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MONOTONIC MODAL L OGICSRELATED TO THE VON

WRIGHT’SLOGIC OF PLACE

Abstract. In this paper we introduce the monotonic modal logics M4wn, M4n and MBn

obtained from the basic strongmonotonic modal logic MON by adding some formulas con-
sidered by R. Jansana in [8]. For each logic defined we prove completenesswith respect to
their characteristic classes of monotonic frames. The canonicity of these logics is proved
using the representation theory for monotonic algebras developed in [4]. We also introduce
the logics MS4 and MS5 as a monotonic counterpart of the normal logics S4 and S5, re-
spectively. Finally, we prove that there exists a translation of the logic MS4 in M4wn, and a
translation of the logic MS5 in M4wn +MBn.

1. Introduction

In [8] R. Jansana introduces some normal modal logics related to the logic of place
presented by Von Wright in [10] and studied semantically by Segerberg in [9]. In the
Von Wright’s logics the modal operator � is interpreted intuitively as ”everywhere
else” and a sentence�ϕ is valid in a placex if the sentenceϕ is valid in every other
placethat can be reached from x. In [8] R. Jansana introduces a weakening of Von
Wright’s logic of place. The main ideaof Jansana is to study the logic of “ in every
other placethat can be reached in fewer than n+ 1 steps” . In a Kripke frame 〈X,R〉
the steps are represented by the accessibilit y relationR⊆ X×X in the followingway:
each indiceis a place, and from one placex∈ X a placey∈ X can be reached directly
when xRy, and from a placex a placey can be reached in j stepswhen xRjy.

In this paper we are interested in other weakening of the Von Wright’s logic of
place. We can give the interpretation saying that a sentence�ϕ is valid in a placex
if the sentenceϕ is valid in every set of places that can be reached from x. With this
interpretationwehave anon-normal modal logic, i.e., amodal logicwheretheformulas
�(ϕ∧ψ) → �ϕ∧�ψ and�⊤ arevalid but the formula�ϕ∧�ψ → �(ϕ∧ψ) isnot
valid. These classes of modal logics are called strong monotonic modal logics [2],
or fused modal logic [6]. Clearly the Kripke frames do not constitute an adequate
semantics for the monotonic modal logics. Instead, strong monotonic modal logics
are interpreted over monotonic frames(or neighbourhoodframesin theterminology of
Chellas [2], or fused Kripkeframesin the terminology of J. Jaspars [7]), i.e. structures
of the type 〈X,R〉 where X is a set and R is a relation between elementsof X and non-
empty subsets of X, such that R(x) = {Z ⊆ X : (x,Z) ∈ R} is closed under supersets,
for each x∈ X.

The purpose of this paper is to study extensions of the minimal strongmono-
tonic modal logic with the axioms introduced by R. Jansana in [8]. In Section 2 we
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give the basic definition of strong monotonic modal logics, and we recall the defini-
tions of monotonic frames, monotonic modal algebras and the relation between these
semantics. In Section 3we prove some new and general results on strongmonotonic
frames that we will used in the paper. In Section 4we introducethe monotonic logics
M4wn, M4n and MBn obtained from the basic strong monotonic modal logic MON
by adding some formulas considered by R. Jansana in [8]. We prove that these log-
ics are canonical by showing that the variety of normal monotonic algebrasassociated
with each logic is closed under canonical extensions. In Section 5 we introduce the
monotonic modal logics obtained from MON by adding some or all of the traditional
modal axioms 4, T, and B. We prove that these logics are complete with respect to
they characteristic classes of monotonic frames. Finally, we prove that there exists a
translation of the logic MS4 = MON+{4,T} in M4wn, and a translation of the logic
MS5 = MON+{4,T,B} in M4wn +MBn.

2. Preliminar ies

Let us consider a propositional language L defined by using a denumerable set of
propositional variablesVar, the connectives∨ and∧, the negation¬ and the proposi-
tional constant ⊤. The modal languageL� is obtained extendingL by means of the a
unary modal operator �. We shall denote by 3 the operator defined by 3p = ¬�¬p,
for p∈Var. The set of all well formed formulasas well as the formula algebra in the
languageL� will bedenoted byFm.

A strong monotonic modal logic is a set of formulas ΛΛΛ in the language L�,
which contains the Classical Propositional CalculusCP, is closed under substitutions,
�⊤ ∈ ΛΛΛ, and is closed under the following inferencerules:

R1. If ϕ,ϕ → ψ ∈ ΛΛΛ, then ψ ∈ ΛΛΛ (ModusPones).

R2. If ϕ → ψ ∈ ΛΛΛ, then �ϕ → �ψ ∈ ΛΛΛ.

The strongmonotonic modal logic generated by a finite set of formulas Γ will
be denoted by ΛΛΛ + {Γ}. For more details on monotonic modal logic see[2], [4], and
[6]. Thesmallest strongmonotonicmodal logic will bedenoted byMON. Wenotethat
the logic MON is themodal logic RB studied byJ. Jaspars in [6].

Relational semantic

Let X be anon-empty set. We denote by P (X) the power set algebra. Let P0(X) =
P (X)−{ /0} . The complement of asubset Y ⊆ X wedenoteby Y−X or Yc.

DEFINITION 1. [6] Amonotonic frame, or m-framefor short, isastructureF =
〈X,R〉 such that X 6= /0, R⊆ X×P0(X), andfor any x∈ X andfor any Y,Y′ ∈ P0(X),
if Y′ ⊆Y andY′ ∈ R(x) , then Y ∈ R(x) , where R(x) = {Z ∈ P0(X) : (x,Z) ∈ R} .
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Let F = 〈X,R〉 be an m-frame. For each U ∈ P (X), wedefine thesets

LU = {Y ∈ P0(X) |Y∩U 6= /0}

and
Lc

U = {Y ∈ P0(X) |Y∩U = /0} .

LEMM A 1. Let F = 〈X,R〉 beanm-frame. Then:

1. LU∩V ⊆ LU ∩LV andLU∪V = LU ∪LV , for everyU,V ∈ P (X).

2. LX = P0(X) andL /0 = /0.

Proof. It is easy and left to the reader.

Let F = 〈X,R〉 be an m-frame. We define aunary operation �R on P (X) as
follows:

�R(U) = {x∈ X | ∀Y ∈ R(x) (Y∩U 6= /0)}

= {x∈ X | R(x) ⊆ LU} ,

for each U ∈ P (X). We note that �R(X) = X, and �R(U ∩V) ⊆ �R(U)∩�R(V), for
all U,V ∈ P (X). Thedual operator 3R is defined by

3R(U) = {x∈ X | ∃Y ∈ R(x) : Y ⊆U}

= {x∈ X | R(x)∩Lc
Uc 6= /0} ,

for each U ∈ P (X).

A valuationV onan m-frameF = 〈X,R〉 is a functionV : Var → P (X). A val-
uationcan be extended recursively to theset of all formulasby meansof the following
clauses:

1. V (⊤) = X,

2. V (ϕ∧ψ) = V (ϕ)∩V (ψ) , V (ϕ∨ψ) = V (ϕ)∪V (ψ) ,

3. V (¬ϕ) = V (ϕ)c ,

4. V (�ϕ) =
{

x∈ X | R(x) ⊆ LV(ϕ)

}

= �R(V (ϕ)).

An m-model is a pair M = 〈F ,V〉 whereF is an m-frame andV is a valuation
onF . Thenotionsof truth at apoint, validity in amodel and validity in an m-framefor
formulasaredefined in theusual way. A formulaϕ isvalid at point x in amodel M , in
symbolsM �x ϕ if x∈V (ϕ) . Theformulaϕ isvalid in amodel M , in symbolsM � ϕ,
if V (ϕ) = X. Finally, the formula ϕ is valid in anm-frame F , in symbols F � ϕ, if
V (ϕ) = X for all valuationsV defined onF .

The monotonic modal logic of a class of monotonic frames K is Th(K) =
{ϕ ∈ Fm : F � ϕ for all F ∈ K}. Let ΛΛΛ be a monotonic modal logic. The class of
all m-framesF such that ΛΛΛ ⊆ Th({F }) = Th(F ) is called the characteristic classof
ΛΛΛ, and it is denoted byFr(ΛΛΛ) . A monotonic logic ΛΛΛ is frame completewith respect to
a classof m-framesK if ΛΛΛ = Th(K) . Thelogic MON is frame completewith respect
to the classof all m-frames(see[2], [4], and [5]).
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Algebraic semantic

The algebraicsemanticof strongmonotonicmodal logicsisgiven bymeansof Boolean
algebraswith amonotonicmodal operator. Let usrecall that astrongmonotonicmodal
algebra, or m-algebra, is an pair AAA = 〈A,�〉, where A is a Boolean algebra and � is a
unary operator defined onA such that

M1. �(a∧b)≤ �a∧�b,

M2. �1 = 1.

Thedual operator 3 is defined by3a = ¬�¬a. It is clear that the classof m-algebras
isa variety that will bedenoted byMA.

Given a monotonic frameF = 〈X,R〉, the algebra

〈P (X),∪,∩,−,�R, /0,X〉

is a monotonic modal algebra called the (full ) complex algebra of F . The complex
algebra of F we will also denote by 〈P (X),�R〉 . A complexalgebra is a subalgebra
of a full complex algebra 〈P (X),�R〉 for somem-frameF .

REMARK 1. The standard semantic tool used to interpret strong monotonic
modal logics is the neighbourhoodsemantics (see[2], [4] or [5]). A monotonic neigh-
bourhoodmodel is a pair 〈F ,V〉 where F is an m-frame andV is a valuation onF .
The notion of a formula being true is inductively defined for boolean connectives the
same way as for m-models, and for formulasof type�ϕ is defined by

V (�p) = {x∈ X |V(ϕ) ∈ R(x)} .

In accordancewith this interpretationwe can definein P (X) amonotonicoperator mR :
P (X) → P (X) as:

(1) mR(U) = {x∈ X |U ∈ R(x)} ,

for each U ∈ P (X). Clearly the pair 〈P (X),mR〉 is a monotonic modal algebra, called
the neighbourhoodcomplex algebra of F . We note that if 〈F ,V〉 is a neighbourhood
model, then V (�p) = mR(V (p)), for each p∈Var. In the next result we establish the
relation between monotonic neighbourhoodmodelsandm-modelsby provingthat any
complex algebra induces an equivalent neighbourhoodcomplex algebra, and recipro-
cally any neighbourhoodcomplex algebra inducesan equivalent complex algebra.

LEMM A 2. 1. Let 〈P (X),�R〉 bea complexalgebra of anm-frameF = 〈X,R〉.
Then there exists a neighbourhoodcomplexalgebra 〈P (X),mJ〉 of an m-frame FJ =
〈X,J〉 such that �R(U) = mJ(U), for all U ∈ P (X).

2. Let 〈P (X),mJ〉 be a neighbourhoodcomplex algebra of an m-frame F =
〈X,J〉. Then there exists a complex algebra 〈P (X),�R〉 of an m-frame FR = 〈X,R〉
such that mJ(U) = �R(U), for all U ∈ P (X).
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Proof. 1. Let F = 〈X,R〉 be an m-frame. We define arelationJ ⊆ X×P0(X) by:

(x,U) ∈ J if and only if ∀Z ∈ P0(X)((x,Z) ∈ R implies that Z∩U 6= /0) .

It isclear that 〈X,J〉 isan m-frame. Weprovethat �R(U) = mJ(U), for all U ∈ P (X).
Let x∈�R(U) andwesupposethat x /∈mJ(U). Then, (x,U) /∈ J. By thedefinition of J,
wehavethat there existsZ∈ P0(X) such that (x,Z)∈RandZ∩U = /0. Sincex∈�R(U)
and (x,Z) ∈ R, Z∩U 6= /0, which isa contradiction. It followsthat x∈ mJ(U).

Suppose that x∈ mJ(U). Then (x,U) ∈ J. Let Z ∈ P0(X) such that (x,Z) ∈ R.
As (x,U) ∈ J, Z∩U 6= /0. Thus, x∈ �R(U).

2. Let F = 〈X,J〉 be an m-frame. Let us define the relation R⊆ X×P0(X) as
follows:

(x,Y) ∈ R if and only if ∀Z ∈ P0(X)(Z ∈ J(x) implies that Y∩Z 6= /0) .

It is clear that for all Y,K ∈ P0(X), if Y ⊆ K and (x,Y) ∈ R, then (x,K) ∈ R. So, F R =
〈X,R〉 is also an m-frame. We prove that mJ(U) = �R(U), for all U ∈ P (X). If x∈
mJ(U), U ∈ J(x). Let (x,Y) ∈ R. By the definition of R, since U ∈ J(x), we get
Y∩U 6= /0. Then, x∈ �R(U).

Assumethat x∈�R(U). Supposethat U /∈ J(x). SinceF = 〈X,J〉 ismonotonic,
Z * U for all Z ∈ J(x), i.e, Z∩Uc 6= /0 for all Z ∈ J(x). By the definition of the
relation R, (x,Uc) ∈ R. As x ∈ �R(U), U ∩Uc 6= /0, which is a contradiction. Thus,
U ∈ J(x).

Let AAA be an m-algebra. We denote the set of all ultrafilters of AAA by Ul(AAA)
and the set of all proper filters of AAA by Fi(AAA). For each a ∈ A we consider the set
βAAA(a) = {P∈ Ul(AAA) : a∈ P} . For each proper filter F of AAA consider theset

F̂ = {P∈ Ul(AAA) : F ⊆ P} .

We note that for each proper filter F of AAA,

F̂ =
T

{βAAA(a) : a∈ F} .

Now wedefine arelation between ultrafiltersandsubsetsof ultrafiltersof am-algebra.
We haveonly to consider particular setsof ultrafilters. Moreprecisely, consider theset

C0 (Ul(AAA)) =
{

Y ⊆ Ul(AAA) : Y = F̂ for someproper filter F of AAA
}

.

We define arelationRAAA ⊆ Ul(AAA)× C0(Ul(AAA)) as follows:

(2) (P, F̂) ∈ RAAA ⇔ ∀�a∈ P
(

F̂ ∩βAAA(a) 6= /0
)

.

The ultrafilter m-frame of AAA, is the m-frame F (AAA) = 〈Ul(AAA),RAAA〉 . We note that the
relationRAAA can also bedefined asa subset of Ul(AAA)×Fi(AAA) as follows:

(P,F) ∈ RAAA ⇔ ∀�a∈ P
(

F̂ ∩βAAA(a) 6= /0
)

⇔ F ⊆ 3
−1(P).
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Any of these definitionswe will used in the rest of this work. The following theorem
follows from the results given by H. H. Hansen [4] (see also [5] and [6]). We give a
proof for completeness.

THEOREM 1. Let AAA beanm-algebra. Let a∈ A, andlet P∈ Ul(AAA).

1. 3a∈ P if and only if there existsF ∈ Fi(AAA) such that (P, F̂) ∈ RAAA and a∈ F.

2. �a∈ P if and only if for all F ∈ Fi(AAA) such that (P, F̂) ∈ RAAA, implies that F̂ ∩
βAAA(a) 6= /0.

Proof. We prove 1. Let 3a∈ P. Let us consider the filter F = F(a) generated by a.
Then it iseasy to seethat F(a) ⊆ 3

−1 (P). So, (P, F̂) ∈ RAAA anda∈ F .

Assume that there exists F ∈ Fi(AAA) such that (P, F̂) ∈ RAAA and a ∈ F . From
a∈ F ⊆ 3

−1 (P), we get 3a∈ P.

Let AAA be amonotonic algebra. The complex algebra

A(F (AAA)) =
〈

P (Ul(AAA)) ,∪,∩,c ,�RAAA, /0,Ul(AAA)
〉

of F (AAA) is called thecanonical extensionof AAA.

THEOREM 2. [4] Every m-algebra AAA is isomorphic to the subalgebra of them-
algebra A(F (AAA)) by means of the mapping βAAA : AAA → P (Ul(AAA)) defined by βAAA(a) =
{P∈ Ul(AAA) : a∈ P}.

Proof. It is clear that βAAA is an injectiveBoolean homomorphism. From Theorem 1 we
havethat βAAA(�a) = �RAAAβAAA(a), for any a∈ A. Thus, βAAA is an injectivehomomorphism
of monotonic modal algebras.

Let F = 〈X,R〉 be an m-frame. As the elements of 〈P (X),�R〉 are subsets of
the universeof F , a valuation in 〈P (X),�R〉 is nothing but a valuation onF . In other
words, for any formulaϕ, F � ϕ iff the equation ϕ ≈ 1 is valid in 〈P (X),�R〉. If K is
a classof m-frames, then we denote the classof all full complex algebrasof m-frames
in K by CmK . We note that for any formula ϕ, ϕ ∈ Th(K) iff the equation ϕ ≈ 1
is valid in the classCmK , and that for any formulas ϕ and ψ, the equation ϕ ≈ ψ is
valid in the classCmK iff the formula(ϕ → ψ)∧ (ψ → ϕ) ∈ Th(K). Thus, weget that
the monotonic modal logic Th(K) of a classof monotonic frames K can be identified
with the equational theory of the classof complex algebras CmK , that is, the variety
V (CmK) = HSP(CmK).

If ΛΛΛ is a monotonic modal logic, then the classof monotonic modal algebras
V (ΛΛΛ) = {AAA∈ MA : AAA � ϕ, for all ϕ ∈ ΛΛΛ} is a variety defined by the equations ϕ ≈ 1,
for all ϕ ∈ ΛΛΛ. It is easy to check that for any logic ΛΛΛ, ϕ ∈ ΛΛΛ iff ϕ is valid in every
algebra of V (ΛΛΛ) . Thus, we get an algebraic completenessresults for each logic ΛΛΛ.
Moreover, MA = V (MON) (seeChapter 7 of [4] or [5]).

Completely analogous to the case of normal modal logic (see[1] Chapter 5), a
variety V of monotonic modal algebras is said to be complete if there exists a class
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of m-frames K which generates V , i.e. V = V (CmK)). Then we have that a logic
ΛΛΛ is frame complete with respect to a classof m-frames K iff the variety V (ΛΛΛ) is a
completevariety. In other words,

ΛΛΛ = Th(K) iff V (ΛΛΛ) = V (CmK)) .

On the other hand, a classof monotonic modal algebrasM is canonical if M is closed
under canonical extensions, i.e. A(F (AAA)) ∈ M whenever AAA ∈ M . As in the case of
normal modal logic (see [1] Proposition 5.45, or [4]), we can prove that a logic ΛΛΛ
is canonical i f the variety V (ΛΛΛ) is canonical. In order obtain this characterization it
is sufficient to show that for any algebra AAA in the variety V (ΛΛΛ), the ultrafilter frame
F (AAA) of AAA isa frameof the logic ΛΛΛ, i.e., F (AAA) ∈ Fr(ΛΛΛ), or equivalently, that A(F (AAA))
belongsto V (ΛΛΛ).

THEOREM 3. The logic MON is canonical and complete with respect to the
classof all m-frames.

3. Some useful properties

In this sectionweprovesomeresultswhich will beused in the next sections.

Let ϕ ∈ Fm. For each n≥ 0 wedefine inductively the formula�
nϕ as�

0ϕ = ϕ
and�

n+1ϕ = ��
nϕ, andtheformulatn (ϕ) = ϕ∧�ϕ∧ . . .∧�

nϕ. Similarly wedefine
the formulas3

nϕ anddn (ϕ) = ϕ∨3ϕ∨ . . .∨3
nϕ.

Let F = 〈X,R〉 be an m-frame. We define the binary relation R̄⊆ P0(X)×
P0(X) as follows:

(Z,Y) ∈ R̄⇔∀x∈ Z : (x,Y) ∈ R.

Define inductively the n-compositionRn of Ras follows:

(x,Y) ∈ R0 ⇔ x∈Y.

(x,Y) ∈ Rn+1 ⇔ ∃Z1, ...,Zn ∈ P0(X) such that (x,Z1) ∈ R,
(Zi ,Zi+1) ∈ R̄, for 1≤ i ≤ n−1 and (Zn,Y) ∈ R̄.

Finally, wedefine the relation R̄n ⊆ P0(X)×P0(X) by:

(Y,Z) ∈ R̄n ⇔∀y∈Y : (y,Z) ∈ Rn.

We note that (Y,Z) ∈ R̄0 if and only if Y ⊆ Z. With thisnotation, wehave that

(3)
(x,Y) ∈ Rn+1 ⇔ ∃Z ∈ P0(X) : (x,Z) ∈ R and (Z,Y) ∈ R̄n

⇔ ∃Z ∈ P0(X) : (x,Z) ∈ Rn and (Z,Y) ∈ R̄.

LEMM A 3. Let F = 〈X,R〉 be an m-frame. Then for every n≥ 0, the relation
Rn is increasing, i.e., for every Y,Z ∈ P0(X), if Y ⊆ Z andY ∈ Rn (x), then Z ∈ Rn (x) .
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Proof. The proof is by induction onn. Let n = 0. Let Y ⊆ Z and (x,Y) ∈ R0. Then
x∈Y ⊆ Z. So, (x,Z) ∈ R0. Let Y,Z ∈ P0(X) such that Y ⊆ Z and (x,Y) ∈ Rn+1. Then
there exist B1, ...,Bn ∈ P0(X) such that

(x,B1) ∈ R, (Bi ,Bi+1) ∈ R̄, with 1≤ i ≤ n−1, and (Bn,Y) ∈ R̄.

So, for every b ∈ Bn, (b,Y) ∈ R. As Y ⊆ Z and R is increasing, for every b ∈ Bn,
(b,Z) ∈ R. It followsthat (Bn,Z) ∈ R̄. Thus, (x,Z) ∈ Rn+1.

Let F = 〈X,R〉 be an m-frame. For any U ∈ P (X) we define inductively the
operator �

n
R(U) by:

�
0
R(U) = U

�
n+1
R (U) = �

n
R(�R(U)) , for n > 0.

LEMM A 4. Let F = 〈X,R〉 be an m-frame. Then, �
n
R(U) = �Rn (U) for every

n≥ 0 andfor every U ∈ P (X).

Proof. The proof is by induction onn. Let n = 0. Since�
0
R(U) = U , we prove that

U = �R0 (U). Let x ∈ �R0 (U). So, for every Y ∈ R0 (x), Y∩U 6= /0, in particular as
(x,{x}) ∈ R0, x∈ U . Let x∈ U . Then for every Y such that x∈ Y, Y∩U 6= /0. Thus,
R0 (x) ⊆ LU , i.e., x∈ �R0 (U). Suppose that the result holds for n. Let U ∈ P (X) and
let x∈X. Supposethat x∈�

n+1
R (U) = �

n
R(�R(U)) . Weprovethat Rn+1 (x)⊆ LU . Let

Y ∈ P0(X) such that (x,Y) ∈ Rn+1. Then there existsV ∈ P0(X) such that (x,V) ∈ Rn

and (V,Y) ∈ R̄, i.e.,

(x,V) ∈ Rn and (v,Y) ∈ R, for every v∈V.

By assumptionandinductivehypothesiswehavethat x∈�
n
R(�R(U))= �Rn (�R(U)) .

So, Rn(x) ⊆ L�R(U). Since, (x,V) ∈ Rn, V ∩�R(U) 6= /0. Thus, there exists v ∈ V
such that R(v) ⊆ LU . Since (v,Y) ∈ R, Y ∩U 6= /0, i.e., Y ∈ LU . Suppose now that
x /∈ �

n+1
R (U). By inductivehypothesiswehave

�
n+1
R (U) = �

n
R(�R(U)) = �Rn (�R(U)) .

Then there existsY ∈ P0(X) such that (x,Y) ∈ Rn andY∩�R(U) = /0. Sincefor every
y∈Y, R(y) LU , wehavethat for each y∈Y there existsVy ∈ P0(X) such that (y,Vy)∈
R andVy∩U = /0. Consider the set

V =
[

{Vy : y∈Y} .

SinceF isan m-frame, andVy ⊆V, (y,V)∈R. Thus, for every y∈Y weget (y,V)∈ R,
i.e., (Y,V) ∈ R̄. As (x,Y) ∈ Rn and (Y,V) ∈ R̄, we get (x,V) ∈ Rn+1, and taking into
account that V ∩U = /0, we haveRn+1(x) LU . Therefore, x /∈ �Rn+1 (U) .

COROLL ARY 1. Let 〈X,R,V〉 be an m-model. For every formula ϕ, for all
n 6= 0, andfor every x∈ X :

x∈V (�nϕ) ⇔ Rn (x) ⊆ LV(ϕ).
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Proof. The results follows from the previous Lemma and by the fact that V (�nϕ)
= �

n
R(V (ϕ)), for every formulaϕ.

THEOREM 4. Let AAA be an m-algebra. Let P∈ Ul(AAA) andF ∈ Fi(AAA). Then for
all n≥ 0

(P,F) ∈ Rn
AAA ⇔ F ⊆ {a∈ A : 3

na∈ P} .

Proof. Theproof isby induction onn. The case n = 0 followsby the followingequiv-
alences:

(P,F) ∈ R0
AAA ⇔ P∈ F̂

⇔ F ⊆
{

a∈ A : 3
0a = a∈ P

}

.

We note that the case n = 1 follows from Theorem 1. Supposethat the result holds for
n. If (P,F) ∈ Rn+1

A , then it iseasy to seethat F ⊆
{

a∈ A : 3
n+1a∈ P

}

. Supposethat

F ⊆
{

a∈ A : 3
n+1a∈ P

}

.

Consider the set X = {3na∈ A : a∈ F} and let H be the filter generated by X. We
provethat

(4) H ⊆ 3
−1(P) .

Let x ∈ H. Then there exist a1, ...,ak ∈ F such that 3
na1∧ . . .∧3

nak ≤ x. It follows
that

3(3n (a1∧ . . .∧ak)) ≤ 3
na1∧ . . .∧3

nak ≤ 3x.

Since, a1∧ . . .∧ak ∈ F,

3(3n (a1∧ . . .∧ak)) = 3
n+1(a1∧ . . .∧ak) ≤ 3x∈ P.

Thus, H ⊆ 3
−1 (P) . Now weprovethat (H,F) ∈ R̄n

AAA. Let Q∈ Ul(AAA) such that H ⊆ Q.
By inductivehypothesis, the condition(Q,F) ∈ Rn

AAA is equivalent to

F ⊆ {a∈ A : 3
na∈ Q} .

Let a∈ F . Then 3
na∈ X ⊆ H ⊆ Q. So, 3

na∈ Q. Thus, (Q,F) ∈ Rn
AAA, for all Q∈ Ĥ,

and hencewe conclude(P,F) ∈ Rn+1
AAA because (P,H) ∈ RAAA.

4. The logicsM4wn, M4n and MBn

Let usconsider the followingformulas:

(5)
4n �

nϕ → �
n+1ϕ.

4wn tn (ϕ) → �
n+1ϕ.

Bn ϕ → tn (dn (ϕ)) .

Now we investigate the characteristic classof framesof extensionsof the logic
MON obtained byadding formulasfrom theset {4n,4wn,Bn}.
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DEFINITION 2. Let F = 〈X,R〉 be an m-frame. The relation R is weakly n-
transitive if and only if ∀x∈ X ∀Y ∈ P0(X), if (x,Y) ∈ Rn+1, then x∈Y or there exists
1≤ j ≤ n such that (x,Y) ∈ Rj .

THEOREM 5. Let F = 〈X,R〉 beanm-frame. Then F |= 4wn if and only if R is
weakly n-transitive.

Proof. Let F = 〈X,R〉 be an m-frame such that F |= 4wn. Let Z ∈ P0(X) such that
(x,Z) ∈ Rn+1. Suppose x /∈ Z and (x,Z) /∈ Rj for every 1 ≤ j ≤ n and consider the
valuationV defined by

V (p) = X−Z = Zc.

So, x∈V (p) . Moreover, if (x,Y) ∈ Rj for some1≤ j ≤ n, thenY∩V (p) 6= /0, because
in the opposite caseY ⊆ Z and as Rj is increasing for every j, (x,Z) ∈ Rj , which is a
contradiction. Thus, x∈V

(

�
j p

)

for every 1≤ j ≤ n. It follows that x∈V
(

�
n+1p

)

,

and since(x,Z) ∈ Rn+1, Z∩V (p) 6= /0, which is a contradiction. Therefore, x∈ Z or
there exists1≤ j ≤ n such that (x,Z) ∈ Rj .

Assume now that R is weakly n-transitive. Let x∈ X and let x∈V (tn (p)) . Let
Y ∈ P0(X) such that (x,Y) ∈ Rn+1. If x∈Y, thenY∩V (p) 6= /0. So, x∈V

(

�
n+1p

)

. If
x /∈Y, there exists1≤ j ≤ n such that (x,Y) ∈ Rj , and as x∈V

(

�
j p

)

, Y∩V (p) 6= /0.

Thus, x∈V
(

�
n+1p

)

.

DEFINITION 3. Let F = 〈X,R〉 beanm-frame. TherelationR is n-transitive if
and only if ∀x∈ X ∀Y ∈ P0(X), if (x,Y) ∈ Rn+1, then (x,Y) ∈ Rn.

THEOREM 6. Let F = 〈X,R〉 be an m-frame. Then F |= 4n if and only if R is
n-transitive.

Proof. Let F = 〈X,R〉 be an m-framesuch that F |= 4n. Let x∈ X and let Y ∈ P0(X)
be such that (x,Y) ∈ Rn+1. Suppose that (x,Y) /∈ Rn. As Rn is increasing, we get that
for all Z ∈ Rn (x), Z*Y. Consider the valuationV defined by

V (p) = X−Y = Yc.

So, Rn (x) ⊆ LV(p), i.e., x ∈ V (�np) . Since F |= 4n, x ∈ V
(

�
n+1p

)

, i.e., Y∩Yc 6=
/0 which is a contradiction. Thus, (x,Y) ∈ Rn. The other direction it is easy and left to
the reader.

DEFINITION 4. Let F = 〈X,R〉 beanm-frame. Weshall say that R isn-symmetric
if and only if ∀x∈ X ∀Y ∈ P0(X), if (x,Y) ∈ Rj for some j, 0≤ j ≤ n, then x ∈ Y or
there is y∈Y andk with 0≤ k≤ n such that (y,{x}) ∈ Rk.

THEOREM 7. Let F = 〈X,R〉 be an m-frame. Then F |= Bn if and only if R is
n-symmetric.
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Proof. Suppose that F |= Bn. Let x ∈ X and let Y ∈ P0(X) such that (x,Y) ∈ Rj , for
some j ≤ n. Consider thevaluationV defined by

V (p) = {x} ,

with p∈Var. Then, x∈V (tn (dn (p))). Since(x,Y) ∈ Rj , for some0≤ j ≤ n, weget

Y∩V (dn (p)) = Y∩ (V (p)∪V (3p)∪ ...∪V (3np)) 6= /0.

So, if Y∩V (p) 6= /0, then x ∈ Y. If Y∩V (p) = /0, then there exists 0 ≤ k ≤ n such
that Y∩V

(

3
kp

)

6= /0. It follows that there exists y∈ Y such that y ∈ V
(

3
kp

)

. Then
(y,K) ∈ Rk for some K ∈ P0(X) such that K ⊆ V (p) = {x} . Thus, K = {x} and
(y,{x}) ∈ Rk.

Suppose that R is n-symmetric. Let ϕ ∈ Fm. Let V be avaluation over F and
let x∈ X such that x∈V (ϕ) . Let Y ∈ P0(X) such that (x,Y) ∈ Rj for some 0≤ j ≤ n.
If x ∈ Y, Y∩V (ϕ) 6= /0, and as V (ϕ) ⊆ V (dn (ϕ)), we get Y ∩V (dn (ϕ)) 6= /0. So,
x∈V (tn (dn (ϕ))) ..

If x /∈Y, then there exists0≤ k≤ n andthere existsy∈Y such that (y,{x})∈Rk.
As{x} ⊆V (ϕ), wehavey∈V

(

3
kϕ

)

⊆V (dn (ϕ)) . So, Y∩V (dn (ϕ)) 6= /0. Therefore,
x∈V (tn (dn (ϕ))) .

Consider themonotonic logics

M4wn = MON+{4wn} ,
M4n = MON+{4n} ,
MBn = MON+{Bn} .

From Theorem 5, Theorem 6 andTheorem 7 wehave

Fr(M4wn) = {F = 〈X,R〉 | R is weakly n-transitive} ,
Fr(M4n) = {F = 〈X,R〉 | R is n-transitive} ,
Fr(MBn) = {F = 〈X,R〉 | R is n-symmetric} .

THEOREM 8. The logic M4wn is canonical and complete with respect to the
classFr(M4wn).

Proof. It sufficesto provethat thevariety V (MON+{4wn}) iscanonical, i.e., for each
AAA∈ V (MON+{4wn}) , A(F (AAA)) ∈ V (MON+{4wn}). Let AAA∈ V (MON+{4wn}).
Let P ∈ Ul(AAA) and let F ∈ Fi(AAA) such that (P,F) ∈ Rn+1

AAA . If F  P and (P,F) /∈ Rj
AAA

for any 1≤ j ≤ n, then there exists a0 ∈ F and¬a0 ∈ P, and byTheorem 4 there exist
a j ∈ A for 1≤ j ≤ n, such that

�
ja j ∈ P and F̂ ∩βAAA(a j) = /0.

Let a = ¬a0∨a1∨ . . .∨an. Since

¬a0∧�a1∧ . . .∧�
nan ≤ �

j (a) ,
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for every 1≤ j ≤ n, wehave

¬a0∧�a1∧ . . .∧�
nan ≤ �

n+1(a) .

It follows that �
n+1(a) ∈ P. Since (P,F) ∈ Rn+1

A , F̂ ∩ βAAA(a) 6= /0, i.e., there exists
0 ≤ j ≤ n such that F̂ ∩ βAAA(a j) 6= /0, which is a contradiction. Therefore F (AAA) is
an m-frameof the logic MON+{4wn} andconsequently it is canonical.

THEOREM 9. Thelogic M4n iscanonical andthuscompletewith respect to the
classFr(M4n).

Proof. It is very similar to the proof of Theorem 8.

Let us recall that for any set Boolean algebraAAA we can construct thedual Stone
space of AAA as the the zero-dimensional, compact and Hausdorff topological space
〈Ul(AAA),TAAA〉 , where the topology TAAA is generated by the clopen basis consisting of
the sets {βAAA(a) : a∈ A}. For each filter F of AAA,,, the set F̂ is a closed subset, and as
the spaceis compact, then F̂ is compact. We used these facts in the the proof of the
following theorem.

THEOREM 10. The logic MBn is canonical and complete with respect to the
classFr(MBn).

Proof. It suffices to prove that the variety V (MON+{Sn}) is canonical. Let AAA ∈

V (MON+{Sn}) . Let P∈ Ul(AAA) and F ∈ Fi(AAA) such that (P,F) ∈ Rj
AAA for some 0≤

j ≤ n. We provethat

F ⊆ P or there existsQ∈ F̂ such that (Q,{P}) ∈ Rk
AAA for some0≤ k≤ n.

Suppose neither is the case. Then there exists a0 ∈ F, such that ¬a0 ∈ P and for each
Q∈ F̂ there exist ai ∈ P, with 0≤ i ≤ n, such that 3

iai /∈ Q. It follows that

aQ = ¬a0∧a1∧ . . .∧an ∈ P and¬a0∨3a1∨ . . .∨3
nan /∈ Q.

By monotonicity 3
iaQ ≤ 3

iai for all 0≤ i ≤ n, and hence

aQ∨3aQ∨ . . .3naQ = dn (aQ) /∈ Q.

SinceQ∈ F̂ is an arbitrary element of F̂,

F̂ ⊆
[

{

βAAA(¬dn (aQ)) : Q∈ F̂
}

.

SinceF̂ is closed, then it is compact. So there exist aQ1, ...,aQl ∈ A such that

F̂ ⊆ βAAA
(

¬dn (aQ1)∨¬dn(aQ2)∨ . . .∨¬dn
(

aQl

))

= βAAA
(

¬
(

dn (aQ1)∧dn(aQ2)∧ . . .∧dn
(

aQl

)))

.
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By monotonicity, wehave

dn (aQ1 ∧aQ2 ∧ . . .∧aQn) ≤ dn (aQ1)∧dn (aQ2)∧ . . .∧dn
(

aQl

)

,

andsinceF̂ ⊆ βAAA
(

¬
(

dn
(

aQ1 ∧aQ2 ∧ . . .∧aQl

)))

, we get

(6) F̂ ∩βAAA
((

dn
(

aQ1 ∧aQ2 ∧ . . .∧aQl

)))

= /0.

It is clear that a = aQ1 ∧aQ2 ∧ . . .∧aQl ∈ P, andasa≤ tn (dn(a)) and (P,F) ∈ Rj ,

F̂ ∩βAAA(dn (a)) 6= /0,

contradicticts(6). Therefore, F ⊆ P, or there existsQ∈ βAAA(F) such that (Q,{P}) ∈ Rk
AAA

for some0≤ k≤ n.

5. Relation with the logicsMS4 and MS5

Let usconsider the formulas

4 �ϕ → �
2ϕ.

T �ϕ → ϕ.
B ϕ → �3ϕ.

We note that the formula 4 is the formula 41. From Theorems 6 and 9 it follows that
thelogic MON+{4} iscompletewith respect to the classof framesF = 〈X,R〉 where
the relation R is 1-transitive, i.e., R satisfies the property that for all x∈ X and for all
Y ∈ P0(X), if (x,Y) ∈ R2, then (x,Y) ∈ R.

THEOREM 11. Let F = 〈X,R〉 be anm-frame. Then

1. F |= T if and only if (x,{x}) ∈ R, for all x∈ X.

2. F |= B if and only if ∀x∈ X ∀Y ∈ P0 (X), if (x,Y) ∈ R, then there is y∈Y such
that (y,{x}) ∈ R.

Proof. 1. Supposethat F |= T and let x∈ X. Consider thevaluation

V (p) = {x}c = X−{x} ,

with p ∈ Var. Since x /∈ V (p), x /∈ V (�p). Then, there exists Y ∈ P0(X) such that
(x,Y) ∈ R andY∩V (p) = Y∩{x}c = /0. It follows that Y ⊆ {x}, andasY 6= /0, we get
Y = {x}. Thus, (x,{x}) ∈ R. Theother direction iseasy.

Theproof of 2 is similar to theproof of Theorem 7.

REMARK 2. Let us note that the above frame conditions are not exactly the
same conditionsgiven by Hansen in Proposition 5.1 of [4] .
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DEFINITION 5. Let F = 〈X,R〉 be an m-frame. We shall say that the relation
R⊆ X×P0(X) isa generalized quasi-order if R is1-transitiveand(x,{x}) ∈ R, for all
x∈ X. We shall say that the relation R is a generalized equivalenceif is a generalized
quasi-order andit satisfies theproperty 2 of Theorem11.

Let usconsider themonotonic logics

MS4 = MON+{4,T}
MS5 = MON+{4,T,B} .

By Theorem 11we get that

Fr(MS4) = {F = 〈X,R〉 | R is a generalized quasi-order}
Fr(MS5) = {F = 〈X,R〉 | R is a generalized equivalence} .

THEOREM 12. Any extension of MON obtained by adding any subset of theset
of formulas{4,T,B} iscanonical andframe completewith respect to itscharacteristic
classof frames.

Proof. We consider only the case of MON + {T} and we prove that the variety
V (MON+{T}) iscanonical. Let AAA∈V (MON+{T}) . Let P∈Ul(AAA). Since�a≤ a
for all a∈ A, (P,{P}) ∈ RAAA.

Conversely, supposethat there existsa∈ A such that �a� a. Then there exists
P∈ Ul(AAA) such that �a∈ P anda /∈ P. Thus, (P,{P}) /∈ RAAA.

Wenow studytherelationship between the logicsMS4 andMON+{4wn}, and
between thelogicsMS5 andMON+{4wn,Bn}. Consider thefollowingtranslation(n)
from modal formulasto defined by:

⊤(n) def
= ⊤

p(n)
j

def
= p j

(ϕ → ψ)(n) def
= ϕ(n) → ψ(n)

(�ϕ)(n) def
= tn

(

ϕ(n)
)

.

Let F = 〈X,R〉 be an m-frame. Define the relationRn (n≥ 0) by

Rn = R0∪R∪ . . .∪Rn.

It iseasy to seethat thestructure 〈X,Rn〉 is an m-frame.

LEMM A 5. For every n ≥ 1, every model 〈X,R,V〉 , every x∈ X, and every
formula ϕ

〈X,R,V〉 �x ϕ(n) if and only if 〈X,Rn,V〉 �x ϕ.
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Proof. The proof is by induction onthe construction of the formulaϕ. We proveonly
the case of formulas �ϕ. Suppose that the result holds for ϕ and that 〈X,R,V〉 �x

(�ϕ)(n). Then 〈X,R,V〉 �x tn
(

ϕ(n)
)

, i.e.,

x∈V
(

tn
(

ϕ(n)
))

= V
(

ϕ(n)∧�ϕ(n) ∧ . . .∧�
nϕ(n)

)

.

We provethat
Rn(x) ⊆ LV(ϕ).

Let (x,Y) ∈ Rn. Then x ∈ Y or there exists 1≤ j ≤ n such that (x,Y) ∈ Rj . If x ∈ Y,

Y∩V
(

ϕ(n)
)

6= /0. Thus, Rn(x) ⊆ LV(ϕ). If there exists 1 ≤ j ≤ n such that (x,Y) ∈

Rj , then Y∩V
(

ϕ(n)
)

6= /0, because x ∈ V
(

�
jϕ(n)

)

. So there exists y ∈ Y such that

y ∈ V
(

ϕ(n)
)

. By inductive hypothesis, 〈X,Rn,V〉 �y ϕ. Thus, Rn(x) ⊆ LV(ϕ), i.e.,

〈X,Rn,V〉 �x �ϕ.

Conversely,assume that 〈X,Rn,V〉 �x �ϕ and that 〈X,R,V〉 2x tn
(

ϕ(n)
)

. Then there

exists j ≤ n such that x /∈V
(

�
jϕ(n)

)

. So there existsY ∈ P0(X) such that (x,Y) ∈ Rj

andY∩V
(

ϕ(n)
)

= /0. It follows that for every y∈Y, y /∈V
(

ϕ(n)
)

. Then by inductive

hypothesisweget that, for every y∈Y, 〈X,Rn,V〉 2y ϕ. Since(x,Y) ∈ Rj , (x,Y) ∈ Rn.
Then Rn(x) LV(ϕ). Thus, 〈X,Rn,V〉 2x �ϕ, which isa contradiction.

REMARK 3. It is easy to seethat in every m-frameF = 〈X,R〉, the relation R
isweakly n-transitive(n > 0) if and only if the relationRn is ageneralized quasi-order
i.e., 〈X,Rn〉 ∈ Fr(MS4).

Moreover, R is n-symmetric if and only if Rn satisfies the property that ∀x ∈
X ∀Y ∈ P0(X), if (x,Y) ∈ Rn, then there is y ∈ Y such that (y,{x}) ∈ Rn. Thus, R is
weakly n-transitive andn-symmetric (n > 0) if and only if the relationRn is a general-
ized equivalencei.e., 〈X,Rn〉 ∈ Fr(MS5).

THEOREM 13. 1. For every n≥ 1 andevery formula ϕ,

ϕ ∈ MS4 if and only if ϕ(n) ∈ MON+{4wn} .

2. For every n≥ 1 andevery formula ϕ,

ϕ ∈ MS5 if and only if ϕ(n) ∈ MON+{4wn,Bn} .

Proof. 1. ⇒) Suppose that ϕ(n) /∈ MON+{4wn}. Then there exists an m-frameF =
〈X,R〉 in which therelationR isweakly n-transitive andsuch that F 2 ϕ(n). By Lemma
5 〈X,Rn〉 2 ϕ. Since〈X,Rn〉 ∈ Fr(MON+{T,4}), ϕ /∈ MON+{T,4}. Thedirection
⇐) is similar and left to the reader.

Theproof of item 2 is similar to the previousone.



74 S. A. Celani

References

[1] BLACKBURN P., DE RI JKE M., AND VENEMA Y., Modal Logic, Cambridge University Press, 2001.

[2] CHELLAS B.F., Modal Logic: an introduction, Cambridge Univ. Press, 1980.

[3] GOLDBLATT R., Logics of time andcomputation, vol. 7 of Lecture Notes. CSLI Publications, second
edition, 1992.

[4] HANSEN H.H., Monotonic modal logic (Master’s thesis), Preprint 2003-24, ILLC, University of Am-
sterdam, 2003.

[5] HANSEN H.H. AND KUPKE C., A coalgebraic perspectiveonmonotonemodal logic, Electronic Notes
in Theoretical Computer Science106(2004), 121–143.

[6] JASPARS J., Logical omniscience and inconsistent belief, in: “Diamonds and Defaults” (M.de Rijke
ed.), Kluwer, 129–146.

[7] JASPARS J., Fused modal logic and inconsistent belief, Proceedings of the First World Conference
on the Fundamentals of AI, (de Glas M. and Gabbay D.M. Eds) Angkor Pub. Company, Paris, 1991,
267–275.

[8] JANSANA R. Some logics related to Von Wright’s logic of place, Notre Dame J. of Formal logic 35 1
(1994), 88–98.

[9] SEGERBERG K., A note on the logic of elsehrere, Theoria 46 (1980), 183–187.

[10] VON WRIGHT G.H., A modal logic of place, in: “The philosophy of Nicolas Rescher” , (Sosa E. ed.),
Reidel, Dordrecht 1979, 65–73.

AMS Subject Classification: 03B45, 03G99.

Sergio Arturo CELANI, CONICET and Departamento de Matemáticas, Facultad deCiencias Exactas,
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