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Abstract. The am of this short review is to attrad the atention o the pseudo-diff erentia
community to possbiliti es in the development of operator caculus for symbals (depending
on p-adic conjugate variables) taking values in fields of p-adic numbers. Essentials of this
cdculus were presented in works of the authors of this paper in order to perform p-adic val-
ued quantizaion. Unfortunately, this cdculus dill has not attraced a grea ded of attention
from pure mathematicians, athoughit opens new and interesting damains for the theory of
pseudo-differential operators.

1. Introduction

Quantum formali sm with wave functionsvalued in nonArchimedean fields was devel -
oped in aseries of papersand bools[1]{13], see dso related works of VVladimirov and
Volovich [14]-{15 and the book[16] on guantum formalism with p-adic variables but
complex-valued wave functions. In thisreview article, we present the esentials of this
theory. We restrict attention to the fields of p-adic numbers. General quantum theory
has been developed for an arbitrary non-Archimedeanfield K, see[11].

The basic objeds of thistheory are p-adic Hil bert spaces and symmetric opera-
torsadingin these spaces. Vedorsof a p-adic Hil bert spacewhich are normali zed with
resped to the inner product represent quantum states. In the p-adic case, the normis
not determined by theinner product. Therefore normali zation with resped to the norm
andtheinner product, which coincidesfor red and complex Hil bert spaces, is diff erent
for p-adic Hilbert spaces. We shall proceel in the foll owing way.

Consider the formal differential expressonH = H (0, ;) of operators of quan-
tum medhanics or quantum field theory. Let usredizethisformal expresson as a dif-
ferential operator with veriables x; belongng to the field of p-adic numbers Qp, and
study properties of this operator in a p-adic Hilbert space Thus we would like to
perform a p-adic analogue of Schrddinger’s quantization.

We remark that p-adic valued quantum theory suffers from the esence of a
“goodspedral theorem” for symmetric operators. At the same time, thistheory is es-
sentialy simpler (mathematicaly) than ordinary quantum mechanics, since operators
of position andmomentum are bounded in the p-adic case, as was found byAlbeverio
and Khrennikov [3].

The representation theory of groupsin Hilbert spaces forms one of the crner-
stones of ordinary quantum medanics. It is very natural to develop p-adic quantum
medhanics in a similar way. We oonstruct a representation d the Weyl—Heisenberg
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groupin a p-adic Hilbert space namely the spacelL>(Qp,vp) of Lo-functions with
resped to a p-adic valued Gaussan distribution vy, (the symbad b indicaes a p-adic
anaogue of dispersion), see[3].1 Here the situation dffers very much from that of
ordinary quantum mechanics. If we denote by U(a) and V (B) the groups of unitary
operators correspondngto pasition and momentum operators, respedively, then these
groups are defined only for parameters a and 3 belongngto balls Ur(p) and Uy y,), re-
spedively, where R(b) andr (b) depend onthe dispersionb of the Gaussan distribution
andthey are wupded by akind o Heisenberg uncertainty relation.

We shall aso study the representation o the translation group onthe space
L2(Qp,Vp). Herethe result aso differsfrom that of ordinary quantum medanics, and
is more similar to onethat holdsin quantum field theory where Gaussan distributions
oninfinite dimensional spaces are used.

Let p be Gaussan measure on the infinite-dimensional red Hilbert spaces . It
is impassble to construct a representation o trangdations from all of % in La(# , ),
because of the well-known fad that the translation " of a Gaussan measure on # by
avedor h € # can besinguar with resped to . Itiswell known that p is equivalent
to wif and ony if h belongs to a catain proper (“Cameron-Martin”) subspace In a
similar way we cana construct in the spacel>(Qp,vp) a representation o transla-
tions by all elements h in Qp; in fad, we have to restrict consideration to translations
belongngto some ball (which is an additive subgroupin Qp) whaose radius dependson
the dispersionb. Thisfad is conneded with the norexistence of trandlation-invariant
measures in the p-adic case (similarly for infinite-dimensional spaces over the field of
red numbers), see[6].

2. Banach and Hilbert spaces

2.1. p-adic numbersand their quadratic extensions

The field of red numbers R is constructed as the completion o the field of rational
numbers Q with resped to the metric pr(X,y) = |[x—Y|, where |- | is the usual red
valuation (absolute value). The fields of p-adic numbers Q are wnstructed in a cor-
respondng way, by using aher valuations. For any prime number p > 1, the p-adic
valuation | - | is defined in the following way. First we define it for natural num-
bers. Every natural number n can be represented as the product of prime numbers:
n=2233...p'r.... Then we define |n|p = p~'p, and in addition set [0], = 0 and
|—n|p = |n|p. We extend the definition of the p-adic valuation | - |, to al rational num-
bers by setting [n/m|p = |n|p/|m|p for m == 0. The completion o Q with resped to the
metric pp(X,y) = |X—Y|p is the locdly compaa field of p-adic numbers Qp. By the
well-known Ostrovsky theorem, the red valuation (absolute value) | - | and the p-adic
valuations| - |, are the only possble valuationson Q. Thusif one wants to construct a

1We remark that vy, is not a p-adic valued measure, i.e. a bounded linea functional on the space of
continuows functions. It isjust adistribution, a generalized function, which is primarily defined onthe space
of analytic test functions. A analogue of the Ly-space ca be cnstructed by completing the spaceof test
functions with resped to a natural norm.
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physicd model starting with rational numbers, then there ae only two posshiliti es: to
proced to red numbers or to ore of the fields of p-adic numbers.?

The p-adic valuation satisfies the so-cdl ed strongtriangle inequality: [X+y|p <
max[|X|p, |y|p], which makes pp into an ultrametric. SetU;(a) = {x€ Qp: |[x—alp<r}
andU; (a) = {xe Qp:|x—alp <r}, withr=p"andn=0,£1,£2,..; these ae
(“closed” and*open”) ballsin Qp. Set S (a) = {x€ Qp: |Xx—a|p=r}; these aespheres
in Qp. Any p-adic ball Uy = U, (0) is an additive subgoup d Q. Theball U1(0) is
aso aring, cdled the ring of p-adic integers and denoted by Zy. For any x € Qp, we
have aunique canoricd expansion (convergingin the | - |p-norm) of the form

Q) x:ufn/p”_y...u0+...+gkpk+...,

wherea; =0,1,...,p— 1, arethe “digits’ of the p-adic expansion. The dementsx € Zp
have an expansionx = ag+ayp+---+0xp +-- -, i.e., they arenatural generali zations
of natural numbers. Moreover, even negative natural numbers can be represented as
eementsof Zp, 9., 1= (p—1)+(p—1)p+(p—1)p?+...+(p—1)p"+... This
isthe source of the terminology“ p-adic integer”.

For p1 # p2, thefields of p-adic numbers Qp, and Qp, are not isomorphic &s
topdogicd fields. Thus by moving into the p-adic domain ore obtains, in fad, an
infinite series of fields for the modeling df, e.g., spacegeometry. None of these fields
isisomorphic to thefield of red numbersR. The aucial differenceisin the topdogy.

Fields of p-adic numbers are disordered. It isimpossble to introduce alinea
order on Q, (at leest in a natural way, e.g., matching algebraic operations). This fad
induwesinteresting departuresfrom thered case. It also playsafundamental rolein the
application o p-adic numbersto string theory and cosmology. For alongtime, physi-
cistsdiscussed theideathat at Planck distances (which are extremely small) spacetime
isdisordered. In particular, it canna be described by red numbers. On the other hand,
p-adic numbers provide an excdlent posshility for the mathematicd formulation of
thisphysicd idea

In applicdions to physics, the following complicaed problem arises: “Which
p shoud be used for modeling?” There ae various opinions. Igor Volovich proved
that some amplitudes used in “ordinary string theory”, i.e., based onthe red model of
spacetime, can bereproducedin thelimit p— oo fromthe correspondngamplit udes of
p-adic string theory [16]. The authors of this paper think that thisisnat crucial for the
new geometry. Thereforethe p seleded for physicd modeling (at least in a theoreticd
model) does nat play an important role. One can switch from one scde to ancther as
one doesin the red case by switching in the expansion (1) from one p to ancther, see
[11] for adetail ed presentation dof thisideology. Of course, eat physicd phenomenon
has its own scde. One ca discuss concrete scdes, e.g., in the p-adic gpproach to
quantum physics. The aithors of this paper propcsed seleding p = [1/a] : theinteger
part of the fine structure constant a. However, all such physicd discussons have no
dired relation to the present paper. For a mathematician, it may be more important to

2We remark that experimental data is always rational. It is a cnsequence of the finite predsion o any
measurement.
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know that typicdly the case p = 2 shoud betreaed separately, and proofs obtained for
p > 2 typicdly do nd work for p= 2.

Let T € Qp andsuppasethat X2 = T havenosolutionin Qp. The symba Qp(1/7)
denotes the correspondng guedratic extension o Qp. Its elements have the form z=
X+ /Ty, where x,y € Q. The operation o conjugation is defined by z= x — \/Ty.
We remark that zz = x? — 1y? for z€ Qp(1/T), and that zz € Qp for any z € Qp(/1).
The extension o the p-adic valuation from Q onto Qp(+/T) is denoted by the same
symbal |-|p. We have 7|, = /|zZ]p for ze Qp(1/T). Besides quadratic extensions, we
shall also operatewith thefield of complex p-adic numbersC,,. Its constructionisvery
complicated. Unlike in the red case, we caand obtain an algebraicdly closed field
by taking a quadratic extension, nor indeed by taking an algebraic extension o any
finite order. The dgebraic dosure Q% of Qp is constructed as an infinite tower of finite
extensions. In particular, it is an infinite-dimensional li near spaceover Qp (compare
with the red case where the dgebraic dosure C isjust two dimensional over R). The
p-adic valuationis defined onthe tower of finite extensionsin a mnsistent way. In this
way we obtain the p-adic valuation onQ%. However, thisis not the end o the story
concerninga p-adic analogue of complex numbers. Thefield Qf is not complete with
resped to such an extension o the p-adic valuation. Finaly, we completeit and oltain
that its completion, denoted by Cy, is algebraically dosed! The latter is a natrivial
result, Krasner's theorem. As the reader has e, the construction of p-adic complex
numbersis quite complicated. However, it might be even worse—if Krasner’stheorem
were nat true.

2.2. Banach spaces

Esentials of non-Archimedean functional analysis can be foundin, e.g., the book d
van Rogji [18].

The symbal K denates a nontArchimedean field with the valuation (absolute
value) | - k. Itisamap from K to [0, +e) such that

(1) |Xk=0&x=0;

2 |xylk = x|k [yl

Q) [x+ylk < max(|Xk, [Ylk)-
Thelatter fedure of the valuationisthe strongtriangleinequality. It playsafundamen-
tal rolein the determination o spedal feaures of the crrespondng norrArchimedean
topdogy. Such terminalogy is common in so-cdled nontArchimedean analysis, see
e.g. [18]. However, in other domains of mathematics, a nontArchimedean field is a
totally (or partially) ordered field containing norzero infinitesimals, e.g., the field of
norstandard numbers R*. We emphasize that this paper has nothing to do with the
latter casel

Let E be alinea spaceover a nonrArchimedean field K. A non-Archimedean
normonE isamapping|| - || : E — [0, +) satisfying the foll owing condtions:

@ [x|=0&x=0;

(®) [lox| = |alk X, a €K;
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(© lIx+yll < max([|x], Iyl])-

As usual, we define nonArchimedean Banadh spaceE as a complete normed space
over K. The metric p(x,y) = ||[x—Y]| is ultrametric. Hence every non-Archimedean
Banad spaceis zero-dimensional andtotally disconreded. All ballsW (a) = {x€ E :
[x—al| <r} are dopen.

The dua spaceFE’ is defined as the spaceof continuows K-linea functionals
| :E — K. Let usintroducethe usua normonE’: [|I]| = sup 4 [l (X) |k /[|X]|. The space
E’ endowed with thisnorm is a Banach space

The simplest example of a non-Archimedean Banach spaceis the spaceK" =
K x .-+ x K (ntimes) with the non-Archimedean nam ||x|| = maxi<j<n|Xj|k. Morein-
teresting examples are infinite-dimensional non-Archimedean Banac spaces redized
as aces of sequences; set ¢g = Cp(K) = {xe K*: AL”;XH = 0} and ||x|| = maxn [X|k.

2.3. Hilbert spaces

We take asequenceof p-adic numbersA = (An) € Qp, An # 0. We set
12(p,\) = {f = (fn) € Qp : theseries z f2\n convergesin @p}.

It turns out that 12(p,A) = {f = (fa) € Qf : liMn e | fa|py/[An[p = 0}. In the space
12(p,A) weintroducethe norm || f || = maxn | fn|p\/|An|p- The spacel?(p,A) endowed
with this norm is non-Archimedean Banach space On the spacel?(p,\) we dso intro-
ducethe p-adic valued inner product ( -, - ), by setting (f,9)x = 5 fnGnAn.

Weremark thet || f||, € R, but (f, f), € Qp. Thenormisnot determined by the
inner product. Nevertheless the p-adic inner product ( -, - )y : 12(p,A) x 12(p,A) —
Qp is continuows and the Cauchy—Bunyakovsky—Schwarz inequdity holds, namely
[(F. @ lp < 15 (19l

DEFNITION 1. Atriplet (I2(p,A), (-, -)a, || - |[») iscalled a p-adic coordinate
Hilbert space

More generally, we shall define ap-adic inner product on Qp-linea spaceE as
an arbitrary non-degenerate symmetric bili nea form (-, -) : E x E — Q,.

REMARK 1. We caina introduce ap-adic analogue of paositive definitenessof
abilinea form. For instance any element y € Qp can be represented as y = (X, X)),
withx € 12(p,\) (thisisasimple cnsequenceof propertiesof bili nea forms over Qp).

The triplets (Ej, (-, -)j, |l - Ilj), ] = 1,2, where E; are non-Archimedean Ba-
nach spaces, || - ||; are norms and (-, -); are inner products stisfying the Cauchy-
Buniakovski—Schwarz inequality, are isomorphic if the spaces E; and E, are dge-
braicdly isomorphic and the dgebraic isomorphism | : E; — E, isaunitary isometry,
e, (1|2 = [IX[1 and (1x,1y)2 = (x.Y)1.
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DEFINITION 2. Thetriplet (E, (-,-), || - ||) is a p-adic Hilbert spaceifitis
isomorphic to the coordinate Hilbert space (12(p,A), (-, - ) || - ||x) for some sequence
of weightsA.

Theisomorphism relation split s the family of p-adic Hil bert spacesinto equiva-
lence dasses. An equivalence dassis charaderized by some mordinate representative
1%(p,\). The dassficaion of p-adic Hil bert spacesis an open mathematica problem.

Hilbert spaces over quadratic extensions Qp(+/T) of Qp can be introduced in
the same way. For a given sequenceA = (An) € Qp, An # 0, we set

(A, vT) = {f = (fn) € Qp(VT)" : the seriesy fn fnAn CONVerges},

with [| ][y = maxn [ fn[p\/|An[p and (f,@)x = 5 fnGnAn.

Thetriplet (1I2(p,A,v/T), (-, ), || - |[») isthe coordinate Hil bert spaceover the
quadratic extension Qp(+/T). In general, a Hilbert space(E, (-,-), || - ||) over the
quadratic extension Qp(+/T), is by definition isomorphic to some mordinate Hil bert
space We denate ap-adic Hilbert spaceover Qp(1/T) by

Hp = Hp(V/T).

3. Groupsof unitary isometric operatorsin p-adic Hilbert space

Asusual, weintroduceunitary operatorsU : #, p — Hp asoperatorswhich preservethe
inner product, so (Ux,Uy) = (x,y) forall x,y € Hp, with image Im U= U(y{p) = .
|sometric operators are operators which preserve the norm, so ||Ux|| = ||x||, and have
Im U = s1,. Denote the spaceof all bounced linea operators A : sy, — #p by £ (#p).
It is a Banach spacewith resped to the operator norm ||Al| = supx7é0|\,&x||/||x|\. A
unitary operator need nat be isometric.® Indeed, it could even be unbouned. Dencte
the group d linea isometries of the p-adic Hil bert spaces( by | S(#(p), and the group
of all bounded uritary operatorsin %, by UN(#4p). Set Ul (#£p) = UN(2£p) NUI (#£p).

An operator A € L(91p) is sid to be symmetric if (AX,y) = (x,Ay) for all x,y.
Thefollowing simple fad will be useful | ater.

THEOREM 1. The dgenvalue a of a symmetric operator A: Hp — Hp COrre-
spondngto aneigenvedor u with noreero square, (u,u) # 0, belongs to Q. Eigen-
vedors correspondngto different eigenval ues of such type are orthogona.

The prodf is dmilar to the standard ore for complex Hil bert spaces .

As usual, we introduce the resolvent set Res(A) of an operator A € L(Hp); it
consistsof A € Qp(+1/T) such that the operator (Al —A)~ exists. The spedrum SpeqA)
of Aisthe complement of the resolvent set.

3Recdl that the norm on the p-adic Hilbert spaceis not determined by the inner prodwct. The only
condtion o consistency between them is the Cauchy-Bunyakovsky—Schwarz inequality.
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Note that every ball U; in Qp is an additive subgoup d Qp. A map F:U —
£ (#p) with the properties F (t +s) = F(t)F (s), t,s€ Uy, andF (0) = I, where | isthe
unit operator in %, is sid to be aone-parameter group d operators. If we consider
IS(#£p),UN(5p),Ul (5p) instead of £ ((p), we obtain definitions of the parametric
groups of isometric, unitary, and isometric unitary operators, respedively. If the map
F : 4y — £ (#(p) isanalytic the one-parameter groupis cdled analytic.

We recdl that any p-adic ball is, in fad, a ball with radius r = pX, with k =
0,+1,... (sincethe p-adic valuation takes only such values). On the other hand, in a
normed spaceover Q, or itsquadratic extension, the norm can take any value belongng
to [0, +0). To match these two ranges of values, we invent the foll owing quantity. Let
a be apaositive red number. We define

) [al, =sup{A = p*, ke Z : A < a}.

This number approximates (from below) the red number a by numbersfrom the range
of values of the p-adic vauation.

For abounded operator A, we define

-~ 1
©) Y(A) oo D]A]

It is ared number, the redproca of the norm ||A|| multiplied by the factor p/(P~2).
The latter appeas in conredion with convergence of the exporential seriesin the p-
adic case. The series €', where in general y belongs to C,, converges on the ball of
radius rep = p~ /(P

THEOREM 2. Let A be a boundd symnretric operator in Hp = Hp(\/T). The
map -
t— e\/ftAv te UI’; r= [y(\/fﬂ)]gv

isan andytic one-parameter group d isometric unitary operators.

Thus every symmetric operator A € £ (#p(+/T)) generates the one-parameter

operator group d isometric unitary operatorst +— U(t) — eVTA Thistheorem isanat-
ural generalizaion d the standard theorem for C-Hilbert space The foll owing result
has no analoguein functional analysisover C.

THEOREM 3. Suppaethat an operator Abelongsto £ (#£p). Themapa — e“ﬂ,

-~

a €U, r = [y(A)];, isan andytic one-parameter group d isometric operators.

4. Gaussan integral and spaces of square integrable functions
As dready remarked, the mathematicd formalism of p-adic quantization dces not

depend onthe choice of a quadratic extension Qp(+/T) of Qp. To make cnsidera-
tions symbalicaly closer to ordinary complex quantization, we shall procee for the
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quedratic extension Qp(i). Of course, this choicerestrictsin an esential way the dass
of prime numbersunder consideration.

To provide the pointwise redizaion of elements of the p-adic analogue of the
Lo-space we shall consider analytic functionsover thefield of complex p-adic numbers
Cp. InCp we denote the ball of radiuss € R, with center at z= 0 by the symbadl .
We denote the spaceof analytic functions f : us— Cp by 2 (us).

In[2], the general definition of a p-adic valued Gaussan integral was proposed
onthebasisof distributiontheory. Inthis context, the Gausdan distributionwas defined
asthe distribution having L aplacetransform of the form exp{bx?/2}, whereb € R. We
recdl that in thered caseif b > 0 then Gausdan distributionis mply a countably ad-
ditive measure — Gaussan measure with dispersionb. If b is negative or even complex
then the Gausdan distribution canna be redi zed as a meesure.

For our present applicaions to quantizaion, we can use asimpler approach
based onthe definition of Gaussan distribution throughthe definition of its moments.
RougHy spe&king, we know moments of Gausdan distribution over thereds. Suppcse
now that dispersionis arational number, b € Q. Then moments can equally well be
interpreted as elements of any Q. We now cen extend by continuity our definition o
moments to any “dispersion” b € Qp.

Let b be ap-adic number, b # 0. The p-adic Gaussan distributionvy, is defined
by its moments (n=10,1,...) :

1 Khn
Mzn :/ x*p(dx) = (zr:#, Man1 :/ XMt (dx) = 0.
Qp n! 2 Qp

We define the Gausgan integral for polynomial functions by lineaity. Then
we can define it for some dasses of analytic functions. The analytic function f(x) =
S n_oCnX", with ¢, € Cy, is said to be integrable with resped to the Gaussan distribu-
tionvy if the series

(4) [@p f(X)vp(dx) = nichn = ni)Canzn

converges. It was shown in [11] that &l entire enalytic functionson C,, are integrable.
Infad, we do nd need analyticity onthe whaole of C,, to be &ble to define the Gaussan
integral. The following (red) constant

6= p70 7 ,/|b/2]p
will play afundamental role. If p # 2, then 6, = p2<1l*p> VIblp. If p=2,then By =
V/[0lp:

ProPOSITION 1. Let f(x) belongto the dass4 (us). If s> 6, then theinte-
gral (4) corverges.

REMARK 2. There exist functions which are analytic on the ball g, but are
not integrable, see[11].
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In fad, we have proved that the Gausdan distribution is a continuots linea
functional on the spaceof analytic functions 4 (us), i.e., it is an analytic generali zed
function (distribution); for the details ®e[2]. We shall use the symbad | to represent
the duality between the spaceof test functions a2 (us) and the spaceof generalized
functions 4’ (us) by setting (w, f) = [f(x)u(dx) for f € a(us) andpe a’'(us). As
usual, we define the derivative of a generalized function p by means of the equality
S (u(dx) = — [ F/(x)(clx).

It shoud be remarked that the distribution vy, is not a bounded measure on any
ball of Qp. (This was proved for the cae p # 2; in the cae p = 2 the question is
till open), see Endo and Khrennikov [19]. Thus we muld nd integrate continuows
functionswith resped to the p-adic Gaussan distribution.

We introduce Hermite polynomiasover Q, by substituting a p-adic variable, in
placeof ared one, into the ordinary Hermite polynomials over the reds:

nl (n/2] (71)kxn—2kbk

Hno(X) = i k; K(n—2K)12K”

We shall use dso the foll owing representation for the Hermite polynomials: Hp p(x) =

(-1)" Z/Zbdd—;]e* ?/2b This representation hdds on a ball of sufficiently small radius
with center at zero. As a mnsequence, we obtain the following equality in the spaceof
generalized functions a2’ (us), with s> 6y :

n
® b (00ub(d) = (1" 2 v (@Y.
i.e., multiplication o the Gaussan distribution by a Hermite polynomial is equivalent
to evaluating the aorrespondng derivative (in the sense of distributiontheory).

Inthe space? (Qp) of polynomialsonQ, with coefficients belongngto Qp(i),
we introduce the inner product (f,g) = [ f(X)g(X)vp(dx). With resped to this inner
product, the polynomialsHy p, verify the orthogoral condtions | Hmp (X)Hn p(X)Vb(dX)
= Opm N!/b".

REMARK 3. In fad, the gopeaance of such constants A = n!/b" was one of
the reasons for introducing p-adic Hil bert spacesthat areisomorphicto 12(p,A).

Any f € 2(Qp) can be written in the followingway: f(x) = SN ¢ faHnb(X),
N = N(f), fn € Qp(i). We introdwcethe norm || |2 = maxq| fn[3(|n!|p/|b[}), and we
define Liz(Qp,vb) as the completion of 2 (Qp) with resped to || - ||. It is evident that
the spaceL’,(Qp, V) isthe set

00 o0 —nl!
{f(x) = Z)ann’b(x), fn € Qp(i) : theseries Z}fn fn% converg%}.
n= n=

Let Lo(Qp,Vp) stand for the subset of L, (Qp,vp) consisting o functions that
have the Hermite coefficients f, € Qp. ThisisaHilbert spaceover the field Qp.
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For f(x) € L,(Qp,Vp) we set

(6) oh(f) = onp(f) = fal3

n!
bnlp’
where
bn
f— W/f(x)Hn,b(X)Vb,p(dX)

are the Hermite ooefficients of f(x).

Now we wish to study the relations between L (Qp, vp)-functions and analytic
functions. Set aq,(ur) = {f € a(ur): f:Ur — Qp}, i.e, these ae functions that
have Taylor coefficients belongngto the field Qp.

THEOREM 4. Assume p # 2. Then La(Qp,Vb) C Ag,(Us,)-

Now we consider the case p = 2. In general, Lo-functions are not analytic on
the ball g, .

THEOREM 5. Lets> 6. Then 4q,(Us) C L2(Qp,Vb)-

Further we construct the Lo-representation of the translation group. If |b|p =
p?tt we set s(b) = pX, if |b|p = p?, weset s(b) = p* L. Set Tp(f)(x) = f(x+B).B €
Qp. We shall provethat these operators are bounced for 3 € Ugy,). Moreover, these op-
erators are isometries of Lo(Qp, vp). Usingthisfad we shall construct arepresentation
of thetrandation groupin the p-adic Hilbert spaceL>(Qp, Vo).

LEMMA 1. Theformula

o R

haldsfor the trandates of Hermite paynomials.
THEOREM 6. The operator 'ﬁ; belongs to 1S(L2(Qp,Vp)) for evey B € Ugy),
andthemap T : Ugp) — | S(L2(Qp, Vb)), B — Tp, isandytic.

5. Gaussan representations of position and momentum operators

Just as in ordinary Schrodinger quantum medhanics, let us define the cordinate and
momentum operatorsin L (Qp, vy) by

819 =x1 (. D19 = () (g~ 35 ) 19

where f belongsto the Qp(i)-linea spaced of linea combinationsof Hermite polyno-
mials. The mordinate and momentum operators © defined satisfy on o the canoricd
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commutationrelations
(8) [@,p] =il,

where | is the unit operator in L5(Qp,Vp). We shall seethat these relations can be
extended to the whole of L, (Qp, vp).

THEOREM 7 (Albeverio-Khrennikov). The operators of the coordinate g and
momentum p are bounded in the Hilbert space L} (Qp, Vp), with

©) @l = /Ible.  [Bll = ¢|1b—|p

Moreover G andp are symnetric andsatisfy (8) on L, (Qp, vp).

Proof. Let f(X) = 35 o faHnp(X) € LL(Qp,Vp). By the recurrenceformula

(10) Hns1,6(X) = b~ [xHnp(X) — NHy_15(X)],
we have
(11 gHnp(X) = bHn11b(X) +NHn_16(X),

andqf(x) = Sp_gbfaHni1p(X) + S a1 nfaHn—16(X). Thus, by the strongtriangle in-
equality, we obtain

. [(n+1)! |[(n—1)!]
e < max [mnax|b|%|fn|%—nﬂ >, max 3 130l
b |blp
n| [n!|
— Jolp max | max|n 1o/ 2R x| o o2 TEI2
[blp [ 2 N+ 1| n|p|b|ga 2% || p| n|p|b|%
< blpl 1,

(as|n|p < 1 for dl ne N). Therefore, ||q|| < +/|b]p. Now we prove that ||g||? = |b|p.
Let n= p¥, then

b[2|(pk+ 1)! K121k — 1)1
Dk,b|aHpk,b|zmaxll B0+ 1)ty [PHEIP D]

bt gt
But |(p*+1)![p = |p!|p and |p?(p* — 1)!|p = p~¥[pX[p. Thus
K

[P ! p
[l4

2
Dicp = [blp = [blpl[Hpepl*

which provesthefirst equality in (9).
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R Further, we have %Hn’b(x)A: (X/b)Hnp(X) — Hny1p(X) = (n/b)Hn_1p(X). Set
Tx = (d/dx— (x/2b)). We have TyHnp(X) = (n/2b)Hn_16(X) — (1/2)Hnt16(X). To
compare this expressonwith (11), we rewrite it as

(12 Tibnb() = o [~ bHa. 160 + iy 16

The expressonin square bracetsis gmilar to that in (11); thesign deesplay arolein
estimates of max type. Thuswe obtain || Ty|| = (1/|b|p)]|dl||, which proves the second
equality in (9).

Symmetry of the boundkd operators g, p is easily verified. O

Thus, unlike in the Archimedean case (complex Hilbert space, in the p-adic
case the canoricd commutation relations (8) are valid na only on a dense subspace
but everywhere on the Hil bert space

6. One parameter groupsgenerated by position and momentum operator s

We shall compute numbers [y(G)], and [y(p)],, see(2), (3) insedion 3
If |blp = p™** theny(@) = 1/(p“p"/2p"/(P~Y). If p# 3then [y(@)], = 1/p*™".
If p=3then [y(@)], =1/p**2 If |bp = p™ theny(q) = 1/(p*p"*P)) and [y(@)], =
1/ pk+1_ Set
R(b) = [y(@)],-
If |blp = p?** then y(p) = (p'/?/p"/(P~Y)p. If p# 3 then [y(p)], = p*. If
p=3then[y(p)], = P If [blp = p? then [y(p)], = p* *. Set

r(b) = [y(P)]p-
THEOREM 8. (Albeveio-Khrennikov) Themapsa — U (a) = €%, a € Urp,),

andp—V(B)=€PP Be Ur (1), areanaytic one-parameter groups of unitary isometric
operators acting onLiz(Qp,vb). They satisfy the Weyl commnutationrelations

(13) U(a)V(B) =e PV (B)U(a).
We set
(14) Mg f(x) = e PI/2f (x) = Zo ﬁl_(ggin f (),

for f € L2(Qp,Vb). By Theorem 7, we eaily obtain

PROPOSITION 2. ThemapM : Uy p) — I S(L2(Qp, Vb)), B — Mg, isan andytic
one-parameter group (indexed by the ball U, y,)).

REMARK 4. The function x — e P/? isnot defined onthe whole of Q, and
we canna consider (14) as a pointwise multiplication operator.
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7. Operator calculus

Itis well known that in the ordinary L2(R,dx) space the unitary groupV (B) = PP,
with B € R, can be redized as the trandation goup, with V(B)W(x) = W(x+ B) for
sufficiently well-behaved functions Y(x). If we mnsider the eguivalent representation
in Lo-spacewith resped to the Gaussan measure v, (dx) = (/20 /\/2rb)dx on R,
we obtain

(15) V(B)W(x) = e P/ P/Dy(x 1 B),
or
(16) V(B) = cgMg T,

wherecg = e B?/4_We shall now provethat (16) is aso valid in the p-adic case.
Set §(B) = CBMBT-Bv B € Uy (), where the operator MB is defined by (14).

THEOREM 9. Themapf3 — §B, B € Uy (), isa one-parameter andytic group d
isometric unitary operators actingin L, (Qp, vp).

LEMMA 2. The groups §([3) andV (B) havep astheir common generator.

Asa mnsequenceof thislemma, andthe analyticity of the one parameter groups
S(B) andV (B), we edaily obtain:

THEOREM 10. Therepresentation(15), (16) holdsfor the operator groupV (B).

By using ore-parameter groups U (at),V(B), one can formally define pseudo-
differential operators. However, arigorous mathematicd theory is ill awaiting devel-
opment.
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