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Abstract. We present results for pseudodfferential operators on R whose symbal a(-,%)
is almost periodic (ap.) for eah & € RY and helongs to a Hérmander classsgfa. We study

alinea transformation a — U (a) from a symbad a(x,§) to a frequency-dependent matrix
U(a)(&) v, indexed by (A,\') € A x A where A is a ourtable set in RY. The map a —
U (a) transforms symbasof a.p. pseudodfferential operatorsto symbalsof Fourier multiplier
operators ading on \edor-valued function spaces. We show that the map preserves operator
positivity and identity, respeds operator compasition and respeds adjoints.

1. Introduction

The paper concerns pseudodfferential operators (abbreviated to WDO) on R in the
Kohn-Nirenberg quantization, where the symbadl a(-,&) is aimost periodic (ap.) for
eath & € RY, and belongs to a Hérmander cIa.ssSm This ymbad classis denoted
APS“ and the crrespondng orerators are cdled ap pseudodfferential operators.
We studythe symbal transformationa — U (a) given by

U (@) (E)rn = Mx(a(x,& — ) 2N -N))

where My denates the mean value functional of a.p. functions. This transformation
was introduced, for operator kernels rather than symbals, by E. Gladyshev [4, 5], for
the purposes of stochastic processs. The mnredion between stochastic processes
and ogerator theory originates from the fad that the so-cdl ed covariancefunction of a
stochastic processis the kernel of a positive operator. Gladyshev studied a particular
classof stochastic processs cdled almost periodically correlated, which means that
the symbad of the covarianceoperator is amost periodic in thefirst variable.

The dement U (a)(§) can be considered a matrix indexed by (A,A") € A x A
where A C RY is the courtable set of frequencies that ocaur in {a(-,€)}gcga. Thus
U (a)(&) isan operator that ads between sequencespaces andthefunctiong — U (a)(&)
may be considered the operator-valued symbadl of a Fourier multi plier operator denoted
U(a)(D).

Let a € APSF:6 and let 12 be the spaceof sequences (X )xca Such that the
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weighted nam

1/2
X[z = (Z (1+ |}‘|2)S|X)\|2)
AEN

isfinite. Using results by M. A. Shubin, we first observe that the norm of the operator
a(x,D) : HS(RY) — HS"™(RY) is equal to the norm of a(x, D) : H3(RY) - HS"M(RY)
for any s€ R. Here HS(RY) denotes the dassca Sobdev Hilbert space and HS(RS)
denates the Sobdev—Besicovitch spaceof a.p. functions, completed from the trigonc
metric polynomialsin the norm

1/2
HfHHSRd = (1+|)‘|2)s|f)\|2 )
(Rg)

AeRd

where f) = M( f(x)e~2™}) jsthe Bohr—Fourier coefficient of an a.p. function f. Then
we prove that the norm of the matrix U (a)(0) : 12 — 12_, is boundd by the norm of
the operator a(x,D) : HS(RS) — HS™(RY). We dso show that a(x,D) is positive
on .7 (RY) if and orly if it is positive on the trigonametric polynomias on RY and
a(x,D) = 0onTP(A) if and orly if U (a)(0) is a positive definite matrix. Thus much
information abou the operator a(x, D) can berea off fr om the evaluation of the matrix
symbal U (a) at the origin.

We provethat U (a) () isa continuowstransformation|2 — 12 for any & € RY,
andthemap RY 5 & — U(a)(§) € £(12,12 ) is continuows. Moreover, U (a)(D) > 0
if a(x,D) > 0. The latter result on preservation of pasitivity was proved by Gladyshev
[5] for uniformly continuous operator kernels. Here U(a)(D) ads on vedor-valued
function spaceslike .7 (RY,12). Then we show our main result that the transformation
a— U(a) respeds operator composition. More predsely, dencte the symbal prod-
uct, correspondng to operator composition, by a(x,D) o b(x,D) = (a#b)(x,D). If
ac APS;% andb e APS;%, my, M € R, then we have

U (arob) (&) = U (a)(&) -U (b)(§).

Finally, we prove that the requirement that the symbal is amost periodic in the first
variable is invariant under a common family of quantizations that is defined using a
parameter t € R. The family includes the Kohn-Nirenberg (t = 0) and the Weyl (t =
1/2) corresponcences.

In conclusion, the transformationa — U (a) isalinea, injedive map that pre-
serves operator identity, positivity, adjoint and compasition. In the proofsof our results
we use mainly results by Shuhin[9, 10, 11, 12].

In scaar-valued functionspaces, translation-invariant (or convdution ar Fourier
multi pli er) operators commute, but for vedor-valued function spaces, the product in C
is replaceal by the matrix product, so trandation-invariant operators are not commu-
tative. The transformation a(x,D) — a+ U(a)(D) transfers the non-commutativity
of almost periodic pseudodfferential operators with symbals in 8235 into the non
commutativity of the matrix product.
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A brief comment on some parts of the literature on a.p. pseudodfferential op-
eratorsfoll ows. Coburn, Moyer and Singer [1] devel oped an index theory for pseudod
ifferential operators on RY with almost periodic principal symbol. Shubin has made
many important contributionsto the theory of partial diff erential operatorswith almost
periodic coefficients and a.p. pseudodfferential operators. For example, he introduced
the Sobdev—Besicovitch spaces[9] and proved the equality of the spedrafor a.p. pseu-
dodfferential operators ading onL?(RY) and the Besicovitch spaceB?(RY), provided
the operator isbounced or elliptic[11, 12).

Lately Turunen, Ruzhansky and Vainikko have worked on pseudodfferential
operators with symbalsthat are periodic in thefirst variable [14, 15, 8]. The operators
may be mnsidered to ad on functions defined onthe torus TY, and the theory of pseu-
dodfferential operators on manifolds may be used. However, the use of Fourier series
representations gives a more dementary and gobal treament.

2. Notation and preliminaries

We use (X) = (1+ |x[%)¥2, x € RY, and the Fourier transform is defined by

~

FHE = Q) = [ fe ey, e ®),
R
For amultiindex a = (ay,...,0q), we define the partial diff erential operator

019/ f (x)

d
e R".
o1 Oq
0xq* -+ - 0%y

0% f(x) =03 f(x) =

We use C for a generic positive constant that may vary over equdlities and in-
equaliti es, we denate by C™(RY) the spaceof functions such that 8% f is continuowsfor
la| < mandC* = N,,,C™ isthe spaceof smooth functions. The symba C,(RY) stands
for the spaceof continuows and supremum bounced functions, andCff(IRd) isthespace
of functions whaose derivatives of al orders are continuows and bouned in supremum
norm. The spaceof compadly suppated smoath (test) functions is denoted C (RY).
The Schwartz spaceof smooth rapidly deaeaing functionsis denoted . (RY) andits
dual .'(RY) isthe spaceof tempered distributions. A spaceof trigonamnetric polyno-
mialsisdenoted TP(S) and consists of functions of the form

N .
f) =3 ane™™, aeC, &eSCRY
n=1

We will consider functions defined onR® and taking values in a Hil bert or Ba-
nach spaceX, andthen C(RY, X) denotes the spaceof continuous X-valued functions,
and likewise for other function spaces. The spaceof bounded linea transformations
between two Hilbert spacesH andH’ isdenoted £ (H,H’), and £ (H,H) = £ (H). The
operator normis denoted || - || . 1,17y OF || - [| £ (H)-
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A subset Y of a complete metric spaceX is precmpact if it istotally bounced,
which meansthat Y can be covered by afinite union o ballsof radiuse, for any € > 0.
This definitionis equivalent to the property that the dosure of Y is compad.

We define astandard family of symbal classes, the so cdl ed Hormander classes.
More predsely, the following symbal classes are global versions of Hérmander spaces
[3, 6,13].

DEFINITION 1. For me R and 0 < p,d < 1 the space S,;na is defined as the
spaceof all a € C*(R?%) such that

(1) sup (§)mPlal-oFl 5% afa(x,£)| <, o,pe N
x,E€Rd

We impose the condtions
0<p<gl 0<d<l d<p.
Foll owing cornvention, we set §p5 = Nmer S;a and §5 = Umer S;a

The spacesgj6 is a Frédhet spacewith seminorms defined by (1).

We consider the Kohn-Nirenberg quantization o pseudodfferential operators.
A symbal function a defined onthe phase spaceR? gives rise to an operator a(x, D)
acordingto the formula

) a(x,D)f(x) = [ e Va(x &)f(y)dyds, fe.7(RY).

R2

Whenae Sm the correspondng operator classis denoted me For the symbal classes
Sg‘B, the oscnl atory integral (2) is generally not absolutely convergent and shoud be
read astheiterated integral

© axD)f(x) = [ @ ax8)T(E)ce.

In order to extendthe operator to act on ather functionspacesthan . (RY) onemodifies
the definition (2) into

4 a(x,D)f(x) = lim [ (ey) (&)™ Va(x,&)f(y)dydE

e—+0/R2d

where ) € C°(RY) equalsorein aneighbahood d the origin. Integrating by arts we
may rewrite (4) as

axD)f(x) = [ | 0N (14[82) M1 -ag) MaxE)
X (L= )M (L4 [x=y1%) M (y)) dyd,
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where A denctes the normalized Lapladan A = (2m)~2 3§ 9%, which is an absolutely

convergent integral for f € C*(RY) provided that 2M > d and 2N > d + m. By differ-

entiation undér the integral it follows that a(x,D) : C(RY) — CP(RY) continuotsly.

Thisprocedureis dandard and fundamental in pseudo-differential cadculus[3, 6, 13].
For an admissble pair of symbadls a, b we define the symbal product #y by

c=a#hb <= c(x,D)=a(x,D)b(x,D).
We have the foll owing well -known result in the theory of pseudodfferential operators
[3, 6]. The symbol product is a continuows bili near map from S;% X S;% to Sg%*mz,
+
) oS C S

05 SSs 0 MM ER.

3. Almost periodic functions and pseudodifferential operators

We will work with spaces of almost periodic functions [2, 7, 12]. The basic space
of uniform almost periodic functions is denoted CAP(RY) and defined as follows. A
set U ¢ RY is cdled relatively dense if there exists a compad set K ¢ RY such that
(x+K)NU # 0 for any x € RY. An element T € RY is cdled an e-almost period o
afunction f € Co(RY) if sup,|f(x+1) — f(X)| < &. Then CAP(RY) is defined as the
spaceof al f € Cy(RY) such that, for any € > 0, the set of e-almost periods of f is
relatively dense. With the assumption that the uniform almost periodic functionsis a
subspaceof Cy(RY), this original definition by H. Bohr is equivalent to the following
three[2, 7, 12]:

(i) theset of trandations { f (- — X) } . ga IS precompad in Cy(RY);

(i) f=goigwhereigisthe canoricd homomorphism from RY into the Bohr com-
padificaionRY of RY andg € C(RY). Hence f can be extended to a continuous
function onRRY;

(iii) f isthe uniform limit of trigonametric polynomials.

The spaceCAP(RY) isa conjugate-invariant complex algebraof uniformly con-
tinuous functions. For f € CAP(RY) the mean value functional

(6) M(f)= lim T~¢ f(x)dx,
T4 s+KT

whereKr = {xcRY: 0<x; < T, j=1,...,d}, existsuniformly over s€ RY. By My
we understand the mean value in the variable x of afunction o several variables. The
Bohr (—Fourier) transformation[7] is defined by

fy = My(f(x)e72™%), A eRY,

and f, # 0 for at most courtably many A € RY. Theset {A € RY: f, 0} iscdled the
set of frequenciesfor f.
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A function f € CAP(RY) may be reconstructed from its Bohr—Fourier coeffi-
cients (f))aen Using Bochner—Fejér paynomias[7, 12]. We give abrief overview of
theresultswenead. Let B, € RY, n=1,2,..., be arationd basisfor the set of frequen-
ciesA for f. Thismeansthat (Bn)p_, is linealy independent over Q andeadh A € A
can be written

N
A= Z OnBn, Gh€Q,
n=1

with urique coefficients (gn)N_,. Every courtable set A C RY has a rational basis
contained in A [7]. The composite Bochner—Fejér kernel i s defined as

V1] [Vn|
Ko a2~ (o) o
l \V1\<(n!)2,.Z.,\vn\<(n!)2 (n)2 QK

<op(an (e ) 1)

We dencte its coefficients

(n)2

Since (Bn)%_, is linealy independent over Q, and since My (&%) = 0 when A # 0,
we have M(Kpg,  g,) = 1.

For agiven f € CAP(RY) the Bochner—Fejér polynomial of order n is defined

\Y) \% .
(7) Knvi,..vn = (1— %) (1— M), |Vj| < (I’1!)27 1<j<n

by
Pa(F)(X) = My (T(y)Knp,, .. (X—V))
€S) - vel<(n)2em \vn\g(n!)ZKn;Vlwvnf%Bﬁmﬂ”ﬁ? "
><eXp(2TIi (%Bl-ﬁ-""f'%ﬁn) -x).
Itfollowsfrom M(Kpg, p,) =1landKyp, g, (X) = 0[7] that
©) [IPa( )l < ([ flLe

If we define the function onA

Knvy,.un ITA= %[314_ N %Bn, vj| < (n!)z7 1<j<n,

Kn(A) = L :
0 otherwise,

then we may write (8) in shorter form as

(10) Pn(f)(x) = Z Kn(A) €™,

AEN
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We observe that K, (A) hasfinite suppat and 0< Kn(A) < 1. For an arbitrary A € A we
may writefor somen > 0and |vj| < (n')%, 1< j <n,
V]_ Vn
A= HBl-ﬁ-"'-FEBn

_ vi(n4+m)!/nt
~ (n+m)!

vn(n+m)!/nl

Bat (n+m)!

Bn+0-Bnyr+---+0-Bnim,

where m > O isarbitrary. It foll ows that

For nandvs, ..., v, fixed, it follows from (7) that the right hand side gproaches 1 as
m — oo, becaise

_ vil(n+mt/nt Vil

(n+mn2 — 7n!(n+m)!%1

m—o, 1Ljg<n.

)

We may concludethat Kn(A) — 1 asn— +oo, for any A € A.

We state the fundamental approximation result for the Bochner—Fejér palyno-
mias[7, 12]. If f € CAP(RY) then we have the uniform limit

(11 sup [Pa(f)(X) — f(X)] = 0, n— co.

xeRd
Thelimit in (11) holds for any f € CAP(RY) whose set of frequenciesis contained in
.

The next lemma resembles [12, Corollary 2.1]. We give aproof for complete-
ness

LEMMA 1. For a precompact set # € CAP(RY), the li mit
sup |Pa(f)(x) — f(X)] =0, n— o

xeRd

isuniformover f € 7.

Proof. Denaote||-|| = || - ||L~. Dueto the asssumptionthat 7 is precompad, there exists
for ead integer k > 0 afinite set {fk,j}:-\lil C 7 suchthat ||f — fi || < 1/k holdsfor
eath f € ¥ for some j, 1 < j < Nk. Let Ag bethe union o the frequencies that occur
in {fk,j}:-\'il andlet A bethe linea hull over Q of Uy, /Ax. Define the Bochner—Fejér

Let e > 0and pick aninteger k > £~1. Accordingto limit (11) we have || fi j —
Pa(fij)|l < eforal 1< j < N¢if n> N for asufficiently largeinteger Ne. Let f € 7
and pick an fy j suchthat || f — fi j|| < 1/k < €. We have, using (9),

[F=Pa(E)I < 1= Ficill + 1 fij — Pa(ficj) | + IPa(ficj — P
< =Tl + [ iy — Pa(fip) | + [ fij — Tl <38, n>Ne.
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For me N, the spaceCAP™(RY) is defined as all f € C™(RY) such that 0% f €
CAP(RY) for |a| < m, and CAP?(RY) = ey CAPT(RY). Then CAP® = CAPNCY
[12.

The mean value defines an inner product
(12) (f,9)8 =M(fg), f,geCAPRY).
The completion o CAP(RY) in the norm | - ||g is the Hil bert spaceof Besicovitch ap.

functions B(RY) [12].
Inspired by the usual Sobdev spacenorm

R 1/2
b = ( [, 1+ EPPITOPCE )

Shubin [9] has defined Sobd ev—Besi covitch spaces of ap. functionsHS(RY) for s€ R,
as the completion o TP(RY) in the norm correspondngto the inner product

(F.Qnsmg) = Y (148G, f.ge TPRY).
£eRd
The spaces HS(RS) are Hil bert spaces containing TP(RY) as adense subspace HO(RS)
= B?(RY), and ore defines

H™(RE) = (| H(RE), H"(RE) = [JHRY).
seR

seR

We have the inclusion CAP?(RY) ¢ H*(R$), but thereis noresult correspond
ing to the Sobdev embedding theorem for the Sobdev—Besicovitch spaces. In fad,
H*(RY) is not embedded in CAP(RY) [12]. Thereasonis that the frequencies may be
contained in aboundxd set, for example asin

_ 5 1 onigex _
0= 3 Q&% =1
This functionis clealy a member of H*(RS), and if the frequencies {&c}y_, arelin-
ealy independent over Z, then || f||L= = Y 1 1/k= 0 [12].
Next we define the symbol spacesfor almost periodic pseudodfferential opera-
tors.

DEFINITION 2. For me R, the spa(:eAPS‘?5 is defined asthe spaceof all a €
S)'5(R?) suchthat a(-,&) € CAP(RY) for all € € RY. The correspondng oerator class

in the Kohn-Nirenberg quartization is denoted APLg‘5, and its members are clled
almost periodic pseudodfferential operators.

For fixed & € RY, we denote the Bohr—Fourier coefficients of a(-,&) by

(13) ay(8) = (a(-,&))) = My(a(x,§)e ™) gcRI AeRY
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LEMMA 2. Forac APS‘?5 the set of frequencies
A=A@)={AeRY: JEcRY: (&) #£0}
iscourtable.

Proof. Asalready mentioned Ag = {A € RY: a, (&) # 0} iscourtablefor eah & € RY.
Using A = Ugcga /s, it suffices to show that Ugcga As C Ugcga e If A € Ugcra A
there exists € € RY such that ay () # 0. By the mean value theorem we have

(14 ax,§+n)—ax&) = (O2Rea(x,§ +61n) +id2lma(x,§ +62n))-n

where [0, denotesthe gradient in the secondRY variable and 0< 61,0, < 1. It follows
that |ay (§+n) —a(&)| < Mx(|la(x,&+1n) —a(x,&)|) <C|n|. Hencethere exists &’ € Q¢
such that a, (§') # 0. O

Withou lossof generality we may asaumethat A isalinea spaceover Q. Fur-
thermoreit foll owsfrom (14) that 0¢a(-, &) € CAP(R?) for all o € N and€ € RY, since

a &-derivative is a uniform limit of CAP(RY) functions. Thus 6?65a(~,£) € CAP(RY)
foral o, e N9 and& € RY.

LEMMA 3. Suppsea c APS]'; andA € A. Then a, € C*(RY) and
() 0%(an)(8) = () (§), aeN,
(16) (9Fa) (€) = (2riA)Pay(8), BeN.

Proof. By differentiation uncer the mean value we obtain (15). To prove (16), we
integrate by partswhich gives

(08a)x (€) = Mx((3B) (x,E)e 2™)
= My(a(x,&)(~0,)P (e 2™))
— (2riA)Pay (§).

Lemma 3 gives
0%(an) (&) = (0Fa)a(8) = (2mir)P(ogoka)a(§), A #0.
From (13) and Definition 1we thus obtain the estimate

(17) 10%(ay) (8)] < CaN) (@)™ PIAF*  keN, aeNd
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LEMMA 4. If ac APS]'; and f € TP(RY) then

(18) ax,D)f(x) = 5 ™ a(x\)f,

AeRd

Proof. Since f(x) = ¥, f\e?™** isafinite sum we have by the definition (4)

z B lim [ W(ey)w(eg)em ¥ ENa(x §) dydg

e—+0

£—+0

(19) 7213 lim xz)eZT"EX (€8) ( / P(ey)e 2 EN) dy) d¢

=2 lim, [, 2 EFNEPEN (e +2) e D(E/e)dE

Let usdefineg(€) = a(x, & +A)e#™ &N c C*(RY). Usingthefad that [ € 93 (E/€)dE
= (0) = 1weobhtain

400 /g (lE-+N)e (e o) 0
/|g *d|w<z/s|dz+/ 11— W(e(E + M)l 0(E) e IB(E/e) e
— |,10(0) — (e8)I D) [d& + [, 1~ W(e(e& + 1))l |a(e8) |H(E)] .

The integrand o the first term tendsto zeo as€ — O foreah & e RY. For0<e < 1
it isdominated by C(1+ (&)™ (A\)I™)|@(€)| whichisintegrable, so by L ebesgue’'sdom-
inated convergencetheorem the first integral approaches zero as€ — 0. Likewise, the
secondintegral approacheszero as€ — 0, sincetheintegrand approacheszeroase — 0
for ead & € RY, andis dominated by C|§i(&)|(E)I™ (\)!™ which isintegrable. We con-
clude that

lim [ ax &+ A EN (g€ +1))e 9P (E /e)dE = a(x,\)e™*

e—+0/Rd

which inserted into (19) proves (18). O

As Shuhin has shown[9, 12], most of the basic results of pseudodfferential cd-
culuswith symbalsin Sg‘é, such as asymptotic expansions, the formulafor composition
of two operatorsandthe formal adjoint of an operator, are truefor APS’;"'ES, with the con-
clusionthat all i nvolved symbals satisfy a(-,&) € CAP(RY) for al & € RY. In particular
we have[12, Theorem 3.1]: If a € APST andb € APST% then avob € APSTS™™.

We will need threemore results from Shubin’sarticle [12].

THEOREM 1 (M.A. Shubin). LetAe APLg"'5.
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(i) Ifu,ve CAP”(RY) then

(AuV)a = Jim_[Be|*(A(dr). =),

where {pr}r>1 C CT(RY) isa family of functions that satisfy
[ 1 for X <R
R0 = { 0 for |x >R+RX,
1090R(X)| < CaR ™1,

where 0 < k < 1. Here Bg c RY denoates the ball of radius R centered at the
origin and|Bg] its volume.

(i) If ue #(RY) and y = ux* Py € CAP?(RY), where {W}y_, € CAP(RY) are
chosenin a paticular way (see[12, Lemma 4.3]), then

(Au,u) 2 = lim (Au, uk)s.
k—+00

(i) (Al 2ray) = Al B2(ra))-

Theresult (i) isan immediate consequenceof (i) and (ii).
From Lemma4 we seethat (D)Sisaunitary operator from HS(R3) to HO(RY) =
B*(R?), just asin the cae of H3(RY). The well-known result that a € S 5 implies

a(x,D) € £ (L%(RY)) [6] has the foll owing consequence.

COROLLARY 1. Ifac APSEB thenfor anyse R

1206 D)l . (his(re) 1o m(a)) = 1806 D)l 45 s mimg)) < -

Proof. We have

2%, D) ||, (Hs(ray ps-mrayy = sUp - [|a(x, D) f[|pys-mpa)
”f”HS(Rd)<l

= sup [(D)* Ma(x,D)(D)" (D)l 2 ()
H<D>SfHL2(Rd)<1

= sup  [(D)* Ma(x,D)(D) || z(q)
||f”|_2(Rd)<l

= sup (D) Ma(x, D)(D) *f|gz(a)
HfHBZ(Rd)gl

= sup ||a(x,D)f||Hgm(RdB)
Hf”HS(R%)<1

= ||a(X, D) HL(HS(R%),HS*m(RdB))'
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In fad, the fourth equality is Theorem 1 (iii). The finiteness of the operator norm
foll ows from the observation that the symbol

(€)* Mroakn (€) Se Py,

due to (5), and the ebove mentioned L?(RY)-continity for operators with symbal in

p,5’ O

4. A transformation of symbolsfor a.p. pseudodifferential operators
DEFINITION 3. Leta € APS]; andlet A = A(a) dencte the frequencies whose

Bohr—Fourier coefficientsay, are not |dent|cally zero. e set

(20) U@Ewn=ava§=N), ANeEA, EeRY

where a,, (§) isthe Bohr—Fourier coefficient defined in (13).

We note the property

U(@)(@an =U(@)E+MWhiprip HEA.
By Lemma 1 theinverse transformation of a+— U (a), y is

a(x, &) _I|mZKn no(&)eFmAx

n— oo
which converges uniformly in x for ead . For a € ngé the map ar— U (@), y isthus
injedive. '
For fixed & € RY we may look uponU (a)(&) as amatrix,
U(@)(&) = U@ E)anhnen

indexed by (A,A") € A x A. This matrix defines an operator on complex-valued se-
quences defined on/A\, which are denated z = (2, ) e, ac@rdingto

U@)(©&)-2y= 3 U@Ehrrav-
NeA

It follows from (15) that

(21) 02 (U (@))(§) = U (3%a)(&).
Moreover, denating translation by (To —na)(x,§) = a(x, & +n) we have
(22 U(To-n@)(&)an = (To—n@)n-a(E =) =U(@)(E+n)an-

Sincethe operator-valued functionU (a) dependsonthefrequency variableonly,
it may be used to define aFourier multiplier operator for vedor-valued functions ac
cordingto

@3 U@OF (X = [ U @(E)-FE)dE.
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where F (x) = (K (X))aen iSthe vedor-valued function

RY5 x> (F(X))rcn-

Theinner product for vedor-valued functionsis

(F,G)L2(ra2) = (F,G) 2(rd 12(n)) :/ (F (%), G(x))2 dx

Rd

:/Rd Y RGN dx, F.GeL(RY12).

AEN

If the symbal a does not depend onx, i.e. a(x,D) isa Fourier multiplier (convdution)
operator, then @, (&) = 0 when A # 0 followsfrom (13). ThusU (a)(§) isthe pointwise
multi pli er operator

U@)()-2), = z ay-A(E—N)zv =a(§ - Nz =al€ - Nz,
NeN

and

(U@(D)F (X)), = /]R €A ~MR(§)dg = (Tha) (D)F(x).

Thus U (a)(D) ads pointwise in the A variable by a convdutionin x. If a does not
depend ong, then U (a) does not depend ong either, and U (a)) y» = ay_». Thus, in
this case we have

U@ (DFX)), = U(@)-FX)) = Z avAFv (%),
NeN

which is an operator that ads pointwisein x, by a convdution ower theindex set A. In
particular we haveU (1) (&), > = &y _) which denotesthe Kronedker delta. Thismeans
that U(1)(D) = 1.

The aowve discussonis nat predse sincewe have not yet proved in what sense
U(a)(€) is a continuous operator for fixed & € RY, and whether the operator-valued
function& — U (a)(§) is continuows and boundd. Let ustherefore addressthese ques-
tions.

We shall first evaluate the operator-valued function U (a)(§) in the origin. It
will turn out that U (a)(0) contains much information about continuity, positivity and
invertibility of a(x,D). We need the sequence spaces

1/p
(24) 18 =18(N) = {(xmem IXllip = (Z <A>psl><x|p> < w},

AEN

parametrized by s € R and named by || - |[;p where 1 < p < . In some places we

will use the symbal 12 which denotes the spaceof square-summable sequences with
compad suppart.
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ProPOSITION 1. Forac APS‘?5 we havefor anysc R
(29 W@ O, azz ) < 12D, s s-mrg)) < -
Proof. Let f,g e TP(A). Lemma4 gives

(ax,D)f,g)s = 5 Mx(@(x ™)) fg,
(26) = > ayv (M) Hgy

= U(@(0)-f,9)

where f) = f_,. We ebreviate HS = HS(RY). Using the duality (HS)’ = H~S under
the form (-,-)g, we obtain

1% D)l £ sps-my = sup_[|a(%, D) f[ps-m
st

= sup |(a(X7 D)fvg)B|
I flls<L[gllym-s<1

Z sup [(U(@)(0)- f,d)
Hf"‘|52<l~,“g“||%75<1

=[U(a)(0)

022 -

where we denote || f.HIZg = Sa ()| [2. O

Asa mnsequenceof (26) and Theorem 1 (i) and (i) we have thefoll owingresult
on paitivity. Ascustomary we say that A is a pasitive operator onatopdogicd vedor
spaceX if (Af, f)y > O0foral f € X, whereX C H andH isaHilbert space naturaly
asociated with X. (We avoid the requirement (Af, f)y > O for al f € H since the
expresson (Af, f)y may not be well-defined if A is not a bounded operator on H.)
Thisisdenated A > 0 (wherethe spaces X and H are understoodfrom the context). We
will use the following pairs (X,H): (.7 (RY),L2(RY)), (TP(RY),B?(RY)), (12,12) and
(7 (RY,12),L2(RY,12)).

COROLLARY 2. Ifae APS’;‘ES then a(x,D) > 0 on.#(RY) if and ory if a(x, D)
> 00onTP(RY). Moreover, a(x,D) > 00onTP(A) if and ory if U (a)(0) > 0onl2.

The next result gives a continuity statement of the operator-valued map & —
U(a)(&).

PrROPOSITION 2. Iface APS‘I‘.6 then we have

(27) V@@ a2, 1) < C(e)™,
(28) U(a) € C(RY, £ (Iy,17))-
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Proof. Usingtheinequality (x+y)¥ < C(x)U(y)!!, Definition 3and (17) we obtain
U (@) (E)an| <CE-N)M<CE)MN)M.
Hence
IV (@) (&) - Xlh= < C&)™Ixl
which proves (27). To prove (28), we note that
(29) (U(a)(&) —U(@E+n)hn =U(@—To-na)()rn

follows from (22). Thus, by the mean value theorem (14), and again Definition 3and

(17)
(U@E -U@E+n)

(
< Inf[(O2Rea)y_x(§ — N +61n) +i(O21ma)y_» (E — N +62n)|
<CIn| ((E=N+6)™ P4 (E—N'+82n)™P)

<CININ)™P (& +8n)™ P!+ (€ + Bn) ™01
< CIn|(N) ™y Im=Pl gy Im-el

and therefore
1U(@)(€) U@+, 1o
= sup sup|((U(a)(&) —U(@)(&+n)) X
HXH'\an\ <IreA
<Cln|(n)™ Pl (g)m-P
—0, |n|—0.
This proves (28). O
The next result gives a sharpening o condtion (28), since we have I‘lm‘ C I‘zm‘
and I‘Zm‘fm cl>.
ProPOSITION 3. Ifae APS‘I"6 then we havefor anyse R
(30) U@ () e £ ), R,
(31) U(a) eC(Rd,L(|SZ7|527m))

Proof. From (22) we seethat U (a)(§) = U (Tp _¢@)(0). Since Ty _sac APSJ"a for any
& e RY, (30) follows from Propasition 1
In order to prove (31), it sufficesto prove continuity in the origin, since

U(@)(&+n)—-U(@®)=U(To-na)(&) —U(Tona)(0).
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We use (29) and again Propasition 1and Corollary 1, which give
IU(@)(@&) -U@ 0Ol gzi2 ) =V (To—za=2a)(0)l .qzs2
< |[(To—ga—a) (X, D) || - (1is(ret) s m(way)-
In the next step we use
1D, D)l - (Hs(eaty 1s-m(reyy = [[{D)* (%, D)(D) "%l . 1)

forbe ngé, andthefad that the £ (L?)-norm of an operator with symboal in 52‘6 may be
estimated by afinite sum of seminorms of the symbal in Sg‘é (see[6, Theorem 18.1.117]
and[3, Theorem 2.80]). By (5) it thus suffices to provethat

(32 Toz;a—a—0 in S5 as &0
The mean value theorem (14) gives
a(X, n + E) - a(X, r]) = (Dz Rea(X, n + 912) + iDZIma(Xa n + eZE.)) : E,

with 0< 61,6, < 1, sowe have

0808 (To_sa—a)(x.n)
<[g

< C[E| (<n +6,8)™ POy (4 ezz>mfp<\a\+l)+6\m)
< CJE|(&)Im-Plal+1)+318 (ym-p(lal-+1)+8[p]

83080, Rea(x,n + B:€) + 0208 T Ima(x,n + ezz)\

This proves (32), and therefore (31). O
Thefollowingresult concerns positivity.

ProPOSITION 4. Ifac APS‘?5 then we have: a(x,D) > 0 on.7(RY) implies
U(a) (D) = 00on.#(RY,12). Moreover,U (a)(D) > 0on.#(RY,12) impliesa(x,D) > 0
onTP(A).

Proof. Suppasea(x,D) > 0 on.#(RY). For f € .7 (RY) and My, f (x) = €2™1%f (x) we
have, for any n € RY,

0 < (a(x,D)Mp f,Mp f)2(z0)
= /Rzu eZde-(E*r])a(X’E)’\(E . H)dedz
= [ e g+ ) TR T dec
= ((To—n@)(x,D)f, ) 2(ze).-
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Thus (To._na)(x,D) > 0 on.#(RY) for al n € RY. By Corollary 2 and (22) it follows
that U (a)(§) > 0 onl2 foral £ € RY. If F €. (RY,12) we obtain

U@ODF.Fliegese) = [ (U@E)-F(E).FE)pdE >0,

Rd

sincetheintegrandis nonregative everywhere. ThusU (a)(D) > 0 on.#(RY,12).
Suppase on the other hand that U (a)(D) > 0 on.”(R%,12). Let z< 12 and

pick ¢ € CZ(RY) with suppat in the unit ball such that ¢ > 0 and ||§||, 2 = 1. With

be(x) = €792 (x/€) and Fe(X)) = .7 1 (X)2, we then have

0< (U(a)(D)Fe, Fe) 2(ra j2) = /Rd(U (3)(8) -2,2)120¢(§)*dE

— (U(a)(0)-2,2)2, £€—0,

where we have used (31) and the shrinking suppat of ¢¢. ThereforeU (a)(0) > 0 onl?2
which impliesthat a(x,D) > 0 onTP(A) acordingto Corollary 2. O

The previous result is dmilar to Gladyshev's results [4, 5], which were formu-
lated in the framework of almost periodicdly correlated (or cyclostationary) stochas-
tic processes and vedor-valued wegkly stationary stochastic processs. The so-cdled
covariance operator of a second-order stochastic processis a paositive operator, and an
almost periodicdly correlated stochastic processhas a covarianceoperator whase sym-
bal isamost periodic in the first variable. We&kly stationary stochastic processes have
trandationinvariant covarianceoperators, that is, they are convdution (or Fourier mul-
tiplier) operators. Gladyshev showed that the transformation (20), a — U (a), which
he formulated in terms of operator kernels, transforms a uniformly continuots kernel
correspondngto a positive ap. pseudodfferential operator to the kernel of a positive
trangdation-invariant operator ading on \edor-valued function spaces. The kernel of
the operator (2) is

axy) = [, €0 alE)de = (5 a)(xx-y),

understoodas an oscill atory integral. Here %, denotes partial Fourier transformin the
secondRY variable. The study of almost periodicaly correlated stochastic processsis
in many respeds rather similar to the theory of positive ap. pseudodfferential oper-
ators. The symbad classes ngé are however rarely used for stochastic processes. One
usually restricts to operators whose kernels are continuous functions.

The next result concerns composition.

THEOREM 2. Ifae APS;‘}) and be APS;%, mg,mp € R, then
(33 U (a#b)(§) =U(a)(€)-U(b)(§), EeR™

Proof. Let A denotethelinea hull over Q of A(a) UA(b). Accordingto (30) in Propo-
stion 3 U(a)(§) € £ (12,12 ,) andU (b)(§) € £ (12,12 ,,) for any s€ R. Therefore
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the sum

U(@)(&)-Ub)(E)ar = ZAU (@) &)U (0)(&)n
pe

(39 ,
= Z\apf)\(a — Wby (€=
pe

is absolutely convergent for al (A\,\") € A x A, andthematrix U (a)(§) - U (b)(§) maps
12t012 ,, p, cOMtinuotsly for anys€ R andany & € R,

We study the left hand side of (33) by regularizing the symbal b in two steps.
First we pick a test function ¢ € C?(RY) which equals one in a neighbahood d the
origin, set ¢¢(§) = $(€€) and define

be(x,&) =b(x,§)¢e(§) €S 5, O0<e<l
By [6, Propasition 181.2] ¢ — 1in ﬁ,o ase — 0for any 8 > 0. Since mnwvergence
in S , implies convergencein 8’5,5 and be = b#gde, it follows from (5) that b — b in
S’;”%*e ase — 0, and

amob=limasbe in ™, 8> 0.
£ )
Conwvergencein ngé for any m € R implies the uniform convergence

sJp |a#0b(xa E) - a#ObE(Xa E)| - 07 €— Oa

xeRd

for any & € RY, and therefore we have for the Bohr—Fourier coefficients

(39) (a#ob)u(§) = lij(])(a#obs)u(z), pHeERY, EeRY

In the second step we regularize the symboal be. Fix o, € N9 and define the
family of functions # = {999%be(-,€) }gcpa C CAP(RY). Thefamily # depends con-

tinuowsly in the CAP(RY) norm on & by (14), and has compad suppat with resped to
&. Thus 7 is precompad, and by Lemma 1 the Fourier series reconstruction with the
Bochner—Fgjér paynomials

0F 08be (x,€) = lim Pn(6“65b8(~,2))(x)

(39 = lim Z Kn(A) (9§ 05be), (§)e™

is uniformly convergent in bath variables, i.e. in R%. By Lemma 3 we have
(9 9%be)x (8) = 05 (95be) () = (2miA)Pog (be)x (&),

which meansthat we can rewrite (36) as the uniform limit over R%

AEN

(37) 0 ofbe(x,€) = lim of of (z Kn(A )A(z)em*)
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Let us denote, observingthat (be)y (§) = by (§)d(€8),
ben(X,€) = 0(€8) 5 Kn(A)by(§)&™ .

AEA

Thefad that bg (%, -) andbe n(x, -) have suppatin a compad set, commonfor all x € R,
in combinationwith the uniform limit (37), impli es that

sup <E>7m+p‘a‘76‘[3‘

) agaﬁ(b&n(x,é)fbg(x,é)) —0, n— o,
X,E€R'

for any me R. Thisholdsfor any o, € N9, and hencebg n — b in Sg‘é asn — oo for
any me R. Thismeans by (5) that a#be n — a#obg in S‘;‘é asn— o foranyme R. As
above wethusobtain

(38) (a#ob)u (&) = lim lim (a#obe n)u(§), MeRY, EeRY,

£—-0N—
using (35).
Sincethe symbal ¢, (x,&) = €™ Xb, (£)(£&) gives the pseudodfferential op-
erator

(9 oDk = [ "0 E-N0(EE—-N)IE-N T ge S (R,
it foll ows that
a(xD)(c\(x D)9 = [ ™ Fa(x &) F (6 (x D)g) (&)
— [, ™ Cax E)by(E - N (e(E ~N)GE - M) dE
= [ MEMNa(x g+ N)by(E)d(e8)d(E) dE,

Rd
andthus _
a0y (X, &) = a(%,& + A)bx (8) 9 ()™,
This gives _
(atoben) (%, &) = H Kn(A)a(x,E+A)br(& &) (e8)e?,
AeN
Hence
rlwcl(a#ob”) (&) = ¢(€T) I|m z Kn(M)ay_x (E+A)by(&)
(40) = (e8) zau,xzmbx(z),

AEA

dueto 0< Kp <1, Kn(A) = Lasn— oo for al A € A, the absolutely convergent sum
(34), and the dominated convergencetheorem. Now (38) and (40) yield

(a#0b)u(8) = Y aua(E+A)bA(E), MEA, EEeRY
AeN
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Finally we have

U (a#ob) (E)a v = (a#ob)y A (E—N)
= Z\a)\’f)\fu(z — N +pbu(E -\
HE

= 3 2 A&~ Wby y(E-N).

HEA

A comparisonwith (34) completesthe proof. O

To summarizeour findings hitherto, the transformationa — U (a) maps a sym-
bd ae 5 defined onthe phase spaceR? x RY to an operator-valued symba U (a) that

dependsonthefrequency variable € RY only. The operator correspondngto the sym-
bal U (a) ads on sequence-spacevalued function spaces, e.g. . (RY,12). The operator
correspondng to the symba U (a) is thus a convdution (Fourier multi pli er) operator.
The map a(x,D) — U (a)(D) islinea, injedive, preserves identity and pdsitivity, and
respeds operator compasiti on,

a(x,D)b(x,D) — U (a#b)(D) =U(a)(D)-U(b)(D).

Convdution ogeratorsdo nd commute when function spaces are vedor-valued as they
do for scdar-valued function spaces. The transformationa +— U (a) encodes the non
commutativity of a(x,D) and b(x,D) in the matrix product of the symbols U (a) and
U (b). That is, with the notation for the commutator [A, B] = AB— BA, we have

[a(x,D),b(x,D)] — U (a)(D) -U (b)(D) —U (b)(D) -U (a)(D),
where the right hand side operator ads by
[U(2)(D),U(b)(D)IF (%)
= [, &MU @E)-UbB)E) U (b)(E)-U(a)(@)-F(E)dE.
In ou final result we show that the basic assumption o this paper, i.e. that

symbols are dmost periodic in the first variable, is invariant under the quantization.
More predsely, let usintroducethe family of quantizaions

(42) a(xD)f(x) = /R LA - tx+ty, &) f(y) dydg

parametrized by t € R. The Kohn-Nirenberg quantization is obtained for t = 0 and
the Weyl quantization hast = 1/2. The following result says that if an operator is
expressed in two diff erent quantizaions, thenif its symbol isalmost periodicin thefirst
variable in ore quantization, it will have the same property in any other quantization.
In other words, the fad that we have worked in the Kohn-Nirenberg quantizaionis not
essential.
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PrROPOSITION 5. If a € APS"

e STER, s#t, and a(x,D) = bs(x,D), then
b e APST;.

Proof. We use atedhniquethat is smilar to the proof of Theorem 2. If a,b € .7 (R%)
and f € .7 (RY) thentheintegral over & in (41) isapartial Fourier transform, so we get

a(x D)f / Faa((L—t)x+ty,y—x)f(y)dy
:/Rd‘%a (x+ty,y) f(y+x)dy
— //Rzri a(z y)e”™"#Ye? 2% f (y 4+ x) dydz.
Thusif a(x,D) = bs(x, D) we have

(X E) 72Tu (s—t)x: (X E)

which extends by continuity to a,b € .#”/(R?d) [3]. This transformation is often de-
noted [6]

(42) b(x,£) = e 2" VPxPea(x £) := (Ta) (x.).
Accordingto [3, Theorem 2.37], we have
(43) e ZM( DD g s g continuowsly, meR.

Thereforeit sufficesto provethat (Ta)(-,&) € CAP(RY) for all € € RY.

We proceal with aregularization o the symbal a asin the proof of Theorem 2.
Thuslet ¢ € C2(RY) equal onein aneighbahood d the origin, set ¢¢(&) = ¢(£&) and
define a(x,&) = a(x,&)p(£). Thenaz — ain S;‘,ge ase — O for any 6 > 0. By the

continuity (43) we have Tag — Tain ngge ase — 0. Moreover, if we define

SE Z Kn eZTu)\x
AEA
then we obtain agy — a¢ in Sg(é asn— o for any m' € R, asin the proof of Theorem
2. Again bythe continuity (43) it followsthat Tag n — Tag in ngé asn— oo. It follows
that for eat fixed & € RY we have the uniform limits

(Ta)(+,&§) =limlim(Tagn)(:,&).

£—0N—00

Since CAP(RY) is closed uncer uniform convergence|[7], the proof is complete if we
show that (Tagn)(-,&) € CAP(RY) forany & € RY, e > 0andnc N,

We have, since (ag)) (&) = ax (&) (€€),
7 (8en)(N,2) = H Kn(A)B(n)F (ae)r(2),

AEN
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where 8, = 0o(- — A) denates atrandated Diracdistribution. Hencewe have

e (N2 7 (5, = 3 Kn(\)e NI, (). (ac), (2)
AEA
= 5 KaW)&HM)Z (Tt (@) (2)
AEA

and, sinceTa= .7 'M.Z where (Mf)(n,2) = e 2" U12f (5 2),

(Taen)(x.€) = > Kn(A) ae)y) (E)&
AeN

= z Kn(}\)(ag))\(af (S,t))\)ezm';\.x.
AEN

Hence (Tagn)(+,§) isatrigonametric palynomial, becaise the sum isfinite, so we may
conclude that (Tagn)(-,&) € CAP(RY) forany & € RY, e > 0andn € N. O

REMARK 1. We haveworked in the Kohn-Nirenberg quantizationandthetrans-
formationa— U (a). For the Weyl quantization, the correspondng transformationis
a— V(a) where

V(@) = By (z _

With the Wey! product defined by a; /»(x,D)by/2(x,D) = (a#h)1/>(x,D), we then have
V(a#b) (&) =V (a)(§)-V(b)(E), correspondngto Theorem 2. Moreover, V (a) (&) v =
V(@)(&)y 18 V(3@)(&§) =V(a)(&)" where A* denotesthe Hermiti an (conjugate trans-
pose) matrix, which gives V(a)(D) = V(a)(D)*. Sinceay/(x,D) = a1/»(x,D)*, we
obtain as a consequence that the transformation a; >(x,D) — V(a)(D), as well as
a(x,D) — U (a)(D), respeds adjoints.

)\+)\’)
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