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MONOTONIC MODAL L OGICSRELATED TO THE VON
WRIGHT'SLOGIC OF PLACE

Abstract. In this paper we introduce the monaonic modal logics M4y, M4, and MB,
obtained from the basic strong monaonic modal logic MON by adding some formulas con-
sidered by R. Jansanain [8]. For eat logic defined we prove completenesswith resped to
their charaderistic dasses of monaonic frames. The canoricity of these logics is proved
using the representation theory for monaonic agebras developed in [4]. We dso introduce
the logics M'$4 and M S5 as a monaonic courterpart of the normal logics $4 and S5, re-
spedively. Finaly, we prove that there exists atrandation o the logic MS4in M4, and a
trandation o thelogic M S5 in M4y, + MBh,.

1. Introduction

In [8] R. Jansana introduces some normal modal | ogics related to the logic of place
presented by Von Wright in [10] and studied semanticdly by Segerberg in [9]. In the
Von Wright's logics the modal operator (I is interpreted intuitively as "everywhere
else” and a sentence ¢ is valid in a placex if the sentence ¢ is valid in every other
placethat can be readed from x. In [8] R. Jansana introduces a wegening o Von
Wright's logic of place The main ideaof Jansanais to study the logic of “in every
other placethat can be readied in fewer than n+ 1 steps’. In a Kripke frame (X,R)
the steps are represented by the accashility relation R C X x X in the following way:
ead indiceisaplace and from one placex € X aplacey € X can bereaded diredly
when xRy, and from a placex aplacey can bereaded in j steps when xRly.

In this paper we ae interested in other wedkening o the Von Wright’s logic of
place We can give the interpretation saying that a sentence (¢ is valid in a placex
if the sentence ¢ isvalid in every set of places that can be readed from x. With this
interpretationwe have anon-normal modal | ogic, i.e., amodal |ogic wherethe formulas
O(pAY) — O AOpandOT arevdid bu the formulallp ADY — O(§ AY) isnot
valid. These dasses of modal logics are cdled strong monaonic modal logics [2],
or fused modal logic [6]. Clealy the Kripke frames do nd constitute an adequate
semantics for the monaonic modal logics. Instead, strong monaonic modal |ogics
areinterpreted over monaonic frames (or neighbouhoodframesin theterminology o
Chellas[2], or fused Kripke framesin the terminology of J. Jaspars[7]), i.e. structures
of thetype (X,R) where X isaset and Risarelation between elements of X and non
empty subsets of X, such that R(x) = {Z C X: (x,Z) € R} is closed under supersets,
foreah x € X.

The purpose of this paper is to study extensions of the minimal strongmono-
tonic modal logic with the axioms introduced by R. Jansana in [8]. In Sedion 2we
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give the basic definition o strong monaonic modal logics, and we recdl the defini-
tions of monaonic frames, monaonic modal algebras and the relation between these
semantics. In Sedion 3 we prove some new and general results on strong monaonic
frames that we will used in the paper. In Sedion 4we introducethe monaonic logics
M4wn, M4, and MB,, obtained from the basic strong monaonic modal logic MON
by adding some formulas considered by R. Jansana in [8]. We prove that these log-
ics are canonicd by showingthat the variety of norma monaonic dgebras asociated
with ead logic is closed uncer canoricd extensions. In Sedion 5 we introduce the
monaonic modal logics obtained from MON by adding some or all of the traditional
modal axioms 4, T, and B. We prove that these logics are complete with resped to
they charaderistic dasses of monaonic frames. Finally, we prove that there exists a
translation of thelogic MS4 = MON + {4, T} in M4y, and atranslation o the logic
MS5=MON+ {4, T,B} in M4y + MB;,.

2. Preliminaries

Let us consider a propasitional language £ defined by using a denumerable set of
propasitional variables Var, the mnredives vV and A, the negation — and the propasi-
tional constant T. The modal language £ is obtained extending £ by means of the a
unary modal operator CJ. We shall denote by < the operator defined by & p = —[O-p,
for pe Var. The set of al well formed formulas as well asthe formula dgebrain the
language £ will be denoted by Fm.

A strong monaonic modd logic is a set of formulas A in the language £,
which contains the Clasgca Propasitional Calculus CP, is closed under substitutions,
OT € A, andis closed under the followinginferencerules:

R1. If §,¢ — Y€ A, theny € A (Modus Pones).

R2. If ¢ —we A thenOp — O € A.

The strongmonaonic modal | ogic generated by a finite set of formulas I will
be denoted by A + {I'}. For more detail s on monaonic moda logic see[2], [4], and
[6]. The smallest strongmonaonic moda |ogic will be denoted by M ON. We note that
the logic MON isthe modal logic RB studied by J. Jasparsin [6].

Relational semantic

Let X be anonempty set. We denate by #(X) the power set algebra. Let 2o(X) =
2?(X)— {0} . The complement of asubset Y C X wedenotebyY — X or Y€.

DerINITION 1. [6] Amonaonicframe, or m-framefor short, isastructure ¥ =
(X,R) such that X # 0, RC X x #y(X), andfor any xe X andfor any Y)Y’ € #p(X),
if Y CY andY’ € R(x), thenY € R(x), where R(x) = {Z € 2o(X) : (x,Z) € R}.
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Let 7 = (X,R) be an m-frame. For eahh U € 2 (X), we define the sets
Lu ={Y € 2o(X) | YNU #£ 0}
and
LG ={Y € o(X) | YNU = 0}.
LEMMA 1. Let 7 = (X,R) beanm-frame. Then:
1. Lyrv € Ly NLy andLyyy =Ly ULy, for eveyU,V € 2(X).
2. Lx = 2p(X) andLg = 0.
Prodf. Itiseasy andleft to the reader. O
Let ¥ = (X,R) be an m-frame. We define aunary operation g on 2 (X) as
follows:
OrU) ={xeX|VY eR(X) (YNU #0)}
={xeX|R(x) C Ly},
foreahU € 2 (X). We note that Or(X) = X, and Or(U NV) C Or(U) NOR(V), for
al U,V € 2(X). Thedual operator g is defined by
Or(U)={xeX|IY eR(x):YCU}
= {xe X|R(x)NLje # 0},
foreahU € 2 (X).
A valuationV onan m-frame ¥ = (X,R) isafunctionV : Var — 2 (X). A val-

uation can be extended reaursively to the set of all formulas by means of the foll owing
clauses:

V(T) =
(¢/\UJ) V(e)nV (W), V(oV)=V(9)uV (),

V(=9) =V (9)°,
4.V (O¢) = {x€ X |R(X) C Ly(y) } =Or(V (9)).

Anm-model isapair @ = (¥ ,V) where ¥ isan m-frame andV isavaluation
on ¥ . Thenationsof truth at apaint, validity in amodel and validity in an m-framefor
formulas are defined in the usual way. A formula¢ isvalid at point xinamodel 47, in
symbasas Fx ¢ if xeV (¢). Theformulad isvalidin amodel 4/ , insymbolsas E ¢,
if V(¢) = X. Findly, the formula¢ isvalid in anm-frame #, in symbads 7 F ¢, if
V (¢) = X for all valuationsV defined on 7 .

The monaonic modal logic of a dass of monaonic frames K is Th(K) =
{¢eFm: 7 Edforal ¥ €K}. Let A be amonaonic moda logic. The dass of
al m-frames 7 suchthat A C Th({# }) = Th(¥ ) iscdled the characteristic dassof
A, anditisdenoted by Fr(A). A monaoniclogic A is frame complete with resped to
aclassof m-framesK if A=Th(K). ThelogicMON isframe complete with resped
to the dassof al m-frames(see[2], [4], and[5]).
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Algebraic semantic

The dgebraic semantic of strongmonaonic modal | ogicsis given by meansof Boolean
algebras with amonaonic modal operator. Let usrecdl that astrongmonaonic modd
algebra, or m-algebra, isan pair A= (A,00), where A isaBoodean algebra and O isa
unary operator defined onA such that

M1. O(anb) <OaAOb,
M2, O1=1.

The dual operator < isdefined by ¢a = —-[0-a. Itisclea that the dassof m-algebras
isavariety that will be denoted by MA.

Given amonaonic frame ¥ = (X,R), the dgebra
<(.P(X)’ U»n7 ) DR»0»X>

is a monaonic modal algebra cdled the (full) complex algebra of #. The complex
algebraof ¥ we will also denote by (2 (X),0Rr). A complexalgebra is a subalgebra
of afull complex agebra (? (X),0r) for some m-frame 7 .

REMARK 1. The standard semantic tod used to interpret strong monaonic
modal logicsis the neighbouhoodsemantics (see[2], [4] or [5]). A mondonic neight
bouhoodmode isapair (#,V) where 7 isan m-frame andV isavaluation on¥ .
The nation o aformula being true is inductively defined for bodean conredives the
same way as for m-models, and for formulas of type (¢ is defined by

V(Op) = {xeX[V(9) eR(X)}.

In acordancewith thisinterpretationwe can definein 2 (X) amonaonic operator mg :
?(X) — 2(X) as.

@ mr(U) ={xe X |U eR(X)},

foreathiU € 2 (X). Clealy the pair (2 (X),mr) isamonaonic modal algebra, cdled
the neighbouhoodcomplex algebra of # . We note that if (#,V) is aneighbouhood
model, thenV (Op) = mg(V (p)), for eath p € Var. In the next result we establish the
relation between monaonic neighbouhoodmodels and m-models by provingthat any
complex algebrainduces an equivalent neighbouhoodcomplex algebra, and redpro-
cdly any neighbouhoodcomplex algebrainduces an equivalent complex algebra.

LEMMA 2. 1. Let (?(X),0Rr) beacomplexalgebra of anm-frame 7 = (X, R).
Then there exsts a neighbourhoodcomplexalgebra (# (X),m;) of an m-frame 73 =
(X,J) such that Or(U) =my(U), for all U € 2 (X).

2. Let (#(X),my) be a neighbouhoodcomplex algebra of an m-frame ¥ =
(X,J). Then there exsts a complex algebra (2 (X),[g) of an mframe 7r = (X,R)
such that my(U) = Or(V), for all U € 2(X).
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Proof. 1. Let ¥ = (X,R) be an m-frame. We define arelationJ C X x 2o(X) by:
(x,U) e Jifand orly if VZ € 2o(X) ((x,Z) € Rimpliesthat ZNU # 0).

Itisclea that (X,J) isan m-frame. We provethat Or(U) =my(U), foral U € 2(X).
Letx € Or(U) andwe suppasethat x ¢ my(U). Then, (x,U) ¢ J. By thedefinition o J,
we havethat there exists Z € 2o(X) suchthat (x,Z) € RandZNU = 0. Sincex < Or(U)
and (x,Z) € R, ZNU # 0, which isa contradiction. It followsthat x € my(U).

Suppasethat x € my(U). Then (x,U) € J. Let Z € £p(X) such that (x,Z) € R
As(x,U)€J, ZNU #£0. Thus, x € Or(U).

2. Let 7 = (X,J) be an m-frame. Let us define the relation R C X x 2p(X) as
follows:

(x,Y) € Rif and orly if VZ € #5(X) (Z € J(X) impliesthat Y NZ £ 0).

Itisclea that for al Y,K € 2o(X),if Y CK and (x,Y) € R, then (x,K) € R. So, F r=
(X,R) is also an m-frame. We provethat my(U) =Or(U), foral U € 2(X). If xe
my(U), U € J(x). Let (x,Y) € R By the definition o R, sinceU € J(x), we get
YNU #0. Then,x € Or(V).

Asamethat x € Cr(U). Suppaosethat U ¢ J(x). SinceF = (X,J) ismondonic,
Z¢ U foral Z € J(x), i.e, ZNUC # 0 for al Z € J(x). By the definition o the
relation R, (x,U¢) € R Asx e Or(U), UNUC® £ 0, which is a contradiction. Thus,
U eJ(x). O

Let A be an m-algebra. We denote the set of al ultréfilters of A by UI(A)
and the set of al proper filters of A by Fi(A). For eah a € A we onsider the set
Ba(a) ={P e UI(A):ac P}. For ead proper filter F of A consider the set

F={PcUI(A) :FCP}.
We nate that for ead proper filter F of A,
F=N{Ba(a):acF}.

Now we define arelation between ultrafilters and subsets of ultrafilters of am-algebra.
We have only to consider particular sets of ultrafilters. More predsely, consider the set

Co(UI(A)) = {Y CUI(A) : Y = F for some proper filter F of A}.
We define arelation Ry C UI(A) x ¢o (UI(A)) asfollows:
2 (PF)eRa & VOacP (FNPa(a)#0).

The ultrafilter m-frame of A, is the m-frame ¥ (A) = (Ul(A),Ra). We note that the
relation Ra can aso be defined as a subset of UI(A) x Fi(A) asfollows:

(PF)eRa & VOaeP (FNBa(a) #0)
& FCoip).
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Any of these definitionswe will used in the rest of thiswork. The foll owing theorem
foll ows from the results given by H. H. Hansen [4] (see &so [5] and [6]). We give a
proof for completeness

THEOREM 1. Let Abeanm-algebra. Letac A andlet P € UI(A).

1. Gae Pif and orly if there exsts F € Fi(A) such that (P,F) € Ra and ac F.

2. Dae Pif and ony if for all F € Fi(A) such that (P,F) € Ra, implies that F N
Ba(a) # 0.

Proof. We prove 1. Let Ga € P. Let us consider the filter F = F(a) generated by a.
Thenitiseasy to seethat F(a) C ©~1(P). So, (P,F) c RaandacF.

Asaume that there exists F € Fi(A) such that (P,F) € Ra anda € F. From
acFC o (P),weget CacP. O

Let A be amonaonic dgebra. The complex algebra
A(F (A) = (2 (UI(A)),U,N.°,Or,,0,UI(A))
of 7 (A) iscdled the canorical extensionof A.

THEOREM 2. [4] Every malgebra A isisomorphic to the subdgebra of the m-
algebra A(# (A)) by means of the mapping Ba : A — 2 (UI(A)) defined by Ba(a) =
{PeUI(A):acP}.

Prodf. Itisclea that B isaninjedive Boodean homomorphism. From Theorem 1 we
havethat Ba(Ca) = Or,Ba(a), for any a€ A. Thus, Ba is an injedive homomorphism
of monaonic modal algebras. |

Let 7 = (X,R) be an m-frame. Asthe dements of (2 (X),0r) are subsets of
the universe of 7, avauationin (2 (X),0Og) isnothing bu avaluation on# . In other
words, for any formula ¢, ¥ E ¢ iff the equation ¢ ~ Lisvalidin (?(X),0r). If K is
a dassof m-frames, then we dencte the dassof al full complex algebras of m-frames
in K by CmK. We note that for any formula ¢, ¢ € Th(K) iff the equation ¢ ~ 1
isvalid in the dassCmK, and that for any formulas ¢ and {, the equation ¢ ~ | is
validin the dassCmK iff theformula (¢ — W) A (W — ¢) € Th(K). Thus, we get that
the monaonic modal logic Th(K) of a dassof monaonic frames K can be identified
with the equational theory of the dassof complex algebras CmK, that is, the variety
7 (CmK) = HSRCmK).

If A is amonaonic modal logic, then the dassof monaonic modal algebras
v (N)={AeMA:AE ¢, fordl ¢ € A} isavariety defined by the equations ¢ ~ 1,
for al ¢ € A. Itiseasy to ched that for any logic A, ¢ € A iff ¢ isvalid in every
algebraof 7 (A). Thus, we get an algebraic completenessresults for ead logic A.
Moreover, MA = ¥ (MON) (seeChapter 7 of [4] or [5]).

Completely analogouws to the case of normal modal logic (see[1] Chapter 5), a
variety 4/ of monaonic modal algebrasis said to be complete if there exists a dass
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of m-frames K which generates 7/, i.e. ¥ = ¢ (CmK)). Then we have that a logic
A is frame complete with resped to a dassof m-frames K iff the variety 7 (A) isa
complete variety. In other words,

A =Th(K) iff ¥ (A) = ¥ (CmK)).

On the other hand, a dassof monaonic modal algebrasM is canorical if M is closed
under canoricd extensions, i.e. A(F (A)) € M whenever A € M. Asin the case of
norma modal logic (see[1] Propasition 545, or [4]), we can prove that a logic A
is canonicd if the variety %/ (A) is canoricd. In order obtain this charaderizaion it
is aufficient to show that for any algebra A in the variety ¢ (A), the ultrafilter frame
F (A) of Aisaframeof thelogic A, i.e., ¥ (A) € Fr(A), or equivalently, that A(7 (A))
belongsto 7 (A).

THEOREM 3. The logic MON is canorical and complete with resped to the
classof all m-frames.

3. Some useful properties

In this sdion we prove some results which will be used in the next sedions.

Let ¢ € Fm. For eat n > 0 we define inductively the formulad"d as (1% = ¢
and "¢ = OO, and theformulaty (¢) = ¢ ADIG A ... AC"$. Similarly we define
theformulas O"¢ anddn (¢) =V Od V... vV ONd.

Let # = (X,R) be an m-frame. We define the binary relation R C 2o(X) x
2o(X) asfollows:

(ZY)eReVxeZ: (xY)eR

Define inductively the n-composition R" of R asfoll ows:
xY)eR & xeVv.

(xY)eR"Y o 37),...,Z, € po(X) suchthat (x,Z1) € R, 3
(Zi,Z11)eR forl<i<n-1and (Z,Y)eR

Finally, we define the relation R" C 2o(X) x 2o(X) by:
Y,2) eR'=VWyeY:(y,2) eR".
We notethat (Y,Z) € RO if and orly if Y C Z. With this notation, we have that

3 (xY)eR™L o 3Zep(X):(x2) eRand (Z,Y) eR"
& AZepp(X): (x,Z)eRand (Z,Y) e R

LEMMA 3. Let ¥ = (X,R) be an m-frame. Then for evey n > 0, the relation
RMisincreasing, i.e., for evayY,Z € 2o(X),if Y CZandY € R"(x), thenZ € R"(x).
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Proof. The proof is by induction onn. Letn=0. LetY € Z and (x,Y) € R°. Then
X€Y CZ So, (x,2) € R LetY,Z € po(X) suchthat Y € Z and (x,Y) € R™1. Then
there exist By, ..., By € 2o(X) such that

(x,B1) € R (Bi,Bi11) € R with1<i<n-—1,and (By,Y) €eR.

So, for every b € By, (b,Y) e R AsY C Z and R is increasing, for every b € By,
(b,Z) € R It followsthat (B,,Z) € R Thus, (x,Z) € R™1. O

Let ¥ = (X,R) be @ m-frame. For any U € #(X) we define inductively the
operator OO} (U) by:

oju) = U

Ot U) = OR(ORU)), forn>o0.

LEMMA 4. Let ¥ = (X,R) beanm-frame. Then, Og (U) = O (U) for evey
n> 0 andfor eveayU € 2 (X).

Proof. The prodf is by induction onn. Let n= 0. Since D%(U) = U, we prove that
U =0go(U). Let x € Opo (U). So, for every Y € RO(x), YNU # 0, in particular as
(x,{x}) € R%, xe U. Let xc U. Then for every Y suchthat x € Y, YNU # 0. Thus,
RO(X) C Ly, i.e, x € O (U). Suppeee that the result holds for n. Let U € #(X) and
letx € X. Suppasethat x € 0% (U) = O (Or(U)). Weprovethat R (x) C Ly. Let
Y € 2o(X) such that (x,Y) € R™1. Then there existsV € 2o(X) such that (x,V) € R"
and(V,Y)eR ie,

(x,V)eR"and (v,Y) € R, foreveryveV.

By assuimptionandinductivehypahesiswe havethat x € O (Or (U )) = Ore (Or (U)) .
So, R"(x) C Logu)- Sinceg (x,V) € R", VNOr(U) # 0. Thus, there exists v e V
such that R(v) C Ly. Since (v,Y) e R, YNU #0, i.e, Y € Ly. Suppae now that
x ¢ OO (U). By inductive hypathesiswe have

OR™ (V) = 0R(Or(V)) = Ore (Or(V)).

Then there existsY € 2o(X) such that (x,Y) € R*andY NOr (U) = 0. Sincefor every
yeY,R(y) & Lu, wehavethat for eady € Y there existsVy € 2o(X) suchthat (y,Vy) €
RandVyNU = 0. Consider the set

V= J{W:iyeY}.

Since# isanm-frame, andVy, CV, (y,V) € R Thus, foreveryy e Y weget (y,V) € R,
i.e, (Y,V) e R As(x,Y) e R"and (Y,V) € R, we get (x,V) € R™1, and taking into
acourt that V NU = 0, we have R™ (x) ¢ Ly . Therefore, X ¢ Dgns1 (U). O

COROLLARY 1. Let (X,RV) be an mmodel. For evey formula ¢, for all
n# 0, andfor evey xe X :

xeV(O") & R'(X) C Ly()-
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Proof. The results follows from the previous Lemma and by the fad that V (O"¢)
=0OR(V (9)), for every formulag. O

THEOREM 4. Let A be anm-algebra. Let P € UI(A) andF € Fi(A). Then for
aln>0
(PF)eRy & F C{acA:O"acP}.

Proof. The prodf is by induction onn. The cae n = 0 foll ows by the foll owing equiv-

aences: .
(PF)eR} & PeF
& FC{acA:0%a=acP}.

We note that the case n = 1 follows from Theorem 1. Suppase that the result holds for
n.If (PF) e RA™ thenitiseasy toseethat F C {ac A: O"lac P}. Suppasethat

FC{acA:oMacP].

Consider the set X = {O"ac A:acF} andlet H be the filter generated by X. We
prove that

@ HCo(P).

Let X € H. Then there exist ay,...,ax € F such that GMag A ... A O < . It follows
that
O(OM(aA...Aa)) < OMag AL A O g < Ox.

Since a1 A...ANag € F,
O(OMaA...Aag)) = O (@A Aak) < OXEP.

Thus, H € ©~1(P). Now we provethat (H,F) € R}. Let Q € UI(A) suchthat H C Q.
By inductive hypathesis, the condtion (Q,F) € R} isequivalent to

FC{acA:0"acQ}.
LetacF. ThenO"ae X CH C Q. So, ©"a€ Q. Thus, (Q,F) € R}, foral Q € H,
and hencewe nclude (P F) € RR“ because (P, H) € Ra. |

4. Thelogics M4yn, M4, and MB,

Let us consider the foll owing formulas:

4, an) N Dn+1¢.
Q) 4wn tn (¢) - Dnﬂq’-
Bn ¢ —ta(dn(9))-

Now we investigate the charaderistic dassof frames of extensions of the logic
MON obtained by adding formulas from the set {4n, 4wn, Bn}.
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DEFINITION 2. Let 7 = (X,R) be an mframe. The relation R is we&ly n-
transitive if and ory if Vx € X VY € 2o(X), if (x,Y) € R™, thenx € Y or there exsts
1< j<nsuchthat (x,Y) € R.

THEOREM 5. Let ¥ = (X,R) beanm-frame. Then ¥ |= 4wy, if and ony if Ris
weakly n-transitive

Proof. Let ¥ = (X,R) be an m-frame such that ¥ = 4wn. Let Z € 2o(X) such that
(x,Z) € R™. Suppee x ¢ Z and (x,Z) ¢ RI for every 1 < j < n and consider the
valuationV defined by

V(p)=X-2Z2=2°

So, x €V (p) . Moreover, if (x,Y) € Rl for some1 < j < n, thenY NV (p) # 0, becaise
in the oppasite case Y C Z and as R/ isincreasing for every j, (x,Z) € Rl, whichisa
cortradiction. Thus, x € V (0! p) for every 1 < j < n. It followsthat x e V (O"p),
andsince (x,Z) € R™1, ZNV (p) # 0, whichisa contradiction. Therefore, x € Z or
there exists 1 < j < nsuch that (x,Z) € RI.

Asaume now that Riswe&ly n-transitive. Let x € X andlet x e V (th(p)). Let
Y € 2o(X) suchthat (x,Y) € R™L If x€ Y, thenY NV (p) #0. So,xe V (0" p) . If
x¢ Y, there eists 1 < j <nsuchthat (x,Y) € R, andasx eV (Od/p), YNV (p) # 0.
Thus, x €V (O"p). O

DerINITION 3. Let ¥ = (X,R) beanm-frame. TherelationRis n-transitiveiif
and orly if Yx € X YY € 2o(X), if (x,Y) € R™ then (x,Y) € R".

THEOREM 6. Let ¥ = (X,R) bean mframe. Then # = 4, if and orly if Ris
n-transitive

Proof. Let # = (X,R) be an m-framesuchthat ¥ = 4. Letxe X andletY € 2o(X)
be such that (x,Y) € R™1. Suppcse that (x,Y) ¢ R". AsR" isincreasing, we get that
forall Ze R"(x), Z £ Y. Consider the valuationV defined by

V(p)=X-Y=YC

S0, R"(X) C Ly(p), i.e, xe V (O"p). Since ¥ |=4n, xe V (0" p), ie, YNYC #
0 which isa ocontradiction. Thus, (x,Y) € R". The other diredionit is easy and left to
the reader. O

DEFINITION4. Let 7 = (X,R) beanm-frame. We shall say that Risn-symmetric
if and orly if Yx € X VY € 2y(X), if (x,Y) € R for some j, 0< j <n,thenxeY or
thereis y € Y andk with 0 < k < nsuch that (y, {x}) € R*.

THEOREM 7. Let 7 = (X,R) beanm-frame. Then # |= By, if and only if Ris
n-symnetric.
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Proof. Suppcsethat 7 |= Bn. Let x € X and let Y € #o(X) such that (x,Y) € RI, for
some j < n. Consider the valuationV defined by

V(p) = {x},
with p € Var. Then, x € V (t, (dn (p))). Since(x,Y) € R, for some 0 < j < n, we get
YNV (dh(p)) =YN(V(p)UV (Op)U...UV (O"p)) # 0.

So, if YNV (p) # 0, thenxe Y. If YNV (p) =0, then there exists 0 < k < n such
that Y NV (OKp) # 0. It follows that there existsy € Y such thaty € V (OKp) . Then
(y,K) € R¢ for some K € 2o(X) such that K CV(p) = {x}. Thus, K = {x} and
(. {x}) € R.

Suppacsethat Ris n-symmetric. Let ¢ € Fm. LetV be avaluation ower 7 and
letx e X suchthat x e V (¢). LetY € #o(X) suchthat (x,Y) € R forsome0< j <n.
If xeY,YNV(p) #0, andasV () C V (dn(d)), we get YNV (dn(9)) # 0. So,
XEV (ta(dn(9))) ..

If x¢ Y, thenthere exists 0 < k < nandthere existsy € Y such that (y, {x}) € R¥.
As{x} CV(9), wehavey eV (Okp) CV (dn(9)). S0, YNV (dn ()) # 0. Therefore,
X €V (tn(dn(9)))- 0

Consider the monaonic logics

M4wn = MON+{4un},
M4n — ,\/ION‘|—{4-|']}7

From Theorem 5, Theorem 6 and Theorem 7 we have

Fr(M4wn) = {7 = (X,R)|Riswe&ly n-transitive},
Fr(M4,) = {7 =(X,R)|Risn-transtive},
Fr(MBn) = {7 =(X,R)|Risn-symmetric}.

THEOREM 8. The logic M4y, is canorical and complete with resped to the
classFr(M4yn).

Proof. It sufficesto provethat thevariety ©/ (MON+ {4wn}) iscanoricd, i.e., for eah
Ac vV (MON+{4w}),A(F (A) € V (MON+{4un}). Let Ac ¥ (MON+ {4un}).
Let P € UI(A) and let F € Fi(A) such that (P,F) € Ry™. If F ¢ P and (PF) ¢ Ry
forany 1< j < n, then there exists ap € F and —~ag € P, and by Theorem 4 there exist
aj € Afor 1 < j <n, such that

Dlaj € PandF NBa(a)) = 0.
Leea=—-agVaV...Va, Since

—apADag A... AO%, <Ol (a),
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for every 1 < j < n, wehave

—agAOagA... A", < O™ (a).
It follows that 0""*(a) € P. Since (PF) € RY™, FNBa(a) # 0, i.e, there eists
0 < j < nsuch that FNPa(aj) # 0, which is a contradiction. Therefore £ (A) is
an m-frame of the logic MON + {4un} and consequently it is canoricd. O

THEOREM 9. Thelogic M4, iscanorical andthus complete with resped to the
classFr(M4y).

Proof. Itisvery similar to the proof of Theorem 8. O

Let usrecdl that for any set Boolean algebra A we can construct the dual Stone
spaceof A as the the zeo-dimensional, compad and Hausdorff topdogicd space
(UI(A),7a), Where the topdogy 7a is generated by the dopen basis consisting o
the sets {Ba(a) : ac A}. For ead filter F of A, the set F is a dosed subset, and as
the spaceis compad, then F is compad. We used these fads in the the proof of the
foll owing theorem.

THEOREM 10. The logic MBj, is canorical and complete with resped to the
classFr(MBp).

Prodf. It suffices to prove that the variety 7/ (MON + {Sy}) is canonicd. Let A€
2 (MON+ {Sh}). Let P € UI(A) and F € Fi(A) such that (P,F) € R, for some 0 <
j < n. We provethat

F C P or there exists Q € F suchthat (Q, {P}) € R for some0 < k<n.

Suppp;e neither isthe cae. Then there exists ag € F, such that —ag € P and for eath
Q € F there exist & € P, with 0<i < n, suchthat ¢'a; ¢ Q. It foll ows that

ag=-AaiA...ANapePand—-a Vo V...vOa, ¢ Q.
By mondonicity O'ag < O'a for al 0 <i < n, and hence
agV<agV...O"ag =dn(ag) ¢ Q.
SinceQ e F isan arbitrary element of F,
FCU{Ba(-th(ag)): Qe F}.
SinceF isclosed, then it is compad. So there exist ag,, ..., ag, € A such that

F CBa (ﬁdﬂ (aq,) V—th(aQ,) V...V b (aQI))
=Ba(~(dn(ag) Ath(ag) A Adn(ag))) -
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By monaonicity, we have

dn (8, Aag, A ... A8Q,) < Un(ag;) Ath(8g,) A ... Adh (ag ) »

andsinceF C Ba (— (dn (ag, Aag, A... Aag))), we get

(6) FNBa((dh(ag, Aag,A...Aaqg))) =0.
Itisclea thata=ag, Aag, A...Aag € P,andasa<ty(dn(a)) and (P,F) € R,
F NBa(ch (@) # 0.
contradicticts (6). Therefore, F C P, or there exists Q € Ba (F) suchthat (Q,{P}) € R"f\
forsome0 <k <n. O

5. Relation with thelogicsM $4 and M S5

Let usconsider the formulas

4  Op— 2.
T 0o — ¢.
B ¢— O0h.

We note that the formula 4 is the formula 41. From Theorems 6 and 9it foll ows that
thelogic MON + {4} is complete with resped to the dassof frames 7 = (X, R) where
therelation Ris 1-transitive, i.e., R satisfies the property that for al x € X and for all
Y € 2o(X), if (x,Y) € R?, then (x,Y) € R

THEOREM 11. Let F = (X,R) beanm-frame. Then

1. 7 ETifand odyif (x,{x}) € R, for all xe X.

2. ¥ =Bifandonyif Yx € X VY € Py (X), if (x,Y) € R, thenthereisy €Y such
that (y,{x}) e R

Proof. 1. Supposethat # =T andlet x € X. Consider the valuation
V(p) = {x}°=X~{x},

with p € Var. Sincex ¢ V (p), x ¢ V (Op). Then, there exists Y € 2o(X) such that
(x,Y) e RandYNV (p) =YN{x}°=0. It followsthat Y C {x}, andasY # 0, we get
Y = {x}. Thus, (x,{x}) € R. Theother diredionis ezsy.

The proof of 2is dmilar to the proaof of Theorem 7. O

REMARK 2. Let us note that the above frame condtions are nat exactly the
same condtionsgiven by Hansen in Propasition 51 of [4].
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DEFINITION 5. Let 7 = (X,R) be an m-frame. We shall say that the relation
RC X x #p(X) isa generalized quasi-order if Ris 1-transitiveand(x, {x}) € R, for all
x € X. We shall say that therelation R is a generalized equivalenceif is a generali zed
quasi-order andit satisfies the property 2 of Theorem 11.

Let us consider the monaonic logics

MS4 = MON+{4,T}
MS5 = MON+{4,T,B}.
By Theorem 11 we get that
FriM4) = {¥ =(X,R)|Risagenerdized quasi-order}
Fr(MS5) = {7 =(X,R)|Risageneralized equivaence}.

THEOREM 12. Any exension of MON obtained by addng ary subset of the set
of formulas {4, T,B} iscanorical andframe complete with resped to its characteristic
classof frames.

Proof. We oonsider only the case of MON + {T} and we prove that the variety
v (MON+{T})iscanonicd. LetAc v (MON+{T}).LetPe UI(A). Sincela< a
foral ac A (P {P}) €Ra.

Conversely, suppcee that there exists a € A such that OJa £ a. Then there exists
P € UI(A) suchthat Dac Panda¢ P. Thus, (P,{P}) ¢ Ra. O

We now study the relationship between thelogicsM S4 and MON + {4wn }, and
between thelogics M S5 and M ON + {4wn, Bn}. Consider thefollowingtrandation (n)
from modal formulasto defined by:

TN = T
def
p|" = s
G-y T gy
0" (o).

Let # = (X,R) be an m-frame. Define the relation Rn (n > 0) by
Rn=R°URU...UR".

Itiseasy to seethat the structure (X, Rn) isan m-frame.

LEMMA 5. For evey n > 1, evey model (X,R V), evey x € X, and evay
formula ¢

(X,R V) Ex 0" if and ory if (X,Rn,V) £y 6.
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Proof. The proof is by induction onthe construction o the formula¢. We prove only
the case of formulas O¢. Suppase that the result holds for ¢ and that (X,R,V)

(Od)™. Then (X,R,V) Fx th (¢<n>) e,

xeVv <tn (¢<”>)) -V (¢<“> ADH®™ A...AD“¢<">) .

We prove that
Rn (X) - LV(¢)~

Let (x,Y) € Rn. Then x € Y or there exists 1 < j < nsuch that (x,Y) € RI. If xe,
YNV <¢(“)) # 0. Thus, Rn(X) C Ly(g). If there exists 1 < j < n such that (x,Y) €
RI, thenY NV (¢<“>) #0, becaise x € V (Diq)(”)). So there existsy € Y such that
yev (¢<">). By inductive hypahesis, (X,Rn,V) £y 6. Thus, Rn(x) C Ly ), i€,
(X, R0,V Ex O06.

Conversely,asaime that (X,Rn,V) £x C¢ and that (X,R,V) ¥ th (¢(”>). Then there
exists j < nsuchthat x ¢ V (qu)(”)). So there exists Y € 2o(X) such that (x,Y) € R}

andY NV (¢<">) = 0. Itfollowsthat for everyy € Y,y ¢ V (¢<“>). Then by inductive

hypathesiswe get that, for every y € Y, (X,Rn,V) ¥, ¢. Since(x,Y) € R, (x,Y) € Rn,
Then Rn(X) & Ly(g)- Thus, (X,Rn,V) ¥ [, which isa contradiction. O

REMARK 3. Itiseay to seethat in every m-frame 7 = (X,R), the relation R
iswe&ly n-trangitive (n > 0) if and only if therelation Rn is a generalized quasi-order
i.e., (X,Rn) e Fr(M$4).

Moreover, R is n-symmetric if and orly if Rn satisfies the property that ¥x €
X VY € 2o(X), if (X,Y) € Rn, thenthereisy €Y such that (y,{x}) € Rn. Thus, Ris
wely n-transitive and n-symmetric (n > 0) if and only if the relation Rn is a general-
ized equivalencei.e., (X,Rn) € Fr(MS5).

THEOREM 13. 1. For eveyn> 1l andevey formula ¢,

& € MS4if and ory if & € MON + {4y} .

2. For eveyn > 1 andevey formula ¢,
® € MS5if and ony if ™ € MON + {4yn,Bn} .

Proof. 1. =) Suppasethat ™ ¢ MON + {4yn}. Then there exists an m-frame 7 =
(X,R) inwhich therelation Risweely n-transitive andsuch that # ¥ ¢(". By Lemma
5 (X,Rn) ¥ ¢. Since (X,Rn) € Fr(MON+{T,4}), ¢ ¢ MON+ {T,4}. Thediredion
<) is dmilar andleft to the reader.

The proof of item 2 is gmilar to the previous one. |



74

S. A. Cédani

References

(1
(2
(3

(4
(%]

(6l

(8l

(9
[1q

BLACKBURN P., DE RIJKE M., AND VENEMA Y., Modd Logic, Cambridge University Press 2001
CHELLAS B.F.,Modd Logic: anintroduction, Cambridge Univ. Press 198Q

GOLDBLATT R., Logics of time and computation, vol. 7 of Ledure Notes. CSL| Publications, second
edition, 1992

HANSEN H.H., Monaonic moda logic (Master's thesis), Preprint 200324, ILL C, University of Am-
sterdam, 2003

HANSEN H.H. AND KUPKE C., A coagebraic perspedive onmonaone modd logic, Eledronic Notes
in Theoreticd Computer Science 106 (2004, 121-143

JasmRs J., Logical omniscience and inconsistent belief, in: “Diamonds and Defaults’ (M.de Rijke
ed.), Kluwer, 129-146

JasmRs J., Fused modd logic and inconsistent belief, Procealings of the First World Conference
on the Fundamentals of Al, (de Glas M. and Gabbay D.M. Eds) Angka Pub. Company, Paris, 1991,
267-275

JANSANA R. Same logics related to Von Wright's logic of place, Notre Dame J. of Formal logic 351
(1994, 8898

SEGERBERG K., A nate onthelogic of elsehrere, Theoria 46 (1980, 183-187

VON WRIGHT G.H., A modd logic of place in: “The philosophy d Nicolas Rescher”, (SosaE. ed.),
Reidel, Dordrecht 1979 65-73

AMS Suljed Clasdfication: 03845, 03G99.

Sergio Arturo CELANI, CONICET and Departamento de Mateméticas, Faaultad de Ciencias Exadas,
UNICEN, Pinto 399 7000Tandil, ARGENTINA

e-mall: scelani@exa.unicen.edu.ar

Lavoro pervenuto in redazione il 24.10.2006¢, in forma definitiva, il 25.09.2007.



