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OPERATOR CALCULUS FOR

p-ADIC VALUED SYMBOLS AND QUANTIZATION

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. The aim of this short review is to attract the attention of the pseudo-differential
community to possibiliti es in the development of operator calculus for symbols (depending
on p-adic conjugate variables) taking values in fields of p-adic numbers. Essentials of this
calculus were presented in works of the authors of this paper in order to perform p-adic val-
ued quantization. Unfortunately, this calculus still has not attracted a great deal of attention
from pure mathematicians, althoughit opens new and interesting domains for the theory of
pseudo-differential operators.

1. Introduction

Quantum formalism with wavefunctionsvalued in non-Archimedeanfieldswasdevel-
oped in aseriesof papersand books[1]–[13], see also related worksof Vladimirov and
Volovich [14]–[15] and thebook[16] on quantum formalism with p-adic variablesbut
complex-valued wave functions. In this review article, wepresent the essentialsof this
theory. We restrict attention to the fields of p-adic numbers. General quantum theory
hasbeen developed for an arbitrary non-Archimedean field K, see[11].

Thebasic objectsof this theory are p-adic Hilbert spacesandsymmetric opera-
torsactingin thesespaces. Vectorsof a p-adicHilbert spacewhich arenormalizedwith
respect to the inner product represent quantum states. In the p-adic case, the norm is
not determined by the inner product. Thereforenormalizationwith respect to thenorm
andtheinner product, which coincidesfor real andcomplex Hilbert spaces, isdifferent
for p-adic Hilbert spaces. We shall proceed in the followingway.

Consider theformal differential expressionĤ =H(∂xj ,x j) of operatorsof quan-
tum mechanicsor quantum field theory. Let us realizethis formal expression as a dif-
ferential operator with variables x j belonging to the field of p-adic numbersQp and
study properties of this operator in a p-adic Hilbert space. Thus we would like to
perform a p-adic analogueof Schrödinger’squantization.

We remark that p-adic valued quantum theory suffers from the absence of a
“goodspectral theorem” for symmetric operators. At the same time, this theory is es-
sentially simpler (mathematically) than ordinary quantum mechanics, sinceoperators
of position andmomentumare bounded in the p-adic case, aswas found byAlbeverio
andKhrennikov [3].

The representation theory of groups in Hilbert spaces forms one of the corner-
stones of ordinary quantum mechanics. It is very natural to develop p-adic quantum
mechanics in a similar way. We construct a representation of the Weyl–Heisenberg
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group in a p-adic Hilbert space, namely the spaceL2(Qp,νb) of L2-functions with
respect to a p-adic valued Gaussian distribution νb (the symbol b indicates a p-adic
analogue of dispersion), see [3].1 Here the situation differs very much from that of
ordinary quantum mechanics. If we denote by Û(α) and V̂(β) the groups of unitary
operatorscorrespondingto positionand momentum operators, respectively, then these
groupsare defined only for parameters α and β belonging to ballsUR(b) andUr(b), re-
spectively, whereR(b) andr(b) depend onthedispersionb of theGaussian distribution
and they are coupled bya kind of Heisenberg uncertainty relation.

We shall also study the representation of the translation group onthe space
L2(Qp,νb). Here the result also differs from that of ordinary quantum mechanics, and
is more similar to one that holds in quantum field theory where Gaussian distributions
on infinitedimensional spacesareused.

Let µ be Gaussian measureon the infinite-dimensional real Hilbert spaceH . It
is impossible to construct a representation of translations from all of H in L2(H ,µ),
because of the well -known fact that the translation µh of a Gaussian measureonH by
a vector h∈ H can besingular with respect to µ. It iswell known that µh is equivalent
to µ if and only if h belongs to a certain proper (“Cameron–Martin” ) subspace. In a
similar way we cannot construct in the spaceL2(Qp,νb) a representation of transla-
tions by all elements h in Qp; in fact, we have to restrict consideration to translations
belongingto someball (which isan additivesubgroupinQp) whoseradiusdependson
the dispersion b. This fact is connected with the nonexistenceof translation-invariant
measures in the p-adic case (similarly for infinite-dimensional spacesover the field of
real numbers), see[6].

2. Banach and Hilbert spaces

2.1. p-adic numbers and their quadratic extensions

The field of real numbers R is constructed as the completion of the field of rational
numbers Q with respect to the metric ρR(x,y) = |x− y|, where | · | is the usual real
valuation (absolute value). The fields of p-adic numbersQp are constructed in a cor-
responding way, by using other valuations. For any prime number p > 1, the p-adic
valuation | · |p is defined in the following way. First we define it for natural num-
bers. Every natural number n can be represented as the product of prime numbers:
n = 2r23r3 · · · prp · · · . Then we define |n|p = p−rp, and in addition set |0|p = 0 and
|−n|p = |n|p. We extend the definition of the p-adic valuation | · |p to all rational num-
bersby setting |n/m|p = |n|p/|m|p for m 6= 0. The completion of Q with respect to the
metric ρp(x,y) = |x− y|p is the locally compact field of p-adic numbersQp. By the
well -known Ostrovsky theorem, the real valuation (absolute value) | · | and the p-adic
valuations | · |p are the only possible valuationsonQ. Thus if one wants to construct a

1We remark that νb is not a p-adic valued measure, i.e. a bounded linear functional on the spaceof
continuous functions. It is just adistribution, ageneralized function, which isprimarily defined onthespace
of analytic test functions. A analogue of the L2-space can be constructed by completing the spaceof test
functions with respect to anatural norm.
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physical model startingwith rational numbers, then there are only two possibiliti es: to
proceed to real numbersor to oneof thefieldsof p-adic numbers.2

The p-adic valuationsatisfies theso-called strongtriangle inequality: |x+y|p ≤
max[|x|p, |y|p], which makesρp into an ultrametric. Set Ur(a) = {x∈Qp : |x−a|p ≤ r}
and U−

r (a) = {x ∈ Qp : |x− a|p < r}, with r = pn and n = 0,±1,±2, . . .; these are
(“closed” and“open”) ballsinQp.Set Sr(a)= {x∈Qp : |x−a|p= r}; these arespheres
in Qp. Any p-adic ball Ur ≡ Ur(0) is an additive subgroup of Qp. The ball U1(0) is
also a ring, called the ring of p-adic integers and denoted byZp. For any x ∈ Qp, we
have aunique canonical expansion(convergingin the | · |p-norm) of the form

(1) x= α−n/pn+ · · · α0+ · · ·+αkpk+ · · · ,

whereα j = 0,1, ..., p−1, arethe “digits” of the p-adic expansion. The elementsx∈Zp

have an expansionx=α0+α1p+ · · ·+αkpk+ · · · , i.e., they arenatural generalizations
of natural numbers. Moreover, even negative natural numbers can be represented as
elementsof Zp, e.g.,−1= (p−1)+(p−1)p+(p−1)p2+ . . .+(p−1)pn+ . . . This
is the sourceof the terminology“ p-adic integer” .

For p1 6= p2, the fields of p-adic numbersQp1 and Qp2 are not isomorphic as
topological fields. Thus by moving into the p-adic domain one obtains, in fact, an
infinite series of fields for the modeling of, e.g., spacegeometry. None of these fields
is isomorphic to thefield of real numbersR. The crucial differenceis in the topology.

Fields of p-adic numbers are disordered. It is impossible to introduce alinear
order onQp (at least in a natural way, e.g., matching algebraic operations). This fact
inducesinteresting departuresfrom thereal case. It also playsafundamental rolein the
application of p-adic numbers to string theory andcosmology. For a longtime, physi-
cistsdiscussed theideathat at Planck distances(which are extremely small ) space-time
isdisordered. In particular, it cannot bedescribed by real numbers. On theother hand,
p-adic numbers provide an excellent possibilit y for the mathematical formulation of
thisphysical idea.

In applications to physics, the following complicated problem arises: “Which
p should be used for modeling?” There are various opinions. Igor Volovich proved
that some amplitudesused in “ordinary string theory” , i.e., based onthe real model of
space-time, can bereproducedin thelimit p→∞ fromthe correspondingamplitudesof
p-adic string theory [16]. The authorsof thispaper think that this isnot crucial for the
new geometry. Thereforethe p selected for physical modeling(at least in a theoretical
model) does not play an important role. One can switch from one scale to another as
one does in the real case by switching in the expansion (1) from one p to another, see
[11] for adetailed presentation of this ideology. Of course, each physical phenomenon
has its own scale. One can discuss concrete scales, e.g., in the p-adic approach to
quantum physics. The authorsof this paper proposed selecting p= [1/α] : the integer
part of the fine structure constant α. However, all such physical discussions have no
direct relation to the present paper. For a mathematician, it may be more important to

2We remark that experimental data is always rational. It is a consequence of the finite precision of any
measurement.
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know that typically the case p= 2 should betreated separately, and proofsobtained for
p> 2 typically do not work for p= 2.

Let τ∈Qp andsupposethat x2 = τ havenosolutioninQp. Thesymbol Qp(
√

τ)
denotes the corresponding quadratic extension of Qp. Its elements have the form z=
x+

√
τy, where x,y ∈ Qp. The operation of conjugation is defined by z̄= x−√

τy.
We remark that zz̄= x2 − τy2 for z∈ Qp(

√
τ), and that zz̄∈ Qp for any z∈ Qp(

√
τ).

The extension of the p-adic valuation from Qp onto Qp(
√

τ) is denoted by the same
symbol | · |p. Wehave |z|p =

√
|zz̄|p for z∈Qp(

√
τ). Besidesquadratic extensions, we

shall also operatewith thefield of complex p-adic numbersCp. Itsconstructionisvery
complicated. Unlike in the real case, we cannot obtain an algebraically closed field
by taking a quadratic extension, nor indeed by taking an algebraic extension of any
finiteorder. The algebraic closureQa

p of Qp isconstructed asan infinite tower of finite
extensions. In particular, it is an infinite-dimensional li near spaceover Qp (compare
with the real case where the algebraic closureC is just two dimensional over R). The
p-adic valuation isdefined onthetower of finite extensions in a consistent way. In this
way we obtain the p-adic valuation onQa

p. However, this is not the end of the story
concerninga p-adic analogueof complex numbers. The field Qa

p is not completewith
respect to such an extension of the p-adic valuation. Finally, we complete it and obtain
that its completion, denoted by Cp, is algebraically closed! The latter is a notrivial
result, Krasner’s theorem. As the reader has seen, the construction of p-adic complex
numbersisquite complicated. However, it might be even worse– if Krasner’s theorem
werenot true.

2.2. Banach spaces

Essentials of non-Archimedean functional analysis can be foundin, e.g., the book of
van Rooji [18].

The symbol K denotes a non-Archimedean field with the valuation (absolute
value) | · |K . It isa map from K to [0,+∞) such that

(1) |x|K = 0⇔ x= 0;

(2) |xy|K = |x|K |y|K ;

(3) |x+ y|K ≤ max(|x|K , |y|K).
Thelatter featureof thevaluationis thestrongtriangleinequality. It playsafundamen-
tal role in thedetermination of special featuresof the corresponding non-Archimedean
topology. Such terminology is common in so-called non-Archimedean analysis, see
e.g. [18]. However, in other domains of mathematics, a non-Archimedean field is a
totally (or partially) ordered field containing nonzero infinitesimals, e.g., the field of
nonstandard numbers R∗. We emphasize that this paper has nothing to do with the
latter case!

Let E be alinear spaceover a non-Archimedean field K. A non-Archimedean
normonE is amapping‖ · ‖ : E → [0,+∞) satisfying the followingconditions:

(a) ‖x‖= 0⇔ x= 0;

(b) ‖αx‖= |α|K ‖x‖, α ∈ K;
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(c) ‖x+ y‖ ≤ max(‖x‖,‖y‖).
As usual, we define non-Archimedean Banach spaceE as a complete normed space
over K. The metric ρ(x,y) = ‖x− y‖ is ultrametric. Hence every non-Archimedean
Banach spaceiszero-dimensional and totally disconnected. All ballsWr(a) = {x∈ E :
‖x−a‖ ≤ r} are clopen.

The dual spaceE′ is defined as the spaceof continuous K-linear functionals
l : E → K. Let us introducetheusual norm onE′ : ‖l‖= supx6=0 |l(x)|K/‖x‖. Thespace
E′ endowed with thisnorm is aBanach space.

The simplest example of a non-Archimedean Banach spaceis the spaceKn =
K×·· ·×K (n times) with thenon-Archimedean norm ‖x‖= max1≤ j≤n |x j |K . Morein-
teresting examples are infinite-dimensional non-Archimedean Banach spaces realized
as spacesof sequences: set c0 ≡ c0(K) = {x∈ K∞ : lim

n→∞
xn = 0} and‖x‖= maxn |x|K .

2.3. Hilbert spaces

We take asequenceof p-adic numbersλ = (λn) ∈ Q∞
p , λn 6= 0. We set

l2(p,λ) =
{

f = ( fn) ∈Q∞
p : theseries ∑ f 2

n λn convergesinQp

}
.

It turns out that l2(p,λ) = { f = ( fn) ∈ Q∞
p : limn→∞ | fn|p

√
|λn|p = 0}. In the space

l2(p,λ) we introducethenorm ‖ f‖λ = maxn | fn|p
√
|λn|p. Thespacel2(p,λ) endowed

with thisnorm isnon-ArchimedeanBanach space. On thespacel2(p,λ) we also intro-
ducethe p-adic valued inner product ( · , · )λ by setting ( f ,g)λ = ∑ fngnλn.

Weremark that ‖ f‖λ ∈R, but ( f , f )λ ∈Qp. Thenorm isnot determined by the
inner product. Nevertheless, the p-adic inner product ( · , · )λ : l2(p,λ)× l2(p,λ) →
Qp is continuous and the Cauchy–Bunyakovsky–Schwarz inequality holds, namely
|( f ,g)λ|p ≤ ‖ f‖λ ‖g‖λ.

DEFINITION 1. A triplet (l2(p,λ), ( · , ·)λ, ‖ · ‖λ) iscalled a p-adic coordinate
Hilbert space.

Moregenerally, we shall define ap-adic inner product onQp-linear spaceE as
an arbitrary non-degeneratesymmetric bili near form ( · , ·) : E×E →Qp.

REMARK 1. We cannot introduce ap-adic analogueof positive definitenessof
a bili near form. For instance, any element γ ∈ Qp can be represented as γ = (x,x)λ,
with x∈ l2(p,λ) (this isasimple consequenceof propertiesof bili near formsover Qp).

The triplets (E j , ( · , ·) j , ‖ · ‖ j), j = 1,2, where E j are non-Archimedean Ba-
nach spaces, ‖ · ‖ j are norms and ( · , ·) j are inner products satisfying the Cauchy–
Buniakovski–Schwarz inequality, are isomorphic if the spaces E1 and E2 are alge-
braically isomorphic and the algebraic isomorphism I : E1 → E2 is a unitary isometry,
i.e., ‖Ix‖2 = ‖x‖1 and (Ix, Iy)2 = (x,y)1.
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DEFINITION 2. The triplet (E, ( · , ·), ‖ · ‖) is a p-adic Hilbert space if it i s
isomorphic to the coordinateHilbert space(l2(p,λ), ( · , ·)λ, ‖ · ‖λ) for somesequence
of weightsλ.

Theisomorphism relationsplits thefamily of p-adic Hilbert spacesinto equiva-
lence classes. An equivalence classis characterized bysome coordinaterepresentative
l2(p,λ). The classification of p-adic Hilbert spaces isan open mathematical problem.

Hilbert spaces over quadratic extensions Qp(
√

τ) of Qp can be introduced in
the sameway. For a given sequenceλ = (λn) ∈Q∞

p , λn 6= 0, weset

l2(p,λ,
√

τ) = { f = ( fn) ∈Qp(
√

τ)∞ : the series∑ fn f̄nλn converges},

with ‖ f‖λ = maxn | fn|p
√
|λn|p and ( f ,g)λ = ∑ fnḡnλn.

Thetriplet (l2(p,λ,
√

τ), ( · , ·)λ, ‖ · ‖λ) is the coordinateHilbert spaceover the
quadratic extension Qp(

√
τ). In general, a Hilbert space(E, ( · , ·), ‖ · ‖) over the

quadratic extension Qp(
√

τ), is by definition isomorphic to some coordinate Hilbert
space. We denote ap-adic Hilbert spaceover Qp(

√
τ) by

H p ≡ H p(
√

τ).

3. Groupsof unitary isometr ic operators in p-adic Hilbert space

Asusual, we introduceunitary operatorsÛ : H p → H p asoperatorswhich preservethe
inner product, so (Ûx,Ûy) = (x,y) for all x,y∈ H p, with image Im Û = Û(Hp) = Hp.
Isometric operators are operators which preserve the norm, so ‖Ûx‖ = ‖x‖, and have
Im Û = Hp. Denote the spaceof all bounded linear operators Â : H p → H p by L (H p).
It is a Banach spacewith respect to the operator norm ‖Â‖ = supx6=0‖Âx‖/‖x‖. A
unitary operator need not be isometric.3 Indeed, it could even be unbounded. Denote
thegroup of linear isometriesof the p-adic Hilbert spaceH p by IS(H p), and thegroup
of all bounded unitary operatorsinH p byUN(H p). Set UI(H p) =UN(H p)∩UI(H p).

An operator Â∈ L (H p) is said to be symmetric if (Âx,y) = (x, Ây) for all x,y.
The followingsimple fact will beuseful later.

THEOREM 1. The eigenvalue α of a symmetric operator Â : H p → H p corre-
sponding to aneigenvector u with nonzero square, (u,u) 6= 0, belongs to Qp. Eigen-
vectors correspondingto different eigenvaluesof such type areorthogonal.

Theproof is similar to thestandard one for complex Hilbert spaceH .

As usual, we introduce the resolvent set Res(Â) of an operator Â ∈ L (H p); it
consistsof λ∈Qp(

√
τ) such that theoperator (λI− Â)−1 exists. ThespectrumSpec(Â)

of Â is the complement of the resolvent set.

3Recall that the norm on the p-adic Hilbert spaceis not determined by the inner product. The only
condition of consistency between them is theCauchy–Bunyakovsky–Schwarz inequality.
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Note that every ball Ur in Qp is an additive subgroup of Qp. A map F̂ : Ur →
L (H p) with the properties F̂(t + s) = F̂(t)F̂(s), t,s∈Ur , and F̂(0) = I , where I is the
unit operator in H p, is said to be aone-parameter group of operators. If we consider
IS(H p),UN(H p),UI(H p) instead of L (H p), we obtain definitions of the parametric
groups of isometric, unitary, and isometric unitary operators, respectively. If the map
F : U r → L (H p) is analytic the one-parameter groupiscalled analytic.

We recall that any p-adic ball i s, in fact, a ball with radius r = pk, with k =
0,±1, . . . (since the p-adic valuation takes only such values). On the other hand, in a
normedspaceoverQp or itsquadratic extension, thenormcan take any valuebelonging
to [0,+∞). To match these two rangesof values, we invent the following quantity. Let
a be apositive real number. We define

(2) [a]−p = sup{λ = pk, k∈ Z : λ < a}.

Thisnumber approximates(from below) thereal number a by numbersfrom therange
of valuesof the p-adic valuation.

For a bounded operator Â, wedefine

(3) γ(Â) =
1

p1/(p−1)‖Â‖
.

It is a real number, the reciprocal of the norm ‖Â‖ multiplied by the factor p1/(p−1).
The latter appears in connection with convergenceof the exponential series in the p-
adic case. The series ey, where in general y belongs to Cp, converges on the ball of
radius rexp = p−1/(p−1).

THEOREM 2. Let Â be a bounded symmetric operator in H p ≡ H p(
√

τ). The
map

t 7→ e
√

τ tÂ, t ∈Ur , r = [γ(
√

τÂ)]−p ,

is an analytic one-parameter group of isometric unitary operators.

Thus every symmetric operator Â ∈ L (H p(
√

τ)) generates the one-parameter

operator group of isometric unitary operatorst 7→ Û(t) = e
√

τ tÂ. This theorem isanat-
ural generalization of the standard theorem for C-Hilbert space. The following result
hasnoanaloguein functional analysisover C.

THEOREM 3. Supposethat an operator Â belongstoL (H p). Themapα 7→ eαÂ,

α ∈Ur , r = [γ(Â)]−p , is an analytic one-parameter group of isometric operators.

4. Gaussian integral and spacesof square integrable functions

As already remarked, the mathematical formalism of p-adic quantization does not
depend on the choice of a quadratic extension Qp(

√
τ) of Qp. To make considera-

tions symbolically closer to ordinary complex quantization, we shall proceed for the
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quadratic extensionQp(i). Of course, thischoicerestricts in an essential way the class
of primenumbersunder consideration.

To provide the pointwise realization of elements of the p-adic analogue of the
L2-space, weshall consider analytic functionsover thefield of complex p-adicnumbers
Cp. In Cp we denote the ball of radiuss∈ R+ with center at z= 0 by the symbol U s.
We denote thespaceof analytic functions f : U s →Cp by A (U s).

In [2], thegeneral definition of a p-adic valued Gaussian integral wasproposed
onthebasisof distributiontheory. In thiscontext, theGaussian distributionwasdefined
asthedistribution havingLaplacetransform of the form exp{bx2/2}, whereb∈R. We
recall that in the real case if b> 0 then Gaussian distribution is simply a countably ad-
ditivemeasure– Gaussian measurewith dispersionb. If b isnegativeor even complex
then theGaussian distributioncannot be realized asa measure.

For our present applications to quantization, we can use a simpler approach
based onthe definition of Gaussian distribution throughthe definition of its moments.
Roughly speaking, weknow momentsof Gaussian distribution over thereals. Suppose
now that dispersion is a rational number, b ∈ Q. Then moments can equally well be
interpreted as elements of any Qp. We now can extend bycontinuity our definition of
moments to any “dispersion” b∈Qp.

Let b be ap-adic number, b 6= 0. The p-adic Gaussian distributionνb isdefined
by itsmoments (n= 0,1, ...) :

M2n =

∫
Qp

x2nνb(dx)≡ (2n)! bn

n! 2n , M2n+1 =

∫
Qp

x2n+1νb(dx)≡ 0.

We define the Gaussian integral for polynomial functions by linearity. Then
we can define it for some classes of analytic functions. The analytic function f (x) =
∑∞

n=0cnxn, with cn ∈ Cp, is said to be integrablewith respect to the Gaussian distribu-
tion νb if theseries

(4)
∫
Qp

f (x)νb(dx)≡
∞

∑
n=0

cnMn =
∞

∑
n=0

c2nM2n

converges. It was shown in [11] that all entire analytic functionsonCp are integrable.
In fact, wedo not need analyticity onthewholeof Cp to be able to definetheGaussian
integral. The following(real) constant

θb ≡ p
1

2(1−p)

√
|b/2|p

will play a fundamental role. If p 6= 2, then θb = p
1

2(1−p)
√
|b|p. If p = 2, then θb =√

|b|p.

PROPOSITION 1. Let f (x) belongto the classA (U s). If s> θb, then the inte-
gral (4) converges.

REMARK 2. There exist functions which are analytic on the ball U θb but are
not integrable, see[11].
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In fact, we have proved that the Gaussian distribution is a continuous linear
functional on the spaceof analytic functionsA (U s), i.e., it is an analytic generalized
function (distribution); for the details see[2]. We shall use the symbol

∫
to represent

the duality between the spaceof test functions A (U s) and the spaceof generalized
functionsA ′(U s) by setting (µ′, f ) ≡ ∫

f (x)µ(dx) for f ∈ A (U s) and µ∈ A ′(U s). As
usual, we define the derivative of a generalized function µ by means of the equality∫

f (x)µ(dx) =−
∫

f ′(x)µ(dx).

It should be remarked that the distribution νb is not a bounded measure on any
ball of Qp. (This was proved for the case p 6= 2; in the case p = 2 the question is
still open), seeEndo and Khrennikov [19]. Thus we could not integrate continuous
functionswith respect to the p-adic Gaussian distribution.

WeintroduceHermitepolynomialsover Qp by substitutinga p-adic variable, in
placeof a real one, into the ordinary Hermitepolynomialsover the reals:

Hn,b(x) =
n!
bn

[n/2]

∑
k=0

(−1)kxn−2kbk

k!(n−2k)!2k .

We shall use also the followingrepresentationfor the Hermitepolynomials: Hn,b(x) =

(−1)nex2/2b dn

dxn e−x2/2b. This representation holds on a ball of sufficiently small radius
with center at zero. Asa consequence, weobtain the followingequality in thespaceof
generalized functionsA ′(U s), with s> θb :

(5) Hn,b(x)νb(dx) = (−1)n dn

dxn νb(dx),

i.e., multiplication of the Gaussian distribution bya Hermite polynomial is equivalent
to evaluatingthe corresponding derivative(in the senseof distribution theory).

In thespaceP (Qp) of polynomialsonQp with coefficientsbelongingtoQp(i),
we introduce the inner product ( f ,g) =

∫
f (x)ḡ(x)νb(dx). With respect to this inner

product, thepolynomialsHn,b verify theorthogonal conditions
∫

Hm,b(x)Hn,b(x)νb(dx)
= δnm n!/bn.

REMARK 3. In fact, the appearanceof such constants λn = n!/bn was one of
the reasonsfor introducing p-adic Hilbert spaces that are isomorphic to l2(p,λ).

Any f ∈ P (Qp) can be written in the following way: f (x) = ∑N
n=0 fnHn,b(x),

N = N( f ), fn ∈ Qp(i). We introducethe norm ‖ f‖2 = maxn | fn|2p(|n!|p/|b|np), and we
define Li

2(Qp,νb) as the completion of P (Qp) with respect to ‖ · ‖. It is evident that
the spaceLi

2(Qp,νb) is the set

{
f (x) =

∞

∑
n=0

fnHn,b(x), fn ∈Qp(i) : theseries
∞

∑
n=0

fn f̄n
n!
bn converges

}
.

Let L2(Qp,νb) stand for the subset of Li
2(Qp,νb) consisting of functions that

have theHermite coefficients fn ∈Qp. This isa Hilbert spaceover thefieldQp.
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For f (x) ∈ Li
2(Qp,νb) we set

(6) σ2
n( f ) ≡ σ2

n,b( f ) = | fn|2p
∣∣∣n!
bn

∣∣∣
p
,

where

fn =
bn

n!

∫
f (x)Hn,b(x)νb,p(dx)

are the Hermite coefficientsof f (x).

Now we wish to study the relations between L2(Qp,νb)-functionsand analytic
functions. Set AQp(U r) = { f ∈ A (U r) : f : Ur → Qp}, i.e., these are functions that
haveTaylor coefficientsbelongingto thefield Qp.

THEOREM 4. Assume p 6= 2. Then L2(Qp,νb)⊂ AQp(U θb).

Now we consider the case p = 2. In general, L2-functions are not analytic on
the ball U θb.

THEOREM 5. Let s> θb. Then AQp(U s)⊂ L2(Qp,νb).

Further we construct the L2-representation of the translation group. If |b|p =
p2k+1 weset s(b) = pk, if |b|p = p2k, weset s(b) = pk−1. Set T̂β( f )(x) = f (x+β),β ∈
Qp. Weshall provethat theseoperatorsarebounded for β ∈Us(b). Moreover, theseop-
eratorsareisometriesof L2(Qp,νb). Usingthis fact weshall construct arepresentation
of the translation groupin the p-adic Hilbert spaceL2(Qp,νb).

LEMM A 1. The formula

(7) T̂βHn,b(x) =
n

∑
j=0

(
n
j

)(
β
b

) j

Hn− j ,b(x)

holds for the translatesof Hermite polynomials.

THEOREM 6. The operator T̂β belongs to IS(L2(Qp,νb)) for every β ∈ Us(b),

andthemapT : Us(b) → IS(L2(Qp,νb)), β → T̂β, is analytic.

5. Gaussian representationsof position and momentum operators

Just as in ordinary Schrödinger quantum mechanics, let us define the coordinate and
momentum operators in Li

2(Qp,νb) by

q̂ f (x) = xf (x), p̂ f (x) = (−i)

(
d
dx

− x
2b

)
f (x),

where f belongsto theQp(i)-linear spaceD of linear combinationsof Hermitepolyno-
mials. The coordinate andmomentum operators so defined satisfy onD the canonical
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commutationrelations

(8) [q̂, p̂] = iI ,

where I is the unit operator in Li
2(Qp,νb). We shall see that these relations can be

extended to thewholeof Li
2(Qp,νb).

THEOREM 7 (Albeverio-Khrennikov). The operators of the coordinate q̂ and
momentum p̂ are bounded in theHilbert spaceLi

2(Qp,νb), with

(9) ‖q̂‖=
√
|b|p, ‖p̂‖= 1√

|b|p
.

Moreover q̂ andp̂ aresymmetric andsatisfy (8) onLi
2(Qp,νb).

Proof. Let f (x) = ∑∞
n=0 fnHn,b(x) ∈ Li

2(Qp,νb). By the recurrenceformula

(10) Hn+1,b(x) = b−1[xHn,b(x)−nHn−1,b(x)],

we have

(11) q̂Hn,b(x) = bHn+1,b(x)+nHn−1,b(x),

and q̂ f (x) = ∑∞
n=0bfnHn+1,b(x)+∑∞

n=1nfnHn−1,b(x). Thus, by the strongtriangle in-
equality, weobtain

‖q̂ f‖2 ≤ max

[
max

n
|b|2p| fn|2p

|(n+1)!|p
|b|n+1

p
, max

n
|n|2p| fn|2p

|(n−1)!|p
|b|n−1

p

]

= |b|p max

[
max

n
|n+1|p| fn|2p

|n!|p
|b|np

, max
n

|n|p| fn|2p
|n!|p
|b|np

]

≤ |b|p‖ f‖2,

(as |n|p ≤ 1 for all n∈ N). Therefore, ‖q̂‖ ≤
√
|b|p. Now we prove that ‖q̂‖2 = |b|p.

Let n= pk, then

Dk,b = ‖q̂Hpk,b‖2 = max

[
|b|2p|(pk+1)!|p

|b|pk+1
p

,
|pk|2p|(pk−1)!|p

|b|pk−1
p

]
.

But |(pk+1)!|p = |pk!|p and |p2k(pk−1)!|p = p−k|pk!|p. Thus

Dk,b = |b|p
|pk!|p
|b|pk

p

= |b|p‖Hpk,b‖2,

which provesthefirst equality in (9).
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Further, we have d
dxHn,b(x) = (x/b)Hn,b(x)−Hn+1,b(x) = (n/b)Hn−1,b(x). Set

T̂x = (d/dx− (x/2b)). We have T̂xHn,b(x) = (n/2b)Hn−1,b(x)− (1/2)Hn+1,b(x). To
compare thisexpressionwith (11), we rewrite it as

(12) T̂xHn,b(x) =
1
2b

[
−bHn+1,b(x)+nHn−1,b(x)

]
.

The expression in squarebrackets is similar to that in (11); thesign doesplay a role in
estimates of max type. Thus we obtain ‖T̂x‖ = (1/|b|p)‖q̂‖, which proves the second
equality in (9).

Symmetry of thebounded operators q̂, p̂ is easily verified.

Thus, unlike in the Archimedean case (complex Hilbert space), in the p-adic
case the canonical commutation relations (8) are valid not only on a dense subspace,
but everywhereon theHilbert space.

6. Oneparameter groupsgenerated by position and momentum operators

We shall computenumbers [γ(q̂)]−p and [γ(p̂)]−p , see(2), (3) in section 3.

If |b|p = p2k+1 then γ(q̂) = 1/(pkp1/2p1/(p−1)). If p 6= 3 then [γ(q̂)]−p = 1/pk+1.

If p= 3 then [γ(q̂)]−p = 1/pk+2. If |b|p = p2k then γ(q̂) = 1/(pkp1/(1−p)) and [γ(q̂)]−p =

1/pk+1. Set
R(b) = [γ(q̂)]−p .

If |b|p = p2k+1 then γ(p̂) = (p1/2/p1/(p−1))pk. If p 6= 3 then [γ(p̂)]−p = pk. If
p= 3 then [γ(p̂)]−p = pk−1. If |b|p = p2k then [γ(p̂)]−p = pk−1. Set

r(b) = [γ(p̂)]−p .

THEOREM 8. (Albeverio–Khrennikov) The maps α 7→ Û(α) = eiαq̂, α ∈UR(b),

andβ 7→ V̂(β) = eiβp̂, β∈Ur(b), areanalyticone-parameter groupsof unitary isometric
operators acting onLi

2(Qp,νb). Theysatisfy theWeyl commutationrelations

(13) Û(α)V̂(β) = e−iαβV̂(β)Û(α).

We set

(14) M̂β f (x) = e−βq̂/2b f (x) =
∞

∑
n=0

(−βq̂)n

n!(2b)n f (x),

for f ∈ L2(Qp,νb). By Theorem 7, we easily obtain

PROPOSITION 2. ThemapM : Ur(b) 7→ IS(L2(Qp,νb)), β → M̂β, isan analytic
one-parameter group(indexed by theball Ur(b)).

REMARK 4. The function x 7→ e−βx/2b is not defined on the whole of Qp and
we cannot consider (14) asa pointwisemultiplication operator.
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7. Operator calculus

It is well known that in the ordinary L2(R,dx) space, the unitary groupV̂(β) = eiβp̂,
with β ∈ R, can be realized as the translation group, with V̂(β)ψ(x) = ψ(x+ β) for
sufficiently well -behaved functionsψ(x). If we consider the equivalent representation
in L2-spacewith respect to the Gaussian measure νb(dx) = (e−x2/2b/

√
2πb)dx on R,

we obtain

(15) V̂(β)ψ(x) = e−β2/4be−βx/2bψ(x+β),

or

(16) V̂(β) = cβM̂βT̂β,

wherecβ = e−β2/4b. We shall now provethat (16) is also valid in the p-adic case.

Set Ŝ(β) = cβM̂βT̂β, β ∈Ur(b), where theoperator M̂β is defined by(14).

THEOREM 9. Themapβ 7→ Ŝβ, β ∈Ur(b), isa one-parameter analytic group of
isometric unitary operators acting in Li

2(Qp,νb).

LEMM A 2. ThegroupsŜ(β) andV̂(β) havep̂ as their common generator.

Asa consequenceof thislemma, andthe analyticity of theoneparameter groups
S(β) andV(β), we easily obtain:

THEOREM 10. Therepresentation(15), (16) holdsfor theoperator groupV̂(β).

By using one-parameter groups Û(α),V̂(β), one can formally define pseudo-
differential operators. However, a rigorousmathematical theory is still awaiting devel-
opment.
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