classical case).

Let Ẽ be a Fŕechet space written as a projective limit of Hilbert spaces{Ẽ j } j∈N
and endowed with a group action{κλ}λ∈R+ , we have the symbol spacesSµ(cl)(U ×

R
q; E, Ẽ j ) for all j and then define

Sµ(cl)(U × R
q; E, Ẽ) = lim

←−−
j∈N

Sµ(cl)(U × R
q; E, Ẽ j ).

Also when bothE andẼ are Fŕechet spaces there is a notion of symbol spacesSµ(cl)(U×

R
q; E, Ẽ) that we tacitly use here; details may be found in [38] or [40].Parallel to the

symbol spaces we have “abstract” wedge Sobolev spacesWs(Rq, E) of smoothness
s ∈ R. First, for a Hilbert spaceE with group action{κλ}λ∈R+ we defineWs(Rq, E)
to be the completion ofS(Rq, E) with respect to the norm

{∫

〈ζ 〉2s||κ−1
〈ζ 〉 û(ζ )||

2
E dζ

}
1
2

.
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Here,û(ζ ) is the Fourier transform ofu(z). More generally, ifE = lim
←−−
j∈N

E j is Fŕechet

with a group action{κλ}λ∈R+ , we setWs(Rq, E) = lim
←−−
j∈N

Ws(Rq, E j ). Finally, for an

open set� ⊆ R
q we have adequate analogues of the standard “comp” and “loc” spaces,

here, denoted byWs
comp(�, E) andWs

loc(�, E), respectively.

Recall from [38] or [40] that whenU = � × � with (z, z′) ∈ � × � we have
spaces of pseudo-differential operators

Lµ(cl)(�; E, Ẽ) := {Op(a) : a(z, z′, ζ ) ∈ Sµ(cl)(�×�× R
q; E, Ẽ)}

and a corresponding calculus that extends the known scalar calculus in an adequate
way. In all these notations we did not indicate the group actionsκ = {κλ}λ∈R+ , κ̃ =
{κ̃λ}λ∈R+ though the various spaces depend of them. Usually,κ and κ̃ are known by
the context and fixed, otherwise we occasionally write

(38) Sµ(cl)(U × R
q; E, Ẽ)κ,κ̃ , Ws(Rq, E)κ , etc.

Let us finally note thatE = C
N is admitted, too. In most cases the corresponding

group action is taken to be trivial in this case, i.e.,κλ = idCN , λ ∈ R+. The basic
properties of (abstract) pseudo-differential operators with operator-valued symbols are
similar to those with scalar symbols (i.e., whereE = Ẽ = C and the group actions are
trivial, i.e., the identity operators for allλ).

THEOREM2. Given a(z, z′, ζ ) ∈ Sµ(�×�×R
q; E, Ẽ) the associated pseudo-

differential operatorOp(a) : C∞0 (�, E)→ C∞(�, Ẽ) extends to continuous opera-
tors

Op(a) :Ws
comp(�, E)→W

s−µ
loc (�, Ẽ)

for all s ∈ R. In particular if a = a(ζ ) has constant coefficients(i.e., a is independent
of z and z′), Op(a) induces continuous operators

Op(a) :Ws(Rq, E)→Ws−µ(Rq, Ẽ)

for all s ∈ R.

REMARK 2. If the coefficientsakβ(r, z) in (5) andb j
±,kβ(r, z) in (6) are inde-

pendent ofr for larger (that can be done without loss of generality), and if we set

a(z, ζ ) := r−m
∑

k+|β|≤m

akβ(r, z)(−r
∂

∂ r
)k(r ζ )β

and

t j
±(z, ζ ) := r±r−m j

±

∑

k+|β|≤m j
±

b j
±,kβ(r, z)(−r

∂

∂ r
)k(r ζ )β ,

we get families of operators

(39) a(z, ζ ) : Ks,γ (I ∧)→ Ks−m,γ−m(I ∧)
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and

(40) t j
±(z, ζ ) : K

s,γ (I ∧)→ Ks−m j
±−

1
2 ,γ−m j

±−
1
2 (R+)

for s ∈ R, s−m j
± −

1
2 > 0. Then,

(41) a(z, ζ ) ∈ Sm(�× R
n−2;Ks,γ (I ∧),Ks−m,γ−m(I ∧))

and

(42) t j
±(z, ζ ) ∈ Sm j

±(�× R
n−2;Ks,γ (I ∧),Ks−m j

±−
1
2 ,γ−m j

±−
1
2 (R+))

for all j .

The latter relations in connection with Theorem 2 suggest the following wedge
Sobolev spaces: We set

Ws,γ (I ∧ × R
q) :=Ws(Rq,Ks,γ (I ∧))

and
Ws,γ (R+ × R

q) :=Ws(Rq,Ks,γ (R+)),

whereKs,γ (I ∧) andKs,γ (R+) play the role ofE, equipped with the respective group
actions (18) and (19), respectively. More generally, we have corresponding “comp”
and “loc” spaces for an open set� ⊆ R

q that we denote by

W
s,γ
comp(I

∧ ×�), W
s,γ
loc (I

∧ ×�), etc.,

where we keep in mind that “comp” and “loc” only refer toz-variables in�. Apply-
ing Theorem 2 to the operator-valued symbol consisting of a column vector with the
components (41) and (42) we get continuous operators
(43)

Opz





a

(t j
+) j=1,...,N

(t j
−) j=1,...,N



 :W
s,γ
comp(I

∧ ×�)→

W
s−m,γ−m
loc (I ∧ ×�)

⊕

⊕N
j=1W

s−m j
+−

1
2 ,γ−m j

+−
1
2

loc (R+ ×�)

⊕

⊕N
j=1W

s−m j
−−

1
2 ,γ−m j

−−
1
2

loc (R+ ×�)

for all real s such thats− m j
± −

1
2 > 0 for all j . Clearly, we may write “comp” or

“loc” in the spaces on both sides, since we discuss here differential operators that are
also local inz.

2.2. Notation for Douglis-Nirenberg orders

We now fix some notation that is well-known in connection withsystems of Douglis-
Nirenberg type, here, adapted to our specific context. The continuity property (43) (that



Mixed problems and edge calculus symbol structures 173

also holds in analogous form on operators globally on our configuration with mixed
elliptic conditions, cf. Section 2.3 below) suggests to generalise our symbol spaces as
follows:

Let E := ⊕M
m=1Em, Ẽ := ⊕N

n=1Ẽn be direct sums of (say, Hilbert) spaces
with group actions{κm

λ }λ∈R+,m=1,...,M and{κ̃n
λ }λ∈R+,n=1,...,N, respectively. Moreover,

consider matrices of symbols

f (z, z′, ζ ) = ( fnm(z, z
′, ζ ))n=1,...,N,m=1,...,M ,

where fnm(z, z′, ζ ) ∈ Sµnm
(cl) (�×�× R

q; Em, Ẽn) with ordersµnm of the form

µnm := µ− αm+ βn

for given (α1, . . . , αM ), (β1, . . . , βN). The numbersµnm will also be referred to as
DN-orders(Douglis-Nirenberg orders). Then Op( f ) induces continuous operators

(44) Op( f ) : ⊕M
m=1W

s−αm
comp (�, Em)κm →⊕N

n=1W
s−βn−µ
loc (�, Ẽn)κ̃n

for all s, cf. Theorem 2; here we used subscriptsκm := {κm
λ }λ∈R+ andκ̃n := {κ̃n

λ }λ∈R+
in the sense of notation (38). It may be advantegeous to unifyorders by a formal change
of the underlying group actions. In fact, instead of

κ := diag({κm
λ }λ∈R+)m=1,...,M and κ̃ := diag({κ̃n

λ }λ∈R+)n=1,...,N

we may take

χ := diag({λαmκm
λ }λ∈R+)m=1,...,M and χ̃ := diag({λβn κ̃n

λ }λ∈R+)n=1,...,N .

It is then easy to verify that

f (z, z′, ζ ) ∈ Sµ(cl)(�×�× R
q; E, Ẽ)χ,χ̃ .

If we pass from the Sobolev spaces with subscriptsκm andκ̃n to those with subscript
χm := {λαmκm

λ }λ∈R+ andχ̃n := {λβn κ̃λ}λ∈R+ , respectively, we get the spaces

Ws
comp(�, E)χ = ⊕M

m=1W
s−αm
comp (�, Em)χm,

Ws
loc(�, Ẽ)χ̃ = ⊕N

n=1W
s−βn
loc (�, Ẽn)χ̃n .

Then (44) takes the form

(45) Op( f ) :Ws
comp(�, E)χ −→ W

s−µ
loc (�, Ẽ)χ̃ .

2.3. Weighted Sobolev spaces for mixed problems

We now introduce the global weighted Sobolev spaces as they are announced in the
formula (4). To this end we fix a system of charts onX, associated with a system of
coordinate neighbourhoods

(46) {U1, . . . ,UL ,UL+1, . . . ,UM ,UM+1, . . . ,UN},
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whereU j ∩ Z 6= ∅ for 1≤ j ≤ L ,U j ∩ Z = ∅ andU j ∩ Y 6= ∅ for L+1≤ j ≤ M,
U j ∩ Y = ∅ for M+1≤ j ≤ N.Choose a partition of unity{ϕ1, . . . , ϕN} subordinate
to (46). We then have chartsχ j : U j → R+ × R

n−1 for 1 ≤ j ≤ M, where for
1 ≤ j ≤ L we use the splittingRn−1 = R× R

n−2 in the sense of the above notation,
whereχ j (U j ∩ Z)→ R

n−2. For simplicity we assume the transition diffeomorphisms
only dependent on the variable ofR

n−1 in a neighbourhood of(xn−1, xn) = 0.

First we have the spacesWs(Rn−2,Ks,γ (I ∧)),whereI ∧ is identified withR
2
+\

{0} and we now define

Ws,γ (X) := {u ∈ Hs
loc(2X \ Z) |intX :(47)

(χ j )∗(ϕ j u) ∈Ws(Rn−2,Ks,γ (I ∧)) for all j,1≤ j ≤ L}.

Here, 2X denotes the double ofX, that is a closed compactC∞ manifold, obtained by
gluing together two copiesX± of X along their common boundaryY (we then identify
X+ with X).

Moreover, letM be any compactC∞ manifold with boundaryN, m= dim M .
Let {V1, . . . ,VI ,VI+1, . . . ,VJ} be an open covering ofM by coordinate neighbour-
hoods, whereVi ∩ N 6= ∅ for 1 ≤ i ≤ I ,Vi ∩ N = ∅ for I + 1 ≤ i ≤ J;
fix a partition of unity {ψ1, . . . , ψJ} on M subordinate to the covering and charts
κi : Vi → R+ × R

n−1, i = 1, . . . , I , where transition diffeomorphisms are inde-
pendent of the normal variablexm for smallxm. Then we have the spaces

Ws,γ (int M) = {v ∈ Hs
loc(int M) : (κi )∗(ψi v) ∈Ws(Rm−1,Ks,γ (R+))

for 1≤ i ≤ I }.

Applying the latter notation toM = Y± we get the spaces

(48) Ws,γ (int Y±) for all s, γ ∈ R.

The spacesWs,γ (X) andWs,γ (int Y±) will be considered with Hilbert space norms.
In particular, we identifyW0,0(X) with a weightedL2 -space. More precisely, let

Uε denote a neighbourhood ofZ that is locally described by�ε := {x ∈ R
2
+ ×

R
n−2 : |x1, x2| < ε} andχ : Uε → �ε a corresponding diffeomorphism. Further,

let ω ∈ C∞(X) be a function that is equal to 1 inUε1 and 0 outsideUε0 for certain
0< ε1 < ε0. Then

ωW0,0(X) = χ∗ϕ r−
1
2 L2(I ∧ × R

n−2),

whereϕ is defined byω = χ∗ϕ, and

W0,0(X) = ωW0,0(X)+ (1− ω)L2(X)

yields a scalar product inW0,0(X). In a similar way we proceed withW0,0(intY±) and
fix scalar products in these spaces.
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REMARK 3. The spaceC∞0 (X \ Z) := {u ∈ C∞(X) : suppu ∩ Z = ∅} is
dense inWs,γ (X) for everys, γ ∈ R. Moreover,C∞0 (Y± \ Z) := {v ∈ C∞(Y±) :
suppv ∩ Z = ∅} is dense inWs,γ (Y±) for everys, γ ∈ R. The restriction operators

r± : C∞0 (X \ Z) −→ C∞0 (Y± \ Z), r± : u→ u |intY± ,

extend as continuous operators

r± : Ws,γ (X) −→ Ws− 1
2 ,γ−

1
2 (int Y±)

for all s> 1
2, γ ∈ R.

2.4. Subspaces with asymptotics

In this section we analyse subspaces with so-calleddiscrete asymptotics. We employ
notation from [38] that we briefly recall here, both for the caseR+ and then for the
(stretched) plane coneI ∧ with boundary. In addition, we formulate some useful new
information.

Let us fix a weightγ ∈ R and an associated weight strip{z ∈ C : n+1
2 −γ+ϑ <

Rez< n+1
2 −γ } for some−∞ ≤ ϑ < 0,where we setn = 0 for R+ andn = 1 for I ∧.

Let g = (γ,2) for 2 = (ϑ,0]. For the casen = 0 we define As(g) to be the set of all
sequencesP = {(p j ,m j )} j=0,...,N ⊂ C×N for someN = N(P), whereN(P) <∞
for finite ϑ, such thatπC P := {p j } j=0,...,N ⊂ {z ∈ C : 1

2 − γ + ϑ < Rez< 1
2 − γ },

and Rep j →−∞ as j →∞ for the caseN(P) = ∞. Similarly, for n = 1 we define
As([0, π ],g) to be the set of all sequencesP = {(p j ,m j , L j )} j=0,...,N, N = N(P),
where(p j ,m j ) ∈ C × N, and L j ⊂ C∞([0, π ]) is a subspace of finite dimension.
ConcerningπC P = {p j } j=0,...,N we requireπC P ⊂ {z ∈ C : 1−γ +ϑ < Rez< 1−
γ } and again Rep j → −∞ as j →∞ whenN(P) = ∞. The elementsP ∈ As(·,g)
are calleddiscrete asymptotic typesfor the conesR+ and I ∧, respectively, associated
with weight datag= (γ,2).

REMARK 4. We can formally unify the notation forn = 0 andn = 1 by writing
As(g) = As({a},g) for a pointa (that may be regarded as the base of the coneR+,

e.g., a = 1) and writeP ∈ As(g) in the form P = {(p j ,m j ,C)} j=0,...,N . Then,
for P = {(p j ,m j , L j } j=0,...,N ∈ As([0, π ],g) we have restriction maps to the end
points 0 andπ induced byL j → C, f (ϕ)→ f (0) or f (ϕ)→ f (π). This gives us
corresponding restriction maps

(49) As([0, π ],g) −→ As(g).

Let us now introduce spaces with discrete asymptotics, say,for the caseI ∧;
the caseR+ is easier and may be found, e.g., in [38]. Concerning asymptotic types
with a non-trivial cone base we may formally replace[0, π ] by the circleS1 and talk
about coefficient spacesL j ⊂ C∞(S1) instead ofL j ⊂ C∞([0, π ]). In other words,
we also have a notion of As(S1,g) of evident meaning and then a restriction map
As(S1,g)→ As([0, π ],g) by restrictingL j → L j |[0,π ] .
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For S := S1 andS∧ := R+ × Swe first have spaces of flat functions

K
s,γ
2 (S∧) := lim

←−−
ε>0

Ks,γ−ϑ−ε(S∧).

We considerKs,γ
2 (S∧) in its natural Fŕechet topology. Now let2 be finite, choose

P ∈ As(S,g), g= (γ,2), written asP = {(p j ,m j , L j )} j=0,...,N, and set

EP(S
∧) :=(50)

{ω(r )
N
∑

j=0

m j
∑

k=0

c jk(ϕ)r
−p j logkr : c jk ∈ L j , 0≤ k ≤ m j , 0≤ j ≤ N}.

Here,ω(r ) is any fixed cut-off function. The spaceEP(S∧) is finite-dimensional, and
we obviously have

K
s,γ
2 (S∧) ∩ EP(S

∧) = {0}.

Moreover, we have
EP(S

∧) ⊂ K∞,γ (S∧).

We now define
K

s,γ
P (S∧) := K

s,γ
2 (S∧)+ EP(S

∧)

in the Fŕechet topology of the direct sum. ForP ∈ As(S,g), g = (γ, (−∞,0]) we
choose an arbitrary sequenceϑk < 0, ϑk → −∞ ask→∞, set2k = (ϑk,0], form
Pk := {(p,m, L) ∈ P : 1− γ + ϑk < Rep < 1− γ } ∈ As(S,gk) for gk = (γ,2k),

and consider the associated spacesK
s,γ
Pk
(S∧). Then we set

K
s,γ
P (S∧) := lim

←−−
k∈N

K
s,γ
Pk
(S∧)

in the topology of the projective limit. This space is independent of the choice of the
sequence(ϑk)k∈N. Moreover, if R ∈ As([0, π ],g) is the restriction ofP ∈ As(S,g)
we set

K
s,γ
R (I ∧) := {u |I ∧ : u ∈ K

s,γ
P (S∧)}.

In particular, forπC R= ∅ we have

K
s,γ
2 (I ∧) = {u |I ∧ : u ∈ K

s,γ
2 (S∧)}.

In a similar (but simpler) way we can introduce the spacesK
s,γ
Q (R+) for Q ∈ As(g),

g= (γ,2), see, for instance, [38].

REMARK 5. The operator of restrictionu(r, ϕ) → u(r, ϕ0) for arbitrary fixed

ϕ0 ∈ S which is continuous asKs,γ (S∧) → Ks− 1
2 ,γ−

1
2 (R+) for s > 1

2 induces
continuous operators

K
s,γ
P (S∧) −→ K

s− 1
2 ,γ−

1
2

Q (R+)
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for every P ∈ As(S,g), whereQ is the restriction ofP in a similar sense as (49). In
particular, we have restrictions ofKs,γ

P (I ∧), P ∈ As([0, π ],g), namely

K
s,γ
P (I ∧) −→ K

s− 1
2 ,γ−

1
2

P (R+)

induced byu(r, ϕ)→ u(r, ϕ0), for every fixed 0≤ ϕ0 ≤ π, s> 1
2.

For purposes below we now set

S
γ
P(S
∧) := {ω u+ (1− ω)v : u ∈ K

∞,γ
P (S∧), v ∈ S(R× S)},

whereP ∈ As(S,g), S(R× S) = S(R,C∞(S)), and, similarly,

S
γ
P(I
∧) and S

γ
P(R+)

by replacing the baseS by [0, π ] and a single point, respectively, for an asymptotic
type P belonging to the respective class.

To define wedge spaces with asymptotics we employ the fact that the spaces
K

s,γ
P (. . . ), S

γ
P(. . . ) may be written as projective limits of Hilbert spacesE j , j ∈ N,

where the group action that is fixed onKs,γ (. . . ) restricts to a group action onE j for
every j .

Let us expressE j , for instance, for the case of spaces onI ∧. For finite2 =
(ϑ,0] it suffices to set

E j = Ks,γ−ϑ−(1+ j )−1
(I ∧)+ EPj (I

∧),(51)

Pj = {(p,m, L) ∈ P : 1− γ + ϑ + (1+ j )−1 < Rep},

for Ks,γ
P (I ∧) (the spaceEP(I ∧) for P ∈ As([0, π ],g), P = {(p j ,m j , L j )} j=0,...,N,

L j ∈ C∞([0, π ]) is defined as in (50)) and

E j = 〈 r 〉− jK j,γ−ϑ−(1+ j )−1
(I ∧)+ EPj (I

∧),(52)

Pj = {(p,m, L) ∈ P : 1− γ + ϑ + (1+ j )−1 < Rep},

for SγP(I
∧) while for ϑ = −∞ we replaceϑ in formula (50) by−(1+ j ) and P by

Pj = {(p,m, L) ∈ P : 2+ j − γ + (1+ j )−1 < Rep}.

We now define weighted edges Sobolev spaces with asymptotics

(53) W
s,γ
P (X) and W

s,γ
Q (int M)

of typesP ∈ As([0, π ],g) andQ ∈ As(g), respectively, forg = (γ,2), by inserting
the spacesKs,γ

P (I ∧) instead ofKs,γ (I ∧) in (47) andKs,γ
Q (R+) instead ofKs,γ (R+)

in (48). To make this more explicit, for instance, for the spaces onX, we first write
K

s,γ
P (I ∧) = lim

←−−
k∈N

Ek with the scale of spacesEk in formula (52). Then we form

W
s,γ
k (X) := {u ∈ Hs

loc(2X \ Z) |int X : (χ j )∗(ϕ j u) ∈Ws(Rn−2, Ek)

for all j,1≤ j ≤ L},
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where we have continuous embeddingsW
s,γ
k+1(X) →֒ W

s,γ
k (X) for all k, and we then

set
W

s,γ
P (X) := lim

←−−
k∈N

W
s,γ
k (X).

In a similar manner we proceed for2 = (−∞,0] as well in the case of spaces onM.
All these spaces are Fréchet in the corresponding projective limit topologies.

REMARK 6. The spaces

(54) W
∞,γ
P (X) and W

∞,γ
Q (M)

are independent of the choice of the group actions{κ∧λ }λ∈R+ and {κλ}λ∈R+ , respec-
tively. This makes the form of singular functions of discrete edge asymptotics particu-
larly simple.

2.5. Green symbols

In this section we introduce so-calledGreen symbolsof the (local) pseudo-differential
algebra of mixed problems. These will be operator familiesg(z, ζ ) that are pointwise
block matrices of the form

g(z, ζ ) =









g11 g1+ g1− g10
g+1 g++ g+− g+0
g−1 g−+ g−− g−0
g01 g0+ g0− g00









(z, ζ ),

where the block matrix structure corresponds to mappings ofthe type

(55) g(z, ζ ) :

Ks,γ (I ∧)
⊕

⊕M
k=1K

s−nk
+−

1
2 ,γ−nk

+−
1
2 (R+)

⊕
⊕M

k=1K
s−nk

−−
1
2 ,γ−nk

−−
1
2 (R+)

⊕

C
l−

−→

S
γ−m
P (I ∧)
⊕

⊕N
l=1S

γ−ml
+−

1
2

P+,l
(R+)

⊕
⊕N

l=1S
γ−ml

−−
1
2

P−,l
(R+)

⊕

C
l+

,

for all s> −1
2.

Let us set

(56) s := (s; (s− nk
+ −

1

2
)k=1,...,M , (s− nk

− −
1

2
)k=1,...,M ),

(57) γ := (γ ; (γ − nk
+ −

1

2
)k=1,...,M , (γ − nk

− −
1

2
)k=1,...,M ),
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(58) δ := (γ −m; (γ −ml
+ −

1

2
)l=1,...,N, (γ −ml

− −
1

2
)l=1,...,N)

and, for abbreviation

Ks,γ (I ∧,R+;M) :=

Ks,γ (I ∧)⊕
M
⊕

k=1

Ks−nk
+−

1
2 ,γ−nk

+−
1
2 (R+)⊕

M
⊕

k=1

Ks−nk
−−

1
2 ,γ−nk

−−
1
2 (R+),

SδP(I
∧,R+; N) :=

S
γ−m
P (I ∧)⊕

N
⊕

l=1

S
γ−ml

+−
1
2

P+,l
(R+)⊕

N
⊕

l=1

S
γ−ml

−−
1
2

P−,l
(R+)

for P ∈ As([0, π ], g̃), g̃ = (δ,2),2 = (ϑ,0],−∞ ≤ ϑ < 0. Here and below we de-
note byAs([0, π ], g̃) for g̃ = (e,2), weightse = (e0; (e+,l )l=1,...,L ,(e−,l )l=1,...,L)

and2 = (ϑ,0],−∞ ≤ ϑ < 0, the set of all tuples of asymptotic typesP =
(P; (P±,l )l=1,...,L) such thatP ∈ As([0, π ],g0) for g0 = (e0,2) andP±,l ∈ As(g±,l )
for g±,l = (e±,l ,2)l=1,...,N . Then the operator family (55) takes the form

(59) g(z, ζ ) :
Ks,γ (I ∧,R+;M)

⊕

C
l−

−→

SδP(I
∧,R+; N)
⊕

C
l+

for all s> −1
2.

We also need (pointwise) formal adjointsg∗(z, ζ ), defined by

(gu, v)
K0,0(I ∧)⊕K0,0(R+,C2N )⊕Cl+ = (u, g∗v)

K0,0(I ∧)⊕K0,0(R+,C2M )⊕Cl−

for all u ∈ C∞0 ((int I )∧)⊕ C∞0 (R+,C
2M )⊕ C

l− , v ∈ C∞0 ((int I )∧)⊕
C∞0 (R+,C

2N) ⊕ C
l+ . Here, K0,0(I ∧) and K0,0(R+) are endowed with the scalar

products ofr−
1
2 L2(R+ × I )drdϕ and L2(R+), respectively, andK0,0(R+,C

j ) :=

K0,0(R+)⊗ C
j .

The non-degenerate pairing

{C∞0 (int I )∧)⊕ C∞0 (R+,C
L)⊕ C

l } × {C∞0 (int T)∧)⊕ C∞0 (R+,C
L)⊕ C

l } → C

defined by(u, v)K0,0(I ∧)⊕K0,0(R+,CL )⊕Cl extends to a non-degenerate sesquilinear form

{K0,γ (I ∧)⊕
L
⊕

k=1

K0,γk(R+)⊕ C
l } × {K0,−γ (I ∧)⊕

L
⊕

k=1

K0,−γk(R+)⊕ C
l } → C

for arbitrary γ, γ1, . . . , γL ∈ R. For that reason we also introduce dual tuples of
weights, namely

−γ := (−γ ; (−γ + nk
+ +

1

2
)k=1,...,M , (−γ + nk

− +
1

2
)k=1,...,M ),

−δ := (−γ +m; (−γ +ml
+ +

1

2
)l=1,...,N, (−γ +ml

− +
1

2
)l=1,...,N).
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Concerning the smoothness in the spaces for convenience we set

(60) t∗ := (s+m, (s+ml
+ +

1

2
)l=1,...,N, (s+ml

− +
1

2
)l=1,...,N).

Let us introduce a matrix of orders

µ := (µlk)l=0,...,2N+1,k=0,...,2M+1, where µlk = γk − δl

with the tuples((γk)k=0,...,2M , γ2M+1) and((δl )l=0,...,2N, δ2N+1), where
(γk)k=0,...,2M := γ and(δl )l=0,...,2N := δ are the sequences (57) and (58), respectively,
while γ2M+1 := γ − 1 andδ2N+1 := γ − 1−m.

In the following definition we setg = (γ,2; δ,2′), whereγ andδ are weight
tuples (57) and (58), respectively, and2 = (ϑ,0] and2′ = (ϑ ′,0] fixed weight
intervals,−∞ ≤ ϑ, ϑ ′ < 0.

DEFINITION 1. R
µ,0
G (U × R

n−2;g;w) for w := (M, l−; N, l+), µ ∈ R,U ⊆
R

n−2 open, is defined to be the space of all operator families(59)such that

(61) g(z, ζ ) ∈ Sµcl



U × R
n−2;

Ks,γ (I ∧,R+;M)
⊕

C
l−

,

SδP(I
∧,R+; N)
⊕

C
l+





and

(62) g∗(z, ζ ) ∈ Sµ
∗

cl



U × R
n−2;

Kt∗,−δ(I ∧,R+; N)
⊕

C
l+

,

S
−γ
Q (I ∧,R+;M)

⊕

C
l−





for all s > −1
2 and for transposed matrixµ∗ of µ with tuples of asymptotic types

P ∈ As([0, π ], g̃) for g̃ = (δ,2′) andQ ∈ As([0, π ], g̃) for g̃ = (−γ,2) dependent
on the symbol g(not on s).

In our application we setU = � or U = �×� for an open set� ⊆ R
n−2 (in

the latter case we also write(z, z′) instead ofz). As classical symbols Green symbols
have a unique sequence of homogeneous components

σ (µ− j )(g)(z, ζ ), j ∈ N,

(here,µ− j is the matrix with entriesµlk − j, µ := (µlk)l=0,...,2N+1,k=0,...,2M+1) that
areC∞ functions in(z, ζ ) ∈ U × (Rn−2 \ {0}) with values in continuous operators

(63) σ (µ− j )(g)(z, ζ ) :
Ks,γ (I ∧,R+;M)

⊕

C
l−

−→

SδP(I
∧,R+; N)
⊕

C
l+

,

where the pointwise adjoints act in the same spaces asg∗(z, ζ ) in formula (62).
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Setting

κλ := diag(κk
λ)k=0,...,2M+1, κ̃λ := diag(κ̃ l

λ)l=0,...,2N+1,

whereκ0
λ = κ̃

0
λ = κ

∧
λ , κ

k
λ = κλ, k = 1, . . . ,2M, κ̃ l

λ = κλ, l = 1, . . . ,2N, κ2M+1
λ =

id
Cl− , κ̃

2N+1
λ = id

Cl+ , and

χλ := diag(λαkκk
λ)k=0,...,2M+1, χ̃λ := diag(λβl κ̃ l

λ)l=0,...,2N+1,

whereα0 = β0 = 0, αk = nk
+ +

1
2, k = 1, . . . ,M, αk = nk−M

− + 1
2, k = M +

1, . . . ,2M, βl = ml
+ +

1
2 − m, l = 1, . . . , N, βl = ml−N

− + 1
2 − m, l = N +

1, . . . ,2N, α2M+1 = β2N+1 = 1, we have

σ (µ)(g)(z, λζ ) = λmχ̃λσ
(µ)(g)(z, ζ )χ−1

λ

for all (z, ζ ) ∈ U × (Rn−2 \ {0}), λ ∈ R+. Below we often set

σ
(µ)
∧ (g)(z, ζ ) := σ (µ)(g)(z, ζ )

when� = U or, for U = �×� ∋ (z, z′)

σ
(µ)
∧ (g)(z, ζ ) := σ (µ)(g)(z, z′, ζ ) |z′=z .

REMARK 7. Letg(z, ζ ) ∈ R
µ,0
G (U×R

n−2;g;w) and choose diagonal matrices
of scalar symbols

r(z, ζ ) := diag(r0(z, ζ ), (rk(z, ζ ))k=1,...,2M+1),

r̃(z, ζ ) := diag(r̃0(z, ζ ), (r̃ l (z, ζ ))l=1,...,2N+1),

whererk(z, ζ ) ∈ Sνk
cl (U × R

n−2) and r̃ l (z, ζ ) ∈ Sν̃l
cl (U × R

n−2) are elliptic scalar
symbols of ordersνk, ν̃l ∈ R, k = 0, . . . ,2M + 1, l = 0, . . . ,2N + 1, that are all
non-vanishing for all(z, ζ ) ∈ U × R

n−2. Then, setting

g̃(z, ζ ) := r̃(z, ζ )g(z, ζ )r(z, ζ )

we getg̃(z, ζ ) ∈ R
µ̃,0
G (U × R

n−2;g;w) for µ̃ = (µ̃lk)l=0,...,2N+1,k=0,...,2M+1, where
µ̃lk = µlk + νk + ν̃l .

REMARK 8. Let f (z, ζ ) be aC∞ function in(z, ζ ) ∈ U × (Rn−2 \ {0}) with
values in continuous operators

f (z, ζ ) :
Ks,γ (I ∧,R+;M)

⊕

C
l−

−→

SδP(I
∧,R+; N)
⊕

C
l+

,

for all s> −1
2, such that the pointwise adjointf ∗(z, ζ ) defines aC∞ family of maps

f ∗(z, ζ ) :
Kt∗,−δ(I ∧,R+; N)

⊕

C
l+

−→

S
−γ
Q (I ∧,R+;M)

⊕

C
l−

,
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for all s> −1
2. Further, assume that

(64) f (z, λζ ) = λmχ̃λ f (z, ζ )χ−1
λ

for all z ∈ �, ζ ∈ R
n−2 \ {0} andλ ∈ R+. Then we have

χ(ζ ) f (z, ζ ) ∈ R
µ,0
G (U × R

n−2;g;w)

for every excision functionχ(ζ ) (i.e., χ(ζ ) ∈ C∞(Rn−2), χ(ζ ) = 0 for |ζ | <
c0, χ(ζ ) = 1 for |ζ | > c1 for certain 0< c0 < c1).

REMARK 9. Let Rµ,0
G (U × R

n−2;g;w)P,Q denote the set of allg(z, ζ ) ∈

R
µ,0
G (U × R

n−2;g;w), where the tuplesP andQ of asymptotic types are fixed , cf.

the notation in Definition 1. ThenRµ,0
G (U × R

n−2;g;w)P,Q is a Fŕechet space in a
canonical way, and

Dα
z Dβ

ζ : R
µ,0
G (U × R

n−2;g;w)P,Q −→ R
µ−β,0
G (U × R

n−2;g;w)P,Q.

THEOREM 3. Let gj (z, ζ ) ∈ R
µ− j,0
G (U × R

n−2;g;w)P,Q, j ∈ N, be an ar-
bitrary sequence , whereP and Q are independent of j. Then there is a g(z, ζ ) ∈
R
µ,0
G (U × R

n−2;g;w)P,Q such that

g(z, ζ )−
N
∑

j=0

g j (z, ζ ) ∈ R
µ−(N+1),0
G (U × R

n−2;g;w)P,Q

for every N∈ N, and g(z, ζ ) is unique modulo symbols of order−∞ in ζ.

The proof is analogous to that for the existence of asymptotic sums in the stan-
dard sense (i.e., for operator-valued symbols in the set up with group actions, cf. [40]),
and we writeg ∼

∑∞
j=0 g j , called anasymptotic sumof the corresponding Green

symbolsg j .

DEFINITION 2. The spaceRµ,d
G (U ×R

n−2;g;w) of Green symbols of orderµ
and type d∈ N is defined to be the space of all operator functions

g(z, ζ ) = g0(z, ζ )+
d
∑

j=1

g j (z, ζ )diag(8 j ,0)

for arbitrary g j (z, ζ ) ∈ R
µ− j,0
G (U × R

n−2;g;w); here,diag(8 j ,0) is the diagonal

matrix, where the upper left corner8 j := ∂ j

∂ϕ j is the only non-vanishing entry.

The above notation and results ford = 0 can be generalised to arbitraryd ∈ N.

In particular, we have the spaces

R
µ,d
G (U × R

n−2;g;w)P,Q
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which means that allg j in Definition 2 belong to the corresponding symbol classes
with subscriptP,Q.

Theorem 3 on asymptotic sums then has an evident version for arbitrary d (it
suffices to carry out asymptotic sums of the factors at diag(8 j ,0) separately).

We do not formulate all relations for arbitraryd explicitly but tacitly use them
below. Let us only mention thatg(z, ζ ) ∈ R

µ,d
G (U × R

n−2;g;w)P,Q is an operator-
valued symbol in the sense of relations (61) and (62), respectively, for all s> d − 1

2.

3. Mellin symbols

3.1. Parameter-dependent operators on the interval

If X is anyC∞ manifold with boundary, we have the spaceBµ,d(X; v) of pseudo-
differential boundary value problems of orderµ ∈ Z and typed ∈ N, that are continu-
ous operators

(65) A :

Hs
comp(X, E)
⊕

H
s− 1

2
comp(∂X, J−)

−→

Hs−µ
loc (X, F)
⊕

H
s− 1

2−µ

loc (∂X, J+)

for all s ∈ R, s> d− 1
2. HereE, F andJ−, J+ are smooth complex vector bundles on

X and∂X, respectively, andv is the abbreviation for the tuple of bundles. For simplic-
ity, in our application we assumeE andF to be the trivial bundles of fibre dimension
1; then E and F are omitted everywhere. In addition, because of our assumptions in
boundary conditions (and then also in potential conditions) we replace in our context
the bundlesJ−, J+ by direct sums, and, accordingly, the Sobolev spaces by direct sums
of spaces, where the smoothness indices in the components may be different. For the
moment we are mainly interested in the case thatX is simply the intervalI = [0, π ].
Then∂ X consists of two points{0} and{π} and the Sobolev spaces at the boundary as
they occur in (65) are to be replaced by finite-dimensional spaces. Because of boundary
and potential conditions with respect to{0} and{π} the latter spaces are direct sums

C
M+
⊕

C
M− and C

N+
⊕

C
N− ,

respectively, whereM+, N+ belong to{0} andM−, N− to {π}.Because of the nature of
our applications we may content ourselves with the caseM := M+ = M− andN :=
N+ = N−, because we start from mixed problems for elliptic differential operators
with the same number of boundary conditions on both sides. This equality then remains
preserved in all steps of the calculus. In other words, we areinterested in operators of
the classBµ,d(I ;w), wherew abbreviates the information on the dimensionsM, N;
we set in this casew = (M, N). For purposes below, we also need the parameter-
dependent analogue of these spaces, namely

(66) Bµ,d(I ;w;Rq)
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for a space of parametersRq ∋ η. The space (66) is Fréchet in a natural way and we
then also have the spaces

C∞(U,Bµ,d(I ;w;Rq))

for any open setU ⊆ R
p. For the applications below we generalise (66) to the case

of matrix-valued orders, where we replaceµ by µ = (µlk)l=0,...,2N,k=0,...,2M . The
spaceBµ,d(I ;w;Rq) is defined to be the set of all block matrix - valued operators
A = (Alk)l=0,...,2N,k=0,...,2M ,where ordAlk = µlk in the sense thatAlk ∈ Bµlk ,d(. . .).

Note that integer orders are only assumed in the upper corners.

3.2. Holomorphic Mellin symbols

DEFINITION 3. M
µ,d
O
(I ;w;Rn−2) for w = (M, N) denotes the subspace of

all h(w, ζ ) ∈ A(C,Bµ,d(I ;w;Rn−2)) such that

h(w, ζ ) |Ŵβ×Rn−2 ∈ Bµ,d(I ;w;Ŵβ × R
n−2)

for everyβ ∈ R, uniformly in c≤ β ≤ c′ for arbitrary c ≤ c′.

The spaceMµ,d
O
(I ;w;Rn−2) is Fŕechet in a natural way, and we can also talk

about the spaces
C∞(U,Mµ,d

O
(I ;w;Rn−2))

for any open setU ⊆ R
p (or, similarly, withR+ × U in place ofU ).

An basic tool is then the following result.

THEOREM 4. For every f(z, w, ζ ) ∈ C∞(U,Bµ,d(I ;w;Ŵβ × R
n−2)) there

exists an h(z, w, ζ ) ∈ C∞(U,Mµ,d
O
(I ;w;Rn−2)) such that

h(z, w, ζ ) |Ŵβ = f (z, w, ζ ) mod C∞(U,B−∞,d(I ;w;Ŵβ × R
n−2))

and h is uniquemod C∞(U,M−∞,d
O

(I ;w;Rn−2)).

Let

(67) h(r, z, w, ζ ) := h̃(r, z, w, r ζ )

for

(68) h̃(r, z, w, ζ ) ∈ C∞(R+ ×U,Mµ,d
O
(I ;w;Rn−2)).

For purposes below we set

(69) h0(r, z, w, ζ ) := h̃(0, z, w, r ζ ).

Choose cut-off functionsω(r ) andω̃(r ) and form the following family of pseudo-
differential operators

(70) p(z, ζ ) := ω(r [ζ ])r−µ̃op
γ− 1

2
M (h)(z, ζ )ω̃(r [ζ ]),
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wherer−µ̃ = (r−µ̃lk )l=0,...,2N,k=0,...,2M with µ̃lk = µlk for l = 1, . . . ,2N, k =
1, . . . ,2M, µ̃00 = µ00, µ̃l0 = µl0 −

1
2 for l = 1, . . . ,2N, µ̃0k = µ0k +

1
2 for

k = 1, . . . ,2M. Here,ζ → [ζ ] is a strictly positive function inC∞(Rn−2) such that
[ζ ] = |ζ | for |ζ | ≥ c for a constantc > 0, and opβM (h) for anyβ ∈ R denotes the
weighted Mellin pseudo-differential operator with respect to the weight12−β, cf. [38].

The operators (70) induce continuous mappings

p(z, ζ ) : Ks,γ (I ∧,R+;M) −→ Ks̃,δ(I ∧,R+; N)

for all s > d − 1
2, s̃ := (s−m; (s−ml

+ −
1
2)l=1,...,N, (s−ml

− −
1
2)l=1,...,N), where

s, γ, δ are as in Section 2.5, and

Ks̃,δ(I ∧,R+; N) :=

Ks−m,γ−m(I ∧)
⊕

⊕N
l=1K

s−ml
+−

1
2 ,γ−ml

+−
1
2 (R+)

⊕
⊕N

l=1K
s−ml

−−
1
2 ,γ−ml

−−
1
2 (R+)

.

Assume for a moment thath̃ = h̃(z, ω, ζ ) is independent ofr.We then have the
following homogeneity:

(71) p(z, λζ ) = λmχ̃λp(z, ζ )χ−1
λ

for all λ ≥ 1 and allz ∈ U, |ζ | ≥ c.

PROPOSITION3. Given h(r, z, w, ζ ) in the sense of(67)we have

p(z, ζ ) ∈ Sµ(U × R
n−2;Ks,γ (I ∧,R+;M),K

s̃,δ(I ∧,R+; N))

with respect to the groups{χλ}λ∈R+ and {χ̃λ}λ∈R+ , respectively. In particular, if̃h is
independent of r, the symbol a(z, ζ ) is classical.

Proof. By definition p(z, ζ ) is a block matrix of entries

plk(z, ζ ) := ω(r [ζ ])r−µ̃lk op
γ− 1

2
M (hlk)(z, ζ )ω̃(r [ζ ]),

l = 0, . . . ,2N, k = 0, . . . ,2M . The assertion consists of

plk(z, ζ ) ∈ Sµlk (U × R
n−2;Ks−αk,γ−αk(A1),K

s−βl−m,γ−βl−m(A2)),

k = 0, . . . ,2M, l = 0, . . . ,2N,

whereA1 andA2 areI ∧ orR+, according to the meaning of indicesk, l andαk, βl , k =
0, . . . ,2M, l = 0, . . . ,2N, are as in Section 2.5. However the latter relations are
known.
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With p(z, ζ ) (for the casez ∈ � with � ⊆ R
n−2 open) we associate the homo-

geneous principal edge symbol

σ
µ
∧ (p)(z, ζ ) := ω(r |ζ |)r−µ̃op

γ− 1
2

M (h0)(z, ζ )ω̃(r |ζ |)

for all (z, ζ ) ∈ T∗� \ 0, and we get a family of maps

σ
µ
∧ (p)(z, ζ ) : K

s,γ (I ∧,R+;M) −→ Ks̃,δ(I ∧,R+; N)

for all s> d − 1
2, where

σ
µ
∧ (p)(z, λζ ) = λmχ̃λσ

µ
∧ (p)(z, ζ )χ

−1
λ

for all (z, ζ ) ∈ T∗� \ 0 andλ ∈ R+. In addition, for p(z, ζ ) we form a subordinate
principal conormal symbol

(72) σMσ
µ
∧ (p)(z, w) := h0(0, z, w,0)

that we consider forz ∈ � andw ∈ Ŵ1−γ as a family of operators

(73) σMσ
µ
∧ (p)(z, w) :

Hs(int I )
⊕

C
M ⊕ C

M
−→

Hs−m(int I )
⊕

C
N ⊕ C

N

for all s> d − 1
2.

As an example we want to express the local expressions (5),(7) of mixed prob-
lems for differential operators in terms of operator-valued Mellin symbols and operator-
valued amplitude functions. Without loss of generality we assume the coefficients
akβ(r, z) andb j

±,kβ(r, z), j = 1, . . . , N, to be independent ofr for larger, and we let

z vary on an open set� ⊆ R
n−2. We then form the column vector

(74) f (r, z, w, ζ ) =





∑

k+|β|≤m akβ(r, z)wk(r ζ )β
(

r±
∑

k+|β|≤m j
±

b j
±,kβ(r, z)w

k(r ζ )β
)

j=1,...,N





that equalsh(r, z, w, ζ ) in the sense of notation of Theorem 4.

PROPOSITION4. Set

a(z, ζ ) := r−mop
γ− 1

2
M ( f )(z, ζ ),

with f (r, z, w, ζ ) being given by(74)and r−m = diag(r−m, (r−m j
±) j=1,...,N). Then

a(z, ζ ) : Ks,γ (I ∧) −→ Ks̃,δ(I ∧,R+; N),

belongs to Sµ(�× R
n−2;Ks,γ (I ∧),Ks̃,δ(I ∧,R+; N)), µ =

(

m

(m j
± +

1
2) j=1,...,N

)

.
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Note that when the coefficientsakβ andb j
±,kβ are independent ofr, we have

a(z, ζ ) ∈ Sµcl(�× R
n−2;Ks,γ (I ∧),Ks̃,γ̃ (I ∧,R+; N)).

We have even in this case

a(z, λζ ) = λmχ̃λa(z, ζ )κ
∧
λ
−1

for all (z, ζ ) ∈ T∗� \ 0 andλ ∈ R+.

3.3. Smoothing Mellin operators

Parallel to spaces with discrete asymptotics we now define spaces of Mellin symbols
with a meromorphic structure.

DEFINITION 4. Let Asd(I ;w) for w = (M, N) denote the set of all sequences

(75) R := {(r j ,n j , L j )} j∈Z,

whereπC R := {r j } j∈Z has the propertyπC R∩ {w : c ≤ Rew ≤ c′} finite for every
c ≤ c′, n j ∈ N, and Lj ⊂ B−∞,d(I ;w) is a finite-dimensional subspace for all
j ∈ N.

DEFINITION 5. The spaceM−∞,d
R (I ;w) for R ∈ Asd(I ;w) is defined to be

the set of all
h(w) ∈ A(C \ πC R,B−∞,d(I ;w))

such that

(i) for everyπC R- excision functionχ(w) we have

χ(w)h(w) |Ŵβ∈ S(Ŵβ ,B
−∞,d(I ;w))

for everyβ ∈ R, uniformly in c≤ β ≤ c′ for arbitrary c ≤ c′,

(ii) h(w) is meromorphic with poles at rj of multiplicity nj + 1 and Laurent coeffi-
cients at(z− r j )

−(k+1) belonging to Lj for all 0≤ k ≤ n j and all j ∈ Z.

REMARK 10. M−∞,d
R (I ;w) is a nuclear Fŕechet space.

REMARK 11. Let ω(r ), ω̃(r ) be arbitrary cut-off functions andh(w) ∈
M
−∞,d
R (I ;w) with πC R∩ Ŵ1−γ = ∅. Then

(76) ω(r )op
γ− 1

2
M (h)ω̃(r ) : Ks,γ (I ∧,R+;M) −→ K∞,δ(I ∧,R+; N)

is continuous fors > d − 1
2. Moreover, for everyP ∈ As([0, π ], g̃) for g̃ = (γ,2)

there exists aQ ∈ As([0, π ], g̃) for g̃ = (δ,2′) such that (76) induces a continuous
operator

ω(r )op
γ− 1

2
M (h)ω̃(r ) : Ks,γ

P (I ∧,R+;M) −→ SδQ(I
∧,R+; N)

for all s ∈ R, s> d − 1
2.
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PROPOSITION5. Let j ∈ N, α ∈ N
n−2, |α| ≤ j, and set

p(z, ζ ) := r−µ̃+ jω(r [ζ ])op
γ− 1

2
M (h)(z)ζ αω̃(r [ζ ]),

where r−µ̃+ j = (r−µ̃lk+ j )l=0,...,2N,k=0,...,2M , and we assume h(z, w) ∈
C∞(U,M−∞,d

R (I ;w)) for some R∈ Asd(I ;w) andπC R∩ Ŵ1−γ = ∅. Then we have

(77) p(z, ζ ) ∈ Sµcl(U × R
n−2;K

s,γ
P (I ∧,R+;M),S

δ
Q(I
∧,R+; N))

for every s> d− 1
2 and for everyP ∈ As([0, π ], g̃) for g̃= (γ,2) with some resulting

Q ∈ As([0, π ], g̃) for g̃ = (δ,2′). Herem = (mlk)l=0,...,2N,k=0,...,2M with mlk = m
for all l = 0, . . . , N, k = 0, . . . ,M.

Proof. By virtue of (37) we prove that

(78) p(z, ζ ) ∈ Sµ− j+|α|
cl (U × R

n−2;K
s,γ
P (I ∧,R+;M),S

δ
Q(I
∧,R+; N)),

whereµ− j + |α| = (µlk − j + |α|)l=0,...,2N,k=0,...,2M . Now it is clear that it suffices
to prove

p̃(z, ζ ) := r−µ̃ω(r [ζ ])op
γ− 1

2
M (h)(z)ω̃(r [ζ ])

∈ Sµcl(U × R
n−2;K

s,γ
P (I ∧,R+;M),S

δ
Q(I
∧,R+; N))(79)

(cf. Remark 7).

Let

K
s,γ
P (I ∧) = lim

←−−
j∈N

E j , K
s−nk

±−
1
2 ,γ−nk

±−
1
2

P±,k
(R+) = lim

←−−
j∈N

E j
±,k, k = 1, . . . ,M,

S
γ−m
Q (I ∧) = lim

←−−
j∈N

F j , S
γ−ml

±−
1
2

Q±,l
(R+) = lim

←−−
j∈N

F j
±,l , l = 1, . . . , N,

(cf. (51),(52)), for sequences of Hilbert spacesE j , F j and E j
±,k, F j

±,l with strongly
continuous groups of isomorphismsκ∧λ andκλ, respectively, for allj ∈ N. Then we
have

p̃(z, ζ ) ∈ C∞(U × R
n−2,L(Ẽm j , F̃n j ))

for everyn j ∈ N and for some resultingm j ∈ N (here,Ẽm j is E j or E j
±,k and F̃n j is

F j or F j
±,l ). Further

p̃(z, λζ ) = χ̃λ p̃(z, ζ )χ−1
λ

for all z ∈ U, |ζ | ≥ c, λ ≥ 1 with anc > 0. This completes the proof.
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4. Construction of elliptic edge conditions

4.1. Elliptic mixed problems

We now return to mixed problemsA for differential operatorsA with differential
boundary conditionsT± in the notation of Section 1.1. By virtue of Proposition 4
our operatorA is continuous in the sense of a map (4). This follows from the nature of
weighted edge Sobolev spaces, cf. formula (47) and Remark 3,and general continuity
results of pseudo-differential operators with operator-valued symbols, cf. Theorem 2.

With A we have associated the tuple of principal symbols

(80) σ(A) = (σψ (A), σ∂,±(A), σ∧(A)),

whereσψ (A) := σm
ψ (A), cf. formulas (8),(10),(23). In addition, we have the subordi-

nate conormal symbol (30).

In the literature on concrete mixed problems, e.g., for the Laplace operator with
the Zaremba problem or the Lamé system with other types of boundary conditions,
e.g., jumping oblique derivative conditions, it is customary to call A elliptic if A is
(σψ , σ∂,±) - elliptic, i.e., σm

ψ (A)(x, ξ) 6= 0 (or detσm
ψ (A)(x, ξ) 6= 0 in the case of

systems) for(x, ξ) ∈ T∗X \ 0, and the boundary conditionsT± satisfy the Shapiro-
Lopatinskij condition on the± parts intY± which means that (11) are isomorphisms
for all sufficiently larges, for (y, η) ∈ T∗(int Y±) \ 0.

However, this does not imply, in general, the Fredholm property of the operator
(4). To associate with (4) a Fredholm operator we have to paseextra elliptic conditions
on the inner boundaryZ = Y+ ∩ Y−. This requires an additional assumption on the
weight γ, namely, that (30) is a family of isomorphisms for allw ∈ Ŵ1−γ and all
z ∈ Z, cf. Proposition 1. Here,Ŵβ = {w ∈ C : Rew = β}, β ∈ R. By Theorem 1
we then know that the principal edge symbol is a family of Fredholm operators for all
(z, ζ ) ∈ T∗Z \ 0.

In the following section we construct additional entries ofa block matrix

M :=

(

A K

T Q

)

:

Ws,γ (X)

⊕

Hs−1(Z, J−)
−→

Vs−m,γ−m(X)

⊕

Hs−1−m(Z, J+)
,(81)

where J± are smooth complex vector bundles onZ and H r (Z, J±) corresponding
Sobolev spaces of distributional sections in the respective bundles of smoothnessr ∈
R, while

Vs−m,γ−m(X) :=

Ws−m,γ−m(X)

⊕

⊕N
j=1W

s−m j
+−

1
2 ,γ−m j

+−
1
2 (intY+)

⊕

⊕N
j=1W

s−m j
−−

1
2 ,γ−m j

−−
1
2 (intY−)

.
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4.2. Additional edge conditions and the Fredholm property

To summarize the information so far, we assume the mixed problemA to be(σψ , σ∂,±) -
elliptic, and we choose a weightγ ∈ R such that (30) is a family of isomorphisms for
all z ∈ Z andw ∈ Ŵ1−γ (that is also assumed to be possible and guaranteed in many
concrete examples). We then have our family of Fredholm operators

(82) σ∧(A)(z, ζ ) : K
s,γ (I ∧) −→ Ls−m,γ−m(I ∧)

for (z, ζ ) ∈ T∗Z \ 0, s> m j
± +

1
2 for all j = 1, . . . , N, where

Ls−m,γ−m(I ∧) :=

Ks−m,γ−m(I ∧)
⊕

⊕N
j=1K

s−m j
+−

1
2 ,γ−m j

+−
1
2 (R+)

⊕
⊕N

j=1K
s−m j

−−
1
2 ,γ−m j

−−
1
2 (R+)

.

By virtue of the homogeneity (25) it suffices to assume|ζ | = 1, i.e., (z, ζ ) ∈
S∗Z,whereS∗Z is the unit cosphere bundle induced byT∗Z. SinceZ is compact, also
S∗Z is a compact topological space.

As is well-known the dimensions of kerσ∧(A)(z, ζ ) and cokerσ∧(A)(z, ζ ) are
not necessarily constant with respect to(z, ζ ) ∈ S∗Z. However, using the theory of
elliptic boundary value problems on the infinite cone, cf. Kapanadze and Schulze [18,
Chapter 3], we have the following result:

PROPOSITION6. There is an l− ∈ N and a map

k : Cl− −→

C∞0 (R+ × I )
⊕

⊕N
j=1 C∞0 (R+)
⊕

⊕N
j=1 C∞0 (R+)

such that

(83) a(z, ζ ) := (σ∧(A)(z, ζ ) k) :
Ks,γ (I ∧)
⊕

C
l−

−→ Ls−m,γ−m(I ∧)

is a family of surjective operators for all(z, ζ ) ∈ S∗Z and all s > m j
± +

1
2, j =

1, . . . , N.

Proof. First we know that kernels and cokernels of (82) are independent of the specific
s, cf. [18, Section 1.2.7]. This allows us to fix any sufficientlylarges ∈ R. In this
proof let us simply setK := Ks,γ (I ∧), L := Ls−m,γ−m(I ∧). There is then a finite-
dimensional subspacẽM ⊂ L (of dimensionl−) and an isomorphism̃k : C

l− → M̃
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such that

(σ∧(A)(z, ζ ) k̃) :
K
⊕

C
l−
−→ L

is surjective for all(z, ζ ) ∈ S∗Z. By virtue of the fact that the spaceM := C∞0 (R+ ×

I )⊕
⊕2N

j=1 C∞0 (R+) is dense inL we can approximatẽk by an isomorphismk : Cl− →

M such that

(84) a(z, ζ ) :
K
⊕

C
l−
−→ L

is also surjective for all(z, ζ ) ∈ S∗Z (here, we use that the space of surjective operators
between Hilbert spaces is open in the operator norm toplogy). Then, since the surjec-
tivity is independent ofs, we also get the surjectivity of (83) for alls > m j

± +
1
2, j =

1, . . . , N.

The operators of the family (84) are Fredholm and surjectivefor all (z, ζ ) ∈
S∗Z. Assume, for simplicity, thatS∗Z is connected (otherwise, we may argue for the
connected components separately). Then dim kera(z, ζ ) =: l+ is a constant, though
the directions of kera(z, ζ ) smoothly vary in the spaceK ⊕ C

l− . As is well-known,
kera :=

⋃

{kera(z, ζ ); (z, ζ ) ∈ S∗Z} form a vector bundleL+ of fibre dimensionl+
on the spaceS∗Z.

A basic (topological) assumption on our problem is now that (when we choose
the above dimensionl− sufficiently large) the bundleL+ is the pull-back of a bundle
J+ on Z with respect to the canonical projectionπ : S∗Z → Z, π : (z, ζ ) → z.
In other words, we requireL+ = π∗J+. If [L+,Cl− ] denotes the element in theK -
group ofS∗Z, represented by the pair of bundlesL+ andC

l−(:= S∗Z×C
l−), then the

so-called index element

indS∗Zσ∧(A) := [L+,C
l− ] ∈ K (S∗Z)

(that is independent of the choice of the above-mentioned map k) is required to be in
the image under the pull-backπ∗ : K (Z) → K (S∗Z). This is an analogue of the
well-known topological obstruction for the existence of Shapiro - Lopatinskij elliptic
boundary conditions in the standard theory of boundary value problems, cf. Atiyah and
Bott [2], Boutet de Monvel [4].

We now construct a homomorphism

b :
K
⊕

C
l−
−→ J+,

i.e., a smooth(z, ζ ) - dependent family of linear mapsb(z, ζ ) :
K
⊕

C
l−
→ J+,z for
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every(z, ζ ) ∈ S∗Z ( with J+,z being the fibre ofJ+ over the pointz) of the form

b := b0P,

whereP is the family of orthogonal projectionsP(z, ζ ) :
K
⊕

C
l−
→ kera(z, ζ ) (with

respect to any fixed choice of a scalar product in
K
⊕

C
l−

) and b0 : kera → J+ an

arbitrary isomorphism. From the results of [38] or [18] we know that the elements
of kera(z, ζ ) are vectors of the form(u(r, ϕ), c), whereu(r, ϕ) ∈ S

γ
P(I
∧) for some

discrete asymptotic typeP ∈ As([0, π ], (γ, (−∞,0])), (dependent onz), andc ∈
C

l− . We may forget about the specificP when we are only interested in the nature of
additional conditions to be constructed here, but identifyu(r, ϕ) with an element in
S
γ
P0
(I ∧), where P0 ∈ As([0, π ], (γ, (−ε,0])) encodes flatness of orderε > 0 with

respect to the weightγ, independent ofz ∈ Z. Let� ⊆ R
n−2 be an open set such that

kera(z, ζ ) is trivial over� (recall that this is always the case when� is a ball or any
other contractible open set). Choosing a base

(

u j (r, ϕ; z, ζ )
c j (z, ζ )

)

j=1,...,l+

,

of sections in kera(z, ζ ) |� our mapb(z, ζ ) can be written in the following form:

b(z, ζ )

(

u
d

)

=

b0(z, ζ )
l+
∑

j=1

((

u(r, ϕ)
d

)

,

(

u j (r, ϕ; z, ζ )
c j (z, ζ )

))

K⊕Cl−

(

u j (r, ϕ; z, ζ )
c j

)

for u ∈ K , d ∈ C
l− .

We have constructed in this way a family of isomorphisms

(85) a1(z, ζ ) =

(

σ∧(A)(z, ζ ) k
b1(z, ζ ) b2(z, ζ )

)

:

K
⊕

C
l−
−→

L
⊕

J+,z

smoothly dependent on(z, ζ ) ∈ S∗Z. Here,b(z, ζ ) = (b1(z, ζ ),b2(z, ζ )).

The next step is to extend (85) fromS∗Z to T∗Z\0 to a family of isomorphisms

(86) a(z, ζ ) :
K
⊕

C
l−
−→

L
⊕

J+,z

such that

(87) a(z, λζ ) = λmχ̃λa(z, ζ )κ̂
−1
λ ,
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for all λ ∈ R+, ζ 6= 0, whereκ̂λ = diag(κ∧λ , idCl− ). In other words, we set

(88) a(z, ζ ) := |ζ |mχ̃|ζ |a1(z,
ζ

|ζ |
)κ̂−1
|ζ | .

Let us write

(89) a(z, ζ ) =
(

σ∧(A)(z, ζ ) k(m)(ζ )
t(m)(z, ζ ) q(m)(z, ζ )

)

.

We then set

t (z, ζ ) := χ(ζ )t(m)(z, ζ )ω, k(ζ ) := ωχ(ζ )k(m)(ζ ), q(z, ζ ) := χ(ζ )q(m)(z, ζ ).

Hereχ(ζ ) is an excision function andω(r ) a cut-off function. Then

(90) g(z, ζ ) :=

(

0 k(ζ )
t (z, ζ ) q(z, ζ )

)

is an operator-valued symbol in the sense

g(z, ζ ) ∈ Sµcl



�× R
n−2;

Ks,γ (I ∧)
⊕

C
l−

,

Ls−m,γ−m(I ∧)
⊕

C
l+



 ,

where J+ |�= � × C
l+ is the chosen trivialisation ofJ+ over � and µ =

(µlk)l=0,...,2N+1,k=0,1, whereµlk = γk − δl with γ0 = γ, γ1 = γ − 1 and the tu-
ple ((δl )l=0,...,2N, δ2N+1) as in Section 2.5.

Writing g(z, ζ ) = (gi j (z, ζ )) we then form the block matrix

G := Opz(g) = (Opz(gi j ))

of pseudo-differential operators with our operator-valued symbol (90). This refers first
to a fixed� ⊆ R

n−2 corresponding to any chartχ j : Vj → � on Z, whereVj :=

U j ∩ Z, j = 1, . . . , L , cf. the beginning of Section 2.3. Let{ψ1, . . . , ψL } denote a
partition of unity onZ subordinate to{V1, . . . ,VL}. Furthermore, let{ψ̃1, . . . , ψ̃L} be
functionsψ̃ j ∈ C∞0 (Vj ) such thatψ j ψ̃ j = ψ j for all j = 1, . . . , L .

Let k j (ζ ) denote the above-mentioned symbolk(ζ ) on� that belongs to the
chartχ j : Vj → �. We then have the pull-back of the pseudo-differential operator
Opz(k j ) to Vj , namely(χ−1

j )∗Opz(k j ). We then set

K :=

L
∑

j=1

ψ j {(χ
−1
j )∗Opz(k j )}ψ̃ j

and obtain our potential entry

K : Hs−1(Z, J−) −→ Vs−m,γ−m(X),
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whereJ− = Z×C
l− . Similarly, let t j (z, ζ ) andq j (z, ζ ) denote the symbols belonging

to the chartχ j : Vj → �. We then set

(T Q) =





L
∑

j=1

ψ j {(χ
−1
j )∗Opz(t j )}ψ̃ j

L
∑

j=1

ψ j {(χ
−1
j )∗Opz(q j )}ψ̃ j





and obtain in this way the second row of our block matrix (81),namely

(T Q) :

Ws,γ (X)

⊕

Hs−1(Z, J−)
−→ Hs−1−m(Z, J+).

Clearly, in the pull-backs of operators underχ j we have tacitly integrated the cocycle
of the bundleJ+. An important property of our construction is that the operators

(

0 K

T Q

)

:

Ws,γ (X)

⊕

Hs−1(Z, J−)
−→

Vs−m,γ−m(X)

⊕

Hs−1−m(Z, J+)

only change by compact operators when we change the excisionfunctionχ, the cut-off
functionω or the charts and the functionsψ j , ψ̃ j .

THEOREM 5. If the additional conditionsK, T andQ to the operatorA are
chosen in the above-mentioned way, the operatorM is elliptic in the sense of edge-
boundary value problems and hence(81) is Fredholm for all s∈ R, s− m j

± −
1
2 >

0, j = 1, . . . , N.

Proof. Our construction of elliptic edge conditionsK, T andQ to A has reached a
variant of the calculus of boundary value problems on a manifold with edges. In fact,
an inspection of the proof of [18, Theorem 4.5.11] shows thatwe can generalise the
arguments to the present case of Douglis-Nirenberg orders.

REMARK 12. The difference of the situation considered in [18, Chapters 4,5]
and here lies in the fact that we consider the “realistic” orders from the problem, while
those in [18] are thought to be obtained by an order reduction. The construction of
order reducing objects within our operator spaces is a rather voluminous program that
will be carried out in a future paper.
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