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TO FOURIER MULT IPLIER OPERATORS

WITH OPERATOR-VALUED SYMBOLS

Dedicated to Professor Luigi Rodino ontheoccasion of his60th birthday

Abstract. We present results for pseudodifferential operators on Rd whose symbol a(·,ξ)
is almost periodic (a.p.) for each ξ ∈ Rd and belongs to a Hörmander classSm

ρ,δ. We study

a linear transformation a 7→ U(a) from a symbol a(x,ξ) to a frequency-dependent matrix
U(a)(ξ)λ,λ′ , indexed by (λ,λ′) ∈ Λ×Λ where Λ is a countable set in Rd. The map a 7→
U(a) transforms symbolsof a.p. pseudodifferential operators to symbolsof Fourier multiplier
operators acting on vector-valued function spaces. Weshow that the map preserves operator
positivity and identity, respects operator composition and respects adjoints.

1. Introduction

The paper concerns pseudodifferential operators (abbreviated to ΨDO) on Rd in the
Kohn–Nirenberg quantization, where the symbol a(·,ξ) is almost periodic (a.p.) for
each ξ ∈ Rd, and belongs to a Hörmander classSm

ρ,δ. This symbol class is denoted
APSm

ρ,δ and the corresponding operators are called a.p. pseudodifferential operators.
We study the symbol transformationa 7→U(a) given by

U(a)(ξ)λ,λ′ = Mx(a(x,ξ−λ′)e−2πix·(λ′−λ))

where Mx denotes the mean value functional of a.p. functions. This transformation
was introduced, for operator kernels rather than symbols, by E. Gladyshev [4, 5], for
the purposes of stochastic processes. The connection between stochastic processes
and operator theory originates from the fact that the so-called covariancefunction of a
stochastic processis the kernel of a positive operator. Gladyshev studied a particular
classof stochastic processes called almost periodically correlated, which means that
the symbol of the covarianceoperator isalmost periodic in thefirst variable.

The element U(a)(ξ) can be considered a matrix indexed by (λ,λ′) ∈ Λ×Λ
where Λ ⊂ Rd is the countable set of frequencies that occur in {a(·,ξ)}ξ∈Rd . Thus
U(a)(ξ) isan operator that actsbetweensequencespacesandthefunctionξ 7→U(a)(ξ)
may be considered theoperator-valuedsymbol of aFourier multiplier operator denoted
U(a)(D).

Let a ∈ APSm
ρ,δ and let l2s be the space of sequences (xλ)λ∈Λ such that the
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weighted norm

‖x‖l2s
=

(

∑
λ∈Λ

(1+ |λ|2)s|xλ|
2

)1/2

is finite. Using results by M.A. Shubin, we first observe that the norm of the operator
a(x,D) : Hs(Rd

B) 7→ Hs−m(Rd
B) is equal to the norm of a(x,D) : Hs(Rd) 7→ Hs−m(Rd)

for any s∈ R. Here Hs(Rd) denotes the classical Sobolev Hilbert space, and Hs(Rd
B)

denotes the Sobolev–Besicovitch spaceof a.p. functions, completed from the trigono-
metric polynomials in thenorm

‖ f‖Hs(Rd
B)
=

(

∑
λ∈Rd

(1+ |λ|2)s| fλ|
2

)1/2

,

where fλ =Mx( f (x)e−2πix·λ) istheBohr–Fourier coefficient of an a.p. function f . Then
we prove that the norm of the matrix U(a)(0) : l2s 7→ l2s−m is bounded by the norm of
the operator a(x,D) : Hs(Rd

B) 7→ Hs−m(Rd
B). We also show that a(x,D) is positive

on S (Rd) if and only if it is positive on the trigonometric polynomials on Rd and
a(x,D) > 0 onTP(Λ) if and only if U(a)(0) is a positive definite matrix. Thus much
informationabout theoperator a(x,D) can beread off fr om the evaluation of thematrix
symbol U(a) at the origin.

Weprovethat U(a)(ξ) isa continuoustransformation l2s 7→ l2s−m for any ξ ∈Rd,
and the map Rd ∋ ξ 7→ U(a)(ξ) ∈ L (l2s , l2s−m) is continuous. Moreover, U(a)(D) > 0
if a(x,D)> 0. The latter result on preservation of positivity wasproved by Gladyshev
[5] for uniformly continuous operator kernels. Here U(a)(D) acts on vector-valued
functionspaces likeS (Rd, l2s). Then we show our main result that the transformation
a 7→ U(a) respects operator composition. More precisely, denote the symbol prod-
uct, corresponding to operator composition, by a(x,D) ◦ b(x,D) = (a#0b)(x,D). If
a∈ APSm1

ρ,δ andb∈ APSm2
ρ,δ, m1,m2 ∈R, then wehave

U(a#0b)(ξ) =U(a)(ξ) ·U(b)(ξ).

Finally, we prove that the requirement that the symbol is almost periodic in the first
variable is invariant under a common family of quantizations that is defined using a
parameter t ∈ R. The family includes the Kohn–Nirenberg (t = 0) and the Weyl (t =
1/2) correspondences.

In conclusion, the transformation a 7→ U(a) is a linear, injective map that pre-
servesoperator identity, positivity, adjoint andcomposition. In theproofsof our results
we usemainly resultsby Shubin [9, 10, 11, 12].

In scalar-valued functionspaces, translation-invariant (or convolution or Fourier
multiplier) operatorscommute, but for vector-valued functionspaces, theproduct inC

is replaced by the matrix product, so translation-invariant operators are not commu-
tative. The transformation a(x,D) 7→ a 7→ U(a)(D) transfers the non-commutativity
of almost periodic pseudodifferential operators with symbols in Sm

ρ,δ into the non-
commutativity of thematrix product.
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A brief comment on some parts of the literature on a.p. pseudodifferential op-
eratorsfollows. Coburn, Moyer andSinger [1] developed an index theory for pseudod-
ifferential operators on Rd with almost periodic principal symbol. Shubin has made
many important contributionsto the theory of partial differential operatorswith almost
periodic coefficientsanda.p. pseudodifferential operators. For example, he introduced
theSobolev–Besicovitchspaces[9] and proved the equality of thespectrafor a.p. pseu-
dodifferential operatorsacting onL2(Rd) and the Besicovitch spaceB2(Rd), provided
the operator isbounded or elli ptic [11, 12].

Lately Turunen, Ruzhansky and Vainikko have worked on pseudodifferential
operatorswith symbols that are periodic in the first variable [14, 15, 8]. The operators
may be considered to act on functionsdefined onthe torusTd, and the theory of pseu-
dodifferential operatorson manifoldsmay be used. However, the use of Fourier series
representationsgivesa more elementary and global treatment.

2. Notation and preliminar ies

We use 〈x〉= (1+ |x|2)1/2, x∈ Rd, and theFourier transform is defined by

F f (ξ) = f̂ (ξ) =
∫
Rd

f (x)e−2πix·ξ dx, f ∈ S (Rd).

For a multii ndex α = (α1, . . . ,αd), wedefine thepartial differential operator

∂α f (x) = ∂α
x f (x) =

∂|α| f (x)
∂xα1

1 · · ·∂xαd
d

, x∈ Rd.

We use C for a generic positive constant that may vary over equaliti es and in-
equaliti es, wedenotebyCm(Rd) thespaceof functions such that ∂α f iscontinuousfor
|α|6 mandC∞ =

⋂
mCm is thespaceof smooth functions. Thesymbol Cb(R

d) stands
for thespaceof continuousandsupremumbounded functions, andC∞

b (R
d) is thespace

of functionswhose derivativesof all ordersare continuousand bounded in supremum
norm. The spaceof compactly supported smooth (test) functions is denoted C∞

c (R
d).

The Schwartz spaceof smooth rapidly decreasing functions is denoted S (Rd) and its
dual S ′(Rd) is the spaceof tempered distributions. A spaceof trigonometric polyno-
mials isdenoted TP(S) andconsistsof functionsof the form

f (x) =
N

∑
n=1

ane2πiξn·x, an ∈C, ξn ∈ S⊆ Rd.

We will consider functionsdefined onRd and taking values in a Hilbert or Ba-
nach spaceX, and then C(Rd,X) denotes the spaceof continuousX-valued functions,
and likewise for other function spaces. The spaceof bounded linear transformations
between two Hilbert spacesH andH ′ isdenotedL (H,H ′), andL (H,H) = L (H). The
operator norm isdenoted ‖ · ‖L (H,H′) or ‖ · ‖L (H).
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A subset Y of a completemetric spaceX is precompact if it is totally bounded,
which meansthat Y can be covered byafiniteunion of ballsof radiusε, for any ε > 0.
Thisdefinition isequivalent to theproperty that the closureof Y is compact.

Wedefine astandard family of symbol classes, theso called Hörmander classes.
Moreprecisely, the followingsymbol classesareglobal versionsof Hörmander spaces
[3, 6, 13].

DEFINITION 1. For m∈ R and 0 6 ρ,δ 6 1 the space Sm
ρ,δ is defined as the

spaceof all a∈C∞(R2d) such that

(1) sup
x,ξ∈Rd

〈ξ〉−m+ρ|α|−δ|β||∂α
ξ ∂β

xa(x,ξ)|< ∞, α,β ∈Nd.

We impose the conditions

0< ρ 6 1, 06 δ < 1, δ 6 ρ.

Followingconvention, we set S−∞
ρ,δ =

⋂
m∈R Sm

ρ,δ and S∞
ρ,δ =

⋃
m∈R Sm

ρ,δ.

ThespaceSm
ρ,δ is a Fréchet spacewith seminormsdefined by (1).

We consider the Kohn–Nirenberg quantization of pseudodifferential operators.
A symbol function a defined onthe phase spaceR2d gives rise to an operator a(x,D)
accordingto the formula

(2) a(x,D) f (x) =
∫
R2d

e2πiξ·(x−y)a(x,ξ) f (y)dydξ, f ∈ S (Rd).

When a∈Sm
ρ,δ, the corresponding operator classisdenotedLm

ρ,δ. For thesymbol classes
Sm

ρ,δ, the oscill atory integral (2) is generally not absolutely convergent and should be
read as the iterated integral

(3) a(x,D) f (x) =
∫
Rd

e2πiξ·xa(x,ξ) f̂ (ξ)dξ.

In order to extendtheoperator to act on other functionspacesthanS (Rd) onemodifies
the definition(2) into

(4) a(x,D) f (x) = lim
ε→+0

∫
R2d

ψ(εy)ψ(εξ)e2πiξ·(x−y)a(x,ξ) f (y)dydξ

whereψ ∈C∞
c (R

d) equalsone in aneighborhood of theorigin. Integrating by partswe
may rewrite (4) as

a(x,D) f (x) =
∫
R2d

e2πiξ·(x−y)(1+ |ξ|2)−N(1−∆ξ)
Ma(x,ξ)

× (1−∆y)
N((1+ |x− y|2)−M f (y))dydξ,
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where ∆ denotes the normalized Laplacian ∆ = (2π)−2∑d
1 ∂2

j , which is an absolutely

convergent integral for f ∈C∞
b (R

d) provided that 2M > d and 2N > d+m. By differ-
entiation under the integral it follows that a(x,D) : C∞

b (R
d) 7→ C∞

b (R
d) continuously.

Thisprocedureis standard andfundamental in pseudo-differential calculus [3, 6, 13].

For an admissiblepair of symbolsa, b we definethesymbol product #0 by

c= a#0b ⇐⇒ c(x,D) = a(x,D)b(x,D).

We have the followingwell -known result in the theory of pseudodifferential operators
[3, 6]. Thesymbol product isa continuousbili near map from Sm1

ρ,δ ×Sm2
ρ,δ to Sm1+m2

ρ,δ ,

(5) Sm1
ρ,δ#0Sm2

ρ,δ ⊆ Sm1+m2
ρ,δ , m1,m2 ∈ R.

3. Almost periodic functionsand pseudodifferential operators

We will work with spaces of almost periodic functions [2, 7, 12]. The basic space
of uniform almost periodic functions is denoted CAP(Rd) and defined as follows. A
set U ⊂ Rd is called relatively dense if there exists a compact set K ⊂ Rd such that
(x+K)∩U 6= /0 for any x ∈ Rd. An element τ ∈ Rd is called an ε-almost period of
a function f ∈ Cb(R

d) if supx | f (x+ τ)− f (x)| < ε. Then CAP(Rd) is defined as the
spaceof all f ∈ Cb(R

d) such that, for any ε > 0, the set of ε-almost periods of f is
relatively dense. With the assumption that the uniform almost periodic functions is a
subspaceof Cb(R

d), this original definition byH. Bohr is equivalent to the following
three[2, 7, 12]:

(i) theset of translations{ f (·− x)}x∈Rd is precompact in Cb(R
d);

(ii ) f = g◦ iB where iB is the canonical homomorphism fromRd into theBohr com-
pactificationRd

B of Rd andg∈C(Rd
B). Hence f can be extended to a continuous

function onRd
B;

(iii ) f is the uniform limit of trigonometric polynomials.

ThespaceCAP(Rd) isa conjugate-invariant complex algebraof uniformly con-
tinuous functions. For f ∈ CAP(Rd) themean valuefunctional

(6) M( f ) = lim
T→+∞

T−d
∫

s+KT

f (x)dx,

whereKT = {x∈Rd : 06 x j 6 T, j = 1, . . . ,d}, existsuniformly over s∈Rd. By Mx

we understand the mean value in the variable x of a function of several variables. The
Bohr (–Fourier) transformation[7] isdefined by

fλ = Mx( f (x)e−2πiλ·x), λ ∈Rd,

and fλ 6= 0 for at most countably many λ ∈ Rd. Theset {λ ∈ Rd : fλ 6= 0} iscalled the
set of frequencies for f .
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A function f ∈ CAP(Rd) may be reconstructed from its Bohr–Fourier coeffi-
cients ( fλ)λ∈Λ using Bochner–Fejér polynomials [7, 12]. We give abrief overview of
theresultsweneed. Let βn ∈Rd, n= 1,2, . . . , be arational basis for theset of frequen-
cies Λ for f . This means that (βn)

∞
n=1 is linearly independent over Q and each λ ∈ Λ

can bewritten

λ =
N

∑
n=1

qnβn, qn ∈Q,

with unique coefficients (qn)
N
n=1. Every countable set Λ ⊂ Rd has a rational basis

contained in Λ [7]. The compositeBochner–Fejér kernel isdefined as

Kn;β1,...,βn(x) = ∑
|ν1|6(n!)2,...,|νn|6(n!)2

(
1−

|ν1|

(n!)2

)
· · ·

(
1−

|νn|

(n!)2

)

×exp
(

2πi
(ν1

n!
β1+ · · ·+

νn

n!
βn

)
·x
)
.

We denote its coefficients

(7) Kn;ν1,...,νn =

(
1−

|ν1|

(n!)2

)
· · ·

(
1−

|νn|

(n!)2

)
, |ν j |6 (n!)2, 16 j 6 n.

Since (βn)
∞
n=1 is linearly independent over Q, and sinceMx(e2πiλ·x) = 0 when λ 6= 0,

we haveM(Kn;β1,...,βn) = 1.

For a given f ∈ CAP(Rd) the Bochner–Fejér polynomial of order n is defined
by

(8)

Pn( f )(x) = My
(

f (y)Kn;β1,...,βn(x− y)
)

= ∑
|ν1|6(n!)2,...,|νn|6(n!)2

Kn;ν1,...,νn f ν1
n! β1+···+ νn

n! βn

×exp
(

2πi
(ν1

n!
β1+ · · ·+

νn

n!
βn

)
·x
)
.

It follows from M(Kn;β1,...,βn) = 1 andKn;β1,...,βn(x)> 0 [7] that

(9) ‖Pn( f )‖L∞ 6 ‖ f‖L∞.

If we define the function onΛ

Kn(λ) =

{
Kn;ν1,...,νn if λ = ν1

n! β1+ · · ·+ νn
n! βn, |ν j |6 (n!)2, 16 j 6 n,

0 otherwise,

then we may write (8) in shorter form as

(10) Pn( f )(x) = ∑
λ∈Λ

Kn(λ) fλe2πiλ·x.
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Weobservethat Kn(λ) hasfinitesupport and 06 Kn(λ)6 1. For an arbitrary λ ∈ Λ we
may write for somen> 0 and |ν j |6 (n!)2, 16 j 6 n,

λ =
ν1

n!
β1+ · · ·+

νn

n!
βn

=
ν1(n+m)!/n!

(n+m)!
β1+ · · ·+

νn(n+m)!/n!
(n+m)!

βn+0 ·βn+1+ · · ·+0 ·βn+m,

wherem> 0 isarbitrary. It follows that

Kn+m(λ) = Kn+m;ν1(n+m)!/n!,...,νn(n+m)!/n!,0,...,0.

For n and ν1, . . . ,νn fixed, it follows from (7) that the right hand side approaches1 as
m→ ∞, because

1−
|ν j |(n+m)!/n!
((n+m)!)2 = 1−

|ν j |

n!(n+m)!
→ 1, m→ ∞, 16 j 6 n.

We may concludethat Kn(λ)→ 1 asn→+∞, for any λ ∈ Λ.

We state the fundamental approximation result for the Bochner–Fejér polyno-
mials [7, 12]. If f ∈ CAP(Rd) then we have theuniform limit

(11) sup
x∈Rd

|Pn( f )(x)− f (x)| → 0, n→ ∞.

The limit in (11) holds for any f ∈ CAP(Rd) whose set of frequencies is contained in
Λ.

The next lemma resembles [12, Corollary 2.1]. We give aproof for complete-
ness.

LEMM A 1. For a precompact set F ⊂ CAP(Rd), the limit

sup
x∈Rd

|Pn( f )(x)− f (x)| → 0, n→ ∞

is uniformover f ∈ F .

Proof. Denote‖ ·‖= ‖ ·‖L∞ . Dueto the assumptionthat F is precompact, there exists
for each integer k > 0 a finite set { fk, j}

Nk
j=1 ⊂ F such that ‖ f − fk, j‖ < 1/k holds for

each f ∈ F for some j, 16 j 6 Nk. Let Λk be the union of the frequencies that occur
in { fk, j}

Nk
j=1 and let Λ be the linear hull over Q of

⋃
k>1 Λk. Define the Bochner–Fejér

kernels{Kn;β1,...,βn(x)}n>1 asabovefrom the countableset Λ.

Let ε > 0 and pick an integer k> ε−1. According to limit (11) we have‖ fk, j −
Pn( fk, j )‖< ε for all 16 j 6 Nk if n> Nε for asufficiently large integer Nε. Let f ∈ F
and pick an fk, j such that ‖ f − fk, j‖< 1/k< ε. We have, using(9),

‖ f −Pn( f )‖ 6 ‖ f − fk, j‖+ ‖ fk, j −Pn( fk, j )‖+ ‖Pn( fk, j − f )‖

6 ‖ f − fk, j‖+ ‖ fk, j −Pn( fk, j )‖+ ‖ fk, j − f‖< 3ε, n> Nε.
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For m∈ N, the spaceCAPm(Rd) is defined as all f ∈ Cm(Rd) such that ∂α f ∈
CAP(Rd) for |α| 6 m, and CAP∞(Rd) =

⋂
m∈N CAPm(Rd). Then CAP∞ = CAP∩C∞

b
[12].

Themean valuedefinesan inner product

(12) ( f ,g)B = M( f g), f ,g∈ CAP(Rd).

The completion of CAP(Rd) in the norm ‖ · ‖B is the Hilbert spaceof Besicovitch a.p.
functionsB2(Rd) [12].

Inspired by theusual Sobolev spacenorm

‖ f‖Hs(Rd) =

(∫
Rd
(1+ |ξ|2)s| f̂ (ξ)|2dξ

)1/2

,

Shubin [9] hasdefined Sobolev–Besicovitchspacesof a.p. functionsHs(Rd
B) for s∈R,

as the completion of TP(Rd) in thenorm correspondingto the inner product

( f ,g)Hs(Rd
B)
= ∑

ξ∈Rd

(1+ |ξ|2)s fξgξ, f ,g∈ TP(Rd).

ThespacesHs(Rd
B) areHilbert spacescontainingTP(Rd) asadensesubspace, H0(Rd

B)
= B2(Rd), and onedefines

H∞(Rd
B) =

⋂
s∈R

Hs(Rd
B), H−∞(Rd

B) =
⋃
s∈R

Hs(Rd
B).

Wehavethe inclusionCAP∞(Rd)⊂ H∞(Rd
B), but there isnoresult correspond-

ing to the Sobolev embedding theorem for the Sobolev–Besicovitch spaces. In fact,
H∞(Rd

B) is not embedded in CAP(Rd) [12]. The reason is that the frequenciesmay be
contained in a bounded set, for example as in

f (x) =
∞

∑
k=1

1
k

e2πiξk·x, |ξk|= 1.

This function is clearly a member of H∞(Rd
B), and if the frequencies {ξk}

∞
k=1 are lin-

early independent over Z, then ‖ f‖L∞ = ∑∞
k=1 1/k= ∞ [12].

Next wedefinethesymbol spaces for almost periodic pseudodifferential opera-
tors.

DEFINITION 2. For m∈ R, the spaceAPSm
ρ,δ is defined as the spaceof all a∈

Sm
ρ,δ(R

2d) such that a(·,ξ)∈CAP(Rd) for all ξ∈Rd. The corresponding operator class
in the Kohn–Nirenberg quantization is denoted APLm

ρ,δ, and its members are called
almost periodic pseudodifferential operators.

For fixed ξ ∈ Rd, wedenote theBohr–Fourier coefficientsof a(·,ξ) by

(13) aλ(ξ) = (a(·,ξ))λ = Mx(a(x,ξ)e−2πiλ·x), ξ ∈ Rd, λ ∈ Rd.
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LEMM A 2. For a∈ APSm
ρ,δ theset of frequencies

Λ = Λ(a) = {λ ∈Rd : ∃ξ ∈Rd : aλ(ξ) 6= 0}

is countable.

Proof. Asalready mentioned Λξ = {λ∈Rd : aλ(ξ) 6= 0} iscountablefor each ξ ∈Rd.
Using Λ =

⋃
ξ∈Rd Λξ, it suffices to show that

⋃
ξ∈Rd Λξ ⊂

⋃
ξ∈Qd Λξ. If λ ∈

⋃
ξ∈Rd Λξ

there exists ξ ∈ Rd such that aλ(ξ) 6= 0. By themean value theorem wehave

(14) a(x,ξ+η)−a(x,ξ) = (∇2 Rea(x,ξ+θ1η)+ i ∇2 Ima(x,ξ+θ2η)) ·η

where∇2 denotesthegradient in thesecondRd variable and 06 θ1,θ2 6 1. It follows
that |aλ(ξ+η)−aλ(ξ)|6Mx(|a(x,ξ+η)−a(x,ξ)|)6C|η|. Hencethere existsξ′ ∈Qd

such that aλ(ξ′) 6= 0.

Without lossof generality we may assume that Λ is a linear spaceover Q. Fur-
thermoreit followsfrom (14) that ∂α

ξ a(·,ξ)∈CAP(Rd) for all α ∈Nd andξ∈Rd, since

a ξ-derivative is a uniform limit of CAP(Rd) functions. Thus ∂α
ξ ∂β

xa(·,ξ) ∈ CAP(Rd)

for all α,β ∈ Nd andξ ∈ Rd.

LEMM A 3. Supposea∈ APSm
ρ,δ andλ ∈ Λ. Then aλ ∈C∞(Rd) and

∂α(aλ)(ξ) = (∂α
ξ a)λ(ξ), α ∈ Nd,(15)

(∂β
xa)λ(ξ) = (2πiλ)βaλ(ξ), β ∈ Nd.(16)

Proof. By differentiation under the mean value we obtain (15). To prove (16), we
integrateby partswhich gives

(∂β
xa)λ(ξ) = Mx((∂β

xa)(x,ξ)e−2πiλ·x)

= Mx(a(x,ξ)(−∂x)
β(e−2πiλ·x))

= (2πiλ)βaλ(ξ).

Lemma3 gives

∂α(aλ)(ξ) = (∂α
ξ a)λ(ξ) = (2πiλ)−β(∂α

ξ ∂β
xa)λ(ξ), λ 6= 0.

From (13) andDefinition 1we thusobtain the estimate

(17) |∂α(aλ)(ξ)|6Ck,α〈λ〉−k〈ξ〉m−ρ|α|+δk, k∈N, α ∈ Nd.
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LEMM A 4. If a∈ APSm
ρ,δ and f ∈ TP(Rd) then

(18) a(x,D) f (x) = ∑
λ∈Rd

e2πix·λa(x,λ) fλ.

Proof. Since f (x) = ∑λ fλe2πix·λ is a finitesum we haveby the definition(4)

(19)

a(x,D) f (x) =∑
λ

fλ lim
ε→+0

∫
R2d

ψ(εy)ψ(εξ)e2πi(ξ·x−y·(ξ−λ))a(x,ξ)dydξ

=∑
λ

fλ lim
ε→+0

∫
Rd

a(x,ξ)e2πiξ·xψ(εξ)
(∫

Rd
ψ(εy)e−2πiy·(ξ−λ)dy

)
dξ

=∑
λ

fλ lim
ε→+0

∫
Rd

a(x,ξ+λ)e2πix·(ξ+λ)ψ(ε(ξ+λ))ε−dψ̂(ξ/ε)dξ.

Let usdefineg(ξ)= a(x,ξ+λ)e2πix·(ξ+λ) ∈C∞(Rd). Usingthefact that
∫

ε−dψ̂(ξ/ε)dξ
= ψ(0) = 1 weobtain

∣∣∣∣g(0)−
∫
Rd

g(ξ)ψ(ε(ξ+λ))ε−dψ̂(ξ/ε)dξ
∣∣∣∣

6

∫
Rd

|g(0)−g(ξ)|ε−d|ψ̂(ξ/ε)|dξ+
∫
Rd

|1−ψ(ε(ξ+λ))||g(ξ)|ε−d|ψ̂(ξ/ε)|dξ

=

∫
Rd

|g(0)−g(εξ)||ψ̂(ξ)|dξ+
∫
Rd

|1−ψ(ε(εξ+λ))||g(εξ)||ψ̂(ξ)|dξ.

The integrand of the first term tends to zero as ε → 0 for each ξ ∈ Rd. For 0< ε < 1
it isdominated byC(1+〈ξ〉|m|〈λ〉|m|)|ψ̂(ξ)| which isintegrable, so byLebesgue’sdom-
inated convergencetheorem the first integral approacheszero as ε → 0. Likewise, the
secondintegral approacheszero asε→ 0, sincetheintegrandapproacheszero asε → 0
for each ξ ∈Rd, and isdominated byC|ψ̂(ξ)|〈ξ〉|m|〈λ〉|m| which is integrable. We con-
clude that

lim
ε→+0

∫
Rd

a(x,ξ+λ)e2πix·(ξ+λ)ψ(ε(ξ+λ))ε−dψ̂(ξ/ε)dξ = a(x,λ)e2πix·λ

which inserted into (19) proves(18).

AsShubin has shown [9, 12], most of thebasic resultsof pseudodifferential cal-
culuswith symbolsin Sm

ρ,δ, such asasymptotic expansions, theformulafor composition
of two operatorsandtheformal adjoint of an operator, aretruefor APSm

ρ,δ, with the con-

clusionthat all i nvolved symbols satisfy a(·,ξ)∈ CAP(Rd) for all ξ ∈Rd. In particular
we have[12, Theorem 3.1]: If a∈ APSm1

ρ,δ andb∈ APSm2
ρ,δ then a#0b∈ APSm1+m2

ρ,δ .

We will need threemoreresults from Shubin’sarticle [12].

THEOREM 1 (M.A. Shubin). Let A∈ APLm
ρ,δ.
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(i) If u,v∈ CAP∞(Rd) then

(Au,v)B = lim
R→+∞

|BR|
−1(A(ϕRu),ϕRv)L2

where{ϕR}R>1 ⊂C∞
c (R

d) is a family of functionsthat satisfy

ϕR(x) =

{
1 for |x|6 R,
0 for |x|> R+Rκ,

|∂αϕR(x)|6CαR−κ|α|,

where 0 < κ < 1. Here BR ⊂ Rd denotes the ball of radius R centered at the
origin and|BR| its volume.

(ii ) If u ∈ S (Rd) and uk = u∗ψk ∈ CAP∞(Rd), where {ψk}
∞
k=1 ⊂ CAP(Rd) are

chosen in a particular way (see[12, Lemma 4.3]), then

(Au,u)L2 = lim
k→+∞

(Auk,uk)B.

(iii ) ‖A‖
L (L2(Rd)) = ‖A‖

L (B2(Rd)).

Theresult (iii ) isan immediate consequenceof (i) and (ii ).

FromLemma4 weseethat 〈D〉s isaunitary operator fromHs(Rd
B) to H0(Rd

B) =
B2(Rd), just as in the case of Hs(Rd). The well -known result that a ∈ S0

ρ,δ implies

a(x,D) ∈ L (L2(Rd)) [6] has the followingconsequence.

COROLL ARY 1. If a∈ APSm
ρ,δ then for any s∈R

‖a(x,D)‖
L (Hs(Rd),Hs−m(Rd)) = ‖a(x,D)‖

L (Hs(Rd
B),H

s−m(Rd
B))

< ∞.

Proof. We have

‖a(x,D)‖
L (Hs(Rd),Hs−m(Rd)) = sup

‖ f‖Hs(Rd)61
‖a(x,D) f‖Hs−m(Rd)

= sup
‖〈D〉s f‖L2(Rd)61

‖〈D〉s−ma(x,D)〈D〉−s〈D〉s f‖L2(Rd)

= sup
‖ f‖

L2(Rd)
61

‖〈D〉s−ma(x,D)〈D〉−s f‖L2(Rd)

= sup
‖ f‖B2(Rd)61

‖〈D〉s−ma(x,D)〈D〉−s f‖B2(Rd)

= sup
‖ f‖

Hs(Rd
B)
61

‖a(x,D) f‖Hs−m(Rd
B)

= ‖a(x,D)‖
L (Hs(Rd

B),H
s−m(Rd

B))
.
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In fact, the fourth equality is Theorem 1 (iii ). The finiteness of the operator norm
follows from theobservationthat thesymbol

〈ξ〉s−m#0a#0 〈ξ〉−s ∈ S0
ρ,δ,

due to (5), and the above mentioned L2(Rd)-continuity for operators with symbol in
S0

ρ,δ.

4. A transformation of symbols for a.p. pseudodifferential operators

DEFINITION 3. Let a∈ APSm
ρ,δ andlet Λ = Λ(a) denote the frequencieswhose

Bohr–Fourier coefficientsaλ are not identically zero. We set

(20) U(a)(ξ)λ,λ′ = aλ′−λ(ξ−λ′), λ,λ′ ∈ Λ, ξ ∈ Rd,

where aλ(ξ) is theBohr–Fourier coefficient defined in (13).

We note the property

U(a)(ξ)λ,λ′ =U(a)(ξ+µ)λ+µ,λ′+µ, µ∈ Λ.

By Lemma1 the inverse transformation of a 7→U(a)λ,λ′ is

a(x,ξ) = lim
n→∞ ∑

λ∈Λ
Kn(λ)U(a)(ξ)−λ,0(ξ)e2πiλ·x

which convergesuniformly in x for each ξ. For a∈ Sm
ρ,δ the map a 7→U(a)λ,λ′ is thus

injective.

For fixed ξ ∈ Rd wemay look uponU(a)(ξ) asamatrix,

U(a)(ξ) = [U(a)(ξ)λ,λ′ ]λ,λ′∈Λ,

indexed by (λ,λ′) ∈ Λ×Λ. This matrix defines an operator on complex-valued se-
quencesdefined onΛ, which aredenoted z= (zλ)λ∈Λ, accordingto

(U(a)(ξ) ·z)λ = ∑
λ′∈Λ

U(a)(ξ)λ,λ′zλ′ .

It follows from (15) that

(21) ∂α
ξ (U(a))(ξ) =U(∂α

ξ a)(ξ).

Moreover, denoting translation by(T0,−ηa)(x,ξ) = a(x,ξ+η) we have

(22) U(T0,−ηa)(ξ)λ,λ′ = (T0,−ηa)λ′−λ(ξ−λ′) =U(a)(ξ+η)λ,λ′.

Sincetheoperator-valuedfunctionU(a) dependsonthefrequency variableonly,
it may be used to define aFourier multiplier operator for vector-valued functions ac-
cording to

(23) U(a)(D)F(x) =
∫
Rd

e2πiξ·xU(a)(ξ) · F̂(ξ)dξ,
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whereF(x) = (Fλ(x))λ∈Λ is thevector-valued function

Rd ∋ x 7→ (Fλ(x))λ∈Λ.

The inner product for vector-valued functionsis

(F,G)L2(Rd,l2) = (F,G)L2(Rd,l2(Λ)) =

∫
Rd
(F(x),G(x))l2 dx

=
∫
Rd

∑
λ∈Λ

Fλ(x)Gλ(x)dx, F,G∈ L2(Rd, l2).

If the symbol a doesnot depend onx, i.e. a(x,D) is a Fourier multiplier (convolution)
operator, then aλ(ξ) = 0 when λ 6= 0 followsfrom (13). ThusU(a)(ξ) is thepointwise
multiplier operator

(U(a)(ξ) ·z)λ = ∑
λ′∈Λ

aλ′−λ(ξ−λ′)zλ′ = a0(ξ−λ)zλ = a(ξ−λ)zλ,

and

(U(a)(D)F(x))λ =

∫
Rd

e2πiξ·xa(ξ−λ)F̂λ(ξ)dξ = (Tλa)(D)Fλ(x).

Thus U(a)(D) acts pointwise in the λ variable by a convolution in x. If a does not
depend onξ, then U(a) does not depend onξ either, and U(a)λ,λ′ = aλ′−λ. Thus, in
this case wehave

(U(a)(D)F(x))λ = (U(a) ·F(x))λ = ∑
λ′∈Λ

aλ′−λFλ′(x),

which is an operator that actspointwise in x, by a convolution over the index set Λ. In
particular wehaveU(1)(ξ)λ,λ′ = δλ′−λ which denotestheKronecker delta. Thismeans
that U(1)(D) = I .

The abovediscussion is not precise sincewe havenot yet proved in what sense
U(a)(ξ) is a continuous operator for fixed ξ ∈ Rd, and whether the operator-valued
functionξ 7→U(a)(ξ) iscontinuousand bounded. Let us therefore addresstheseques-
tions.

We shall first evaluate the operator-valued function U(a)(ξ) in the origin. It
will t urn out that U(a)(0) contains much information about continuity, positivity and
invertibilit y of a(x,D). We need thesequencespaces

(24) l p
s = l p

s (Λ) =



(xλ)λ∈Λ : ‖x‖l p

s
=

(

∑
λ∈Λ

〈λ〉ps|xλ|
p

)1/p

< ∞



 ,

parametrized by s∈ R and normed by ‖ · ‖l p
s

where 1 6 p 6 ∞. In some places we
will use the symbol l2c which denotes the spaceof square-summable sequences with
compact support.
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PROPOSITION 1. For a∈ APSm
ρ,δ we havefor any s∈ R

(25) ‖U(a)(0)‖
L (l2s ,l

2
s−m)

6 ‖a(x,D)‖
L (Hs(Rd

B),H
s−m(Rd

B))
< ∞.

Proof. Let f ,g∈ TP(Λ). Lemma4 gives

(26)

(a(x,D) f ,g)B = ∑
λ,λ′

Mx(a(x,λ)e2πix·(λ−λ′)) fλgλ′

= ∑
λ,λ′

aλ′−λ(λ) fλgλ′

= (U(a)(0) · f̌ , ǧ)l2

where f̌λ = f−λ. We abbreviate Hs = Hs(Rd
B). Using the duality (Hs)′ = H−s under

the form (·, ·)B, weobtain

‖a(x,D)‖L (Hs,Hs−m) = sup
‖ f‖Hs61

‖a(x,D) f‖Hs−m

= sup
‖ f‖Hs61,‖g‖Hm−s61

|(a(x,D) f ,g)B|

> sup
‖ f·‖l2s

61,‖g·‖l2m−s
61

|(U(a)(0) · f̌ , ǧ)l2|

= ‖U(a)(0)‖
L (l2s ,l

2
s−m)

,

wherewedenote‖ f·‖2
l2s
= ∑λ〈λ〉2s| fλ|

2.

Asa consequenceof (26) andTheorem1 (i) and(ii ) wehavethefollowingresult
on positivity. Ascustomary wesay that A isapositiveoperator ona topological vector
spaceX if (Af , f )H > 0 for all f ∈ X, whereX ⊂ H andH is aHilbert space, naturally
associated with X. (We avoid the requirement (Af , f )H > 0 for all f ∈ H since the
expression (Af , f )H may not be well -defined if A is not a bounded operator on H.)
This isdenoted A> 0 (wherethespacesX andH areunderstoodfrom the context). We
will use the following pairs (X,H): (S (Rd),L2(Rd)), (TP(Rd),B2(Rd)), (l2c , l

2) and
(S (Rd, l2c),L

2(Rd, l2)).

COROLL ARY 2. If a∈ APSm
ρ,δ then a(x,D)> 0 onS (Rd) if and only if a(x,D)

> 0 onTP(Rd). Moreover, a(x,D)> 0 onTP(Λ) if and only if U(a)(0)> 0 on l2c .

The next result gives a continuity statement of the operator-valued map ξ 7→
U(a)(ξ).

PROPOSITION 2. If a∈ APSm
ρ,δ then we have

‖U(a)(ξ)‖
L (l1

|m|
,l∞) 6C〈ξ〉m,(27)

U(a) ∈C(Rd,L (l1|m|, l
∞)).(28)
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Proof. Using the inequality 〈x+ y〉u 6C〈x〉u〈y〉|u|, Definition 3and (17) we obtain

|U(a)(ξ)λ,λ′ |6C〈ξ−λ′〉m
6C〈ξ〉m〈λ′〉|m|.

Hence

‖U(a)(ξ) ·x‖l∞ 6C〈ξ〉m‖x‖l1
|m|

which proves(27). To prove(28), wenote that

(U(a)(ξ)−U(a)(ξ+η))λ,λ′ =U(a−T0,−ηa)(ξ)λ,λ′(29)

follows from (22). Thus, by the mean value theorem (14), and again Definition 3and
(17),

∣∣∣(U(a)(ξ)−U(a)(ξ+η))λ,λ′
∣∣∣

6 |η|
∣∣(∇2Rea)λ′−λ(ξ−λ′+θ1η)+ i(∇2 Ima)λ′−λ(ξ−λ′+θ2η)

∣∣

6C|η|
(
〈ξ−λ′+θ1η〉m−ρ + 〈ξ−λ′+θ2η〉m−ρ)

6C|η|〈λ′〉m−ρ
(
〈ξ+θ1η〉|m−ρ|+ 〈ξ+θ2η〉|m−ρ|

)

6C|η|〈λ′〉|m|〈η〉|m−ρ|〈ξ〉|m−ρ|,

and therefore
‖U(a)(ξ)−U(a)(ξ+η)‖

L (l1
|m|

,l∞)

= sup
‖x‖

l1
|m|

61
sup
λ∈Λ

|((U(a)(ξ)−U(a)(ξ+η)) ·x)λ|

6C|η|〈η〉|m−ρ|〈ξ〉|m−ρ|

→ 0, |η| → 0.

Thisproves(28).

The next result gives a sharpening of condition (28), since we have l1|m| ⊂ l2|m|

and l2|m|−m ⊂ l∞.

PROPOSITION 3. If a∈ APSm
ρ,δ then we havefor any s∈R

U(a)(ξ) ∈ L (l2s , l
2
s−m), ξ ∈ Rd,(30)

U(a) ∈C(Rd,L (l2s , l
2
s−m)).(31)

Proof. From (22) we seethat U(a)(ξ) =U(T0,−ξa)(0). SinceT0,−ξa∈ APSm
ρ,δ for any

ξ ∈Rd, (30) follows from Proposition 1.

In order to prove(31), it suffices to prove continuity in theorigin, since

U(a)(ξ+η)−U(a)(η) =U(T0,−ηa)(ξ)−U(T0,−ηa)(0).
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We use(29) andagain Proposition 1andCorollary 1, which give

‖U(a)(ξ)−U(a)(0)‖
L (l2s,l

2
s−m)

= ‖U(T0,−ξa−a)(0)‖
L (l2s,l

2
s−m)

6 ‖(T0,−ξa−a)(x,D)‖
L (Hs(Rd),Hs−m(Rd)).

In thenext step we use

‖b(x,D)‖
L (Hs(Rd),Hs−m(Rd)) = ‖〈D〉s−mb(x,D)〈D〉−s‖

L (L2)

for b∈Sm
ρ,δ, andthefact that theL (L2)-norm of an operator with symbol in S0

ρ,δ may be

estimated byafinitesum of seminormsof thesymbol in S0
ρ,δ (see[6, Theorem 18.1.11]

and [3, Theorem 2.80]). By (5) it thus suffices to provethat

(32) T0,−ξa−a→ 0 in Sm
ρ,δ as ξ → 0.

Themean valuetheorem (14) gives

a(x,η+ ξ)−a(x,η) = (∇2Rea(x,η+θ1ξ)+ i∇2 Ima(x,η+θ2ξ)) ·ξ

with 06 θ1,θ2 6 1, so we have
∣∣∣∂α

η∂β
x(T0,−ξa−a)(x,η)

∣∣∣

6 |ξ|
∣∣∣∂α

η∂β
x∇2Rea(x,η+θ1ξ)+ i∂α

η∂β
x∇2 Ima(x,η+θ2ξ)

∣∣∣

6C|ξ|
(
〈η+θ1ξ〉m−ρ(|α|+1)+δ|β|+ 〈η+θ2ξ〉m−ρ(|α|+1)+δ|β|

)

6C|ξ|〈ξ〉|m−ρ(|α|+1)+δ|β||〈η〉m−ρ(|α|+1)+δ|β|.

Thisproves(32), and therefore(31).

Thefollowingresult concernspositivity.

PROPOSITION 4. If a ∈ APSm
ρ,δ then we have: a(x,D) > 0 on S (Rd) implies

U(a) (D)> 0 onS (Rd, l2c). Moreover, U(a)(D)> 0 onS (Rd, l2c) impliesa(x,D)> 0
onTP(Λ).

Proof. Supposea(x,D)> 0 onS (Rd). For f ∈ S (Rd) andMη f (x) = e2πiη·x f (x) we
have, for any η ∈ Rd,

06 (a(x,D)Mη f ,Mη f )L2(Rd)

=

∫∫
R2d

e2πix·(ξ−η)a(x,ξ) f̂ (ξ−η) f (x)dxdξ

=

∫∫
R2d

e2πix·ξa(x,ξ+η) f̂ (ξ) f (x)dxdξ

= ((T0,−ηa)(x,D) f , f )L2(Rd).
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Thus (T0,−ηa)(x,D) > 0 onS (Rd) for all η ∈ Rd. By Corollary 2 and (22) it follows
that U(a)(ξ)> 0 on l2c for all ξ ∈Rd. If F ∈ S (Rd, l2c) we obtain

(U(a)(D)F,F)L2(Rd,l2) =
∫
Rd
(U(a)(ξ) · F̂(ξ), F̂(ξ))l2 dξ > 0,

sincethe integrandisnonnegative everywhere. ThusU(a)(D)> 0 onS (Rd, l2c).

Suppose on the other hand that U(a)(D) > 0 on S (Rd, l2c). Let z∈ l2c and
pick ϕ ∈ C∞

c (R
d) with support in the unit ball such that ϕ > 0 and ‖ϕ‖L2 = 1. With

ϕε(x) = ε−d/2ϕ(x/ε) andFε(x)λ = F−1ϕε(x)zλ we then have

06 (U(a)(D)Fε,Fε)L2(Rd,l2) =

∫
Rd
(U(a)(ξ) ·z,z)l2ϕε(ξ)2 dξ

→ (U(a)(0) ·z,z)l2, ε → 0,

wherewehaveused (31) andtheshrinkingsupport of ϕε. ThereforeU(a)(0)> 0 onl2c
which implies that a(x,D)> 0 onTP(Λ) accordingto Corollary 2.

The previous result is similar to Gladyshev’s results [4, 5], which were formu-
lated in the framework of almost periodically correlated (or cyclostationary) stochas-
tic processes and vector-valued weakly stationary stochastic processes. The so-called
covarianceoperator of a second-order stochastic processis a positive operator, and an
almost periodically correlated stochastic processhasa covarianceoperator whosesym-
bol isalmost periodic in thefirst variable. Weakly stationary stochastic processeshave
translationinvariant covarianceoperators, that is, they are convolution(or Fourier mul-
tiplier) operators. Gladyshev showed that the transformation (20), a 7→ U(a), which
he formulated in terms of operator kernels, transforms a uniformly continuous kernel
corresponding to a positive a.p. pseudodifferential operator to the kernel of a positive
translation-invariant operator acting on vector-valued function spaces. The kernel of
the operator (2) is

ka(x,y) =
∫
Rd

e2πiξ·(x−y)a(x,ξ)dξ = (F−1
2 a)(x,x− y),

understoodasan oscill atory integral. HereF2 denotespartial Fourier transform in the
secondRd variable. Thestudy of almost periodically correlated stochastic processesis
in many respects rather similar to the theory of positive a.p. pseudodifferential oper-
ators. The symbol classes Sm

ρ,δ are however rarely used for stochastic processes. One
usually restricts to operatorswhosekernelsare continuousfunctions.

Thenext result concernscomposition.

THEOREM 2. If a∈ APSm1
ρ,δ and b∈ APSm2

ρ,δ, m1,m2 ∈R, then

(33) U(a#0b)(ξ) =U(a)(ξ) ·U(b)(ξ), ξ ∈ Rd.

Proof. Let Λ denotethelinear hull over Q of Λ(a)∪Λ(b). Accordingto (30) in Propo-
sition 3, U(a)(ξ) ∈ L (l2s , l2s−m1

) andU(b)(ξ) ∈ L (l2s , l2s−m2
) for any s∈ R. Therefore
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the sum

(34)

(U(a)(ξ) ·U(b)(ξ))λ,λ′ = ∑
µ∈Λ

U(a)(ξ)λ,µU(b)(ξ)µ,λ′

= ∑
µ∈Λ

aµ−λ(ξ−µ)bλ′−µ(ξ−λ′)

isabsolutely convergent for all (λ,λ′) ∈ Λ×Λ, and thematrix U(a)(ξ) ·U(b)(ξ) maps
l2s to l2s−m1−m2

continuously for any s∈ R andany ξ ∈ Rd.

We study the left hand side of (33) by regularizing the symbol b in two steps.
First we pick a test function ϕ ∈ C∞

c (R
d) which equals one in a neighborhood of the

origin, set ϕε(ξ) = ϕ(εξ) and define

bε(x,ξ) = b(x,ξ)ϕε(ξ) ∈ S−∞
ρ,δ , 06 ε 6 1.

By [6, Proposition 18.1.2] ϕε → 1 in Sθ
1,0 as ε → 0 for any θ > 0. Since convergence

in Sθ
1,0 implies convergencein Sθ

ρ,δ and bε = b#0ϕε, it follows from (5) that bε → b in

Sm2+θ
ρ,δ asε → 0, and

a#0b= lim
ε→0

a#0bε in Sm1+m2+θ
ρ,δ , θ > 0.

Convergencein Sm
ρ,δ for any m∈ R implies theuniform convergence

sup
x∈Rd

|a#0b(x,ξ)−a#0bε(x,ξ)| → 0, ε → 0,

for any ξ ∈Rd, and thereforewe havefor theBohr–Fourier coefficients

(35) (a#0b)µ(ξ) = lim
ε→0

(a#0bε)µ(ξ), µ∈ Rd, ξ ∈ Rd.

In the secondstep we regularize the symbol bε. Fix α,β ∈ Nd and define the

family of functionsF = {∂α
ξ ∂β

xbε(·,ξ)}ξ∈Rd ⊂ CAP(Rd). The family F dependscon-

tinuously in theCAP(Rd) norm on ξ by (14), and hascompact support with respect to
ξ. ThusF is precompact, and byLemma 1 the Fourier series reconstruction with the
Bochner–Fejér polynomials

(36)

∂α
ξ ∂β

xbε(x,ξ) = lim
n→∞

Pn(∂α
ξ ∂β

xbε(·,ξ))(x)

= lim
n→∞ ∑

λ∈Λ
Kn(λ)(∂α

ξ ∂β
xbε)λ(ξ)e2πiλ·x

is uniformly convergent in both variables, i.e. inR2d. By Lemma3 wehave

(∂α
ξ ∂β

xbε)λ(ξ) = ∂α
ξ (∂

β
xbε)λ(ξ) = (2πiλ)β∂α

ξ (bε)λ(ξ),

which means that we can rewrite (36) as the uniform limit over R2d

(37) ∂α
ξ ∂β

xbε(x,ξ) = lim
n→∞

∂α
ξ ∂β

x

(

∑
λ∈Λ

Kn(λ)(bε)λ(ξ)e2πiλ·x

)
.
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Let usdenote, observingthat (bε)λ(ξ) = bλ(ξ)ϕ(εξ),

bε,n(x,ξ) = ϕ(εξ) ∑
λ∈Λ

Kn(λ)bλ(ξ)e2πiλ·x.

Thefact that bε(x, ·) andbε,n(x, ·) havesupport in a compact set, commonfor all x∈Rd,
in combinationwith theuniform limit (37), implies that

sup
x,ξ∈Rd

〈ξ〉−m+ρ|α|−δ|β|
∣∣∣∂α

ξ ∂β
x (bε,n(x,ξ)−bε(x,ξ))

∣∣∣→ 0, n→ ∞,

for any m∈ R. Thisholds for any α,β ∈ Nd, and hencebε,n → bε in Sm
ρ,δ asn→ ∞ for

any m∈R. Thismeansby (5) that a#0bε,n → a#0bε in Sm
ρ,δ asn→ ∞ for any m∈R. As

abovewethusobtain

(38) (a#0b)µ(ξ) = lim
ε→0

lim
n→∞

(a#0bε,n)µ(ξ), µ∈Rd, ξ ∈ Rd,

using (35).

Since the symbol cλ(x,ξ) = e2πiλ·xbλ(ξ)ϕ(εξ) gives the pseudodifferential op-
erator

(39) cλ(x,D)g(x) =
∫
Rd

e2πiξ·xbλ(ξ−λ)ϕ(ε(ξ−λ))ĝ(ξ−λ)dξ, g∈ S (Rd),

it follows that

a(x,D)(cλ(x,D)g)(x) =
∫
Rd

e2πix·ξa(x,ξ)F (cλ(x,D)g)(ξ)dξ

=

∫
Rd

e2πix·ξa(x,ξ)bλ(ξ−λ)ϕ(ε(ξ−λ))ĝ(ξ−λ)dξ

=
∫
Rd

e2πix·(ξ+λ)a(x,ξ+λ)bλ(ξ)ϕ(εξ)ĝ(ξ)dξ,

and thus
a#0cλ(x,ξ) = a(x,ξ+λ)bλ(ξ)ϕ(εξ)e2πiλ·x.

Thisgives
(a#0bε,n)(x,ξ) = ∑

λ∈Λ
Kn(λ)a(x,ξ+λ)bλ(ξ)ϕ(εξ)e2πiλ·x.

Hence

lim
n→∞

(a#0bε,n)µ(ξ) = ϕ(εξ) lim
n→∞ ∑

λ∈Λ
Kn(λ)aµ−λ(ξ+λ)bλ(ξ)

= ϕ(εξ) ∑
λ∈Λ

aµ−λ(ξ+λ)bλ(ξ),(40)

due to 06 Kn 6 1, Kn(λ)→ 1 as n→ ∞ for all λ ∈ Λ, the absolutely convergent sum
(34), and thedominated convergencetheorem. Now (38) and (40) yield

(a#0b)µ(ξ) = ∑
λ∈Λ

aµ−λ(ξ+λ)bλ(ξ), µ∈ Λ, ξ ∈ Rd.
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Finally we have

U(a#0b)(ξ)λ,λ′ = (a#0b)λ′−λ(ξ−λ′)

= ∑
µ∈Λ

aλ′−λ−µ(ξ−λ′+µ)bµ(ξ−λ′)

= ∑
µ∈Λ

aµ−λ(ξ−µ)bλ′−µ(ξ−λ′).

A comparisonwith (34) completestheproof.

To summarizeour findingshitherto, the transformationa 7→U(a) maps a sym-
bol a∈Sm

ρ,δ defined onthephasespaceRd×Rd to an operator-valuedsymbol U(a) that

dependsonthefrequency variableξ∈Rd only. Theoperator correspondingto thesym-
bol U(a) actsonsequence-spacevalued functionspaces, e.g. S (Rd, l2c). Theoperator
corresponding to the symbol U(a) is thus a convolution (Fourier multiplier) operator.
The map a(x,D) 7→U(a)(D) is linear, injective, preserves identity and positivity, and
respectsoperator composition,

a(x,D)b(x,D) 7→U(a#0b)(D) =U(a)(D) ·U(b)(D).

Convolution operatorsdo not commutewhen functionspacesarevector-valued asthey
do for scalar-valued function spaces. The transformation a 7→ U(a) encodes the non-
commutativity of a(x,D) and b(x,D) in the matrix product of the symbolsU(a) and
U(b). That is, with the notation for the commutator [A,B] = AB−BA, we have

[a(x,D),b(x,D)] 7→U(a)(D) ·U(b)(D)−U(b)(D) ·U(a)(D),

where the right handsideoperator actsby

[U(a)(D),U(b)(D)]F(x)

=

∫
Rd

e2πix·ξ (U(a)(ξ) ·U(b)(ξ)−U(b)(ξ) ·U(a)(ξ))· F̂(ξ)dξ.

In our final result we show that the basic assumption of this paper, i.e. that
symbols are almost periodic in the first variable, is invariant under the quantization.
Moreprecisely, let us introducethe family of quantizations

(41) at(x,D) f (x) =
∫
R2d

e2πiξ·(x−y)a((1− t)x+ ty,ξ) f (y)dydξ

parametrized by t ∈ R. The Kohn–Nirenberg quantization is obtained for t = 0 and
the Weyl quantization has t = 1/2. The following result says that if an operator is
expressed in two different quantizations, then if its symbol isalmost periodic in thefirst
variable in one quantization, it will have the same property in any other quantization.
In other words, thefact that wehaveworked in theKohn–Nirenberg quantizationisnot
essential.
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PROPOSITION 5. If a ∈ APSm
ρ,δ, s, t ∈ R, s 6= t, and at(x,D) = bs(x,D), then

b∈ APSm
ρ,δ.

Proof. We use atechniquethat is similar to the proof of Theorem 2. If a,b∈ S (R2d)
and f ∈S (Rd) then the integral over ξ in (41) isapartial Fourier transform, so weget

at(x,D) f (x) =
∫
Rd

F2a((1− t)x+ ty,y− x) f (y)dy

=

∫
Rd

F2a(x+ ty,y) f (y+ x)dy

=

∫∫
R2d

â(z,y)e2πit z·ye2πiz·x f (y+ x)dydz.

Thus if at(x,D) = bs(x,D) we have

b̂(x,ξ) = e−2πi(s−t)x·ξâ(x,ξ),

which extends by continuity to a,b ∈ S ′(R2d) [3]. This transformation is often de-
noted [6]

(42) b(x,ξ) = e−2πi(s−t)Dx·Dξ a(x,ξ) := (Ta)(x,ξ).

According to [3, Theorem 2.37], we have

(43) e−2πi(s−t)Dx·Dξ : Sm
ρ,δ 7→ Sm

ρ,δ continuously, m∈R.

Therefore it suffices to provethat (Ta)(·,ξ) ∈ CAP(Rd) for all ξ ∈ Rd.

We proceed with a regularization of thesymbol a as in theproof of Theorem 2.
Thus let ϕ ∈C∞

c (R
d) equal one in aneighborhood of theorigin, set ϕε(ξ) = ϕ(εξ) and

define aε(x,ξ) = a(x,ξ)ϕε(ξ). Then aε → a in Sm+θ
ρ,δ as ε → 0 for any θ > 0. By the

continuity (43) wehaveTaε → Ta in Sm+θ
ρ,δ asε → 0. Moreover, if we define

aε,n(x,ξ) = ϕ(εξ) ∑
λ∈Λ

Kn(λ)aλ(ξ)e2πiλ·x

then we obtain aε,n → aε in Sm′

ρ,δ as n→ ∞ for any m′ ∈ R, as in the proof of Theorem

2. Again by the continuity (43) it followsthat Taε,n → Taε in Sm′

ρ,δ asn→ ∞. It follows

that for each fixed ξ ∈ Rd we have theuniform limits

(Ta)(·,ξ) = lim
ε→0

lim
n→∞

(Taε,n)(·,ξ).

SinceCAP(Rd) is closed under uniform convergence[7], the proof is complete if we
show that (Taε,n)(·,ξ) ∈ CAP(Rd) for any ξ ∈Rd, ε > 0 andn∈N.

We have, since(aε)λ(ξ) = aλ(ξ)ϕ(εξ),

F (aε,n)(η,z) = ∑
λ∈Λ

Kn(λ)δλ(η)F (aε)λ(z),
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whereδλ = δ0(·−λ) denotesa translated Diracdistribution. Hencewehave

e−2πi(s−t)η·z
F (aε,n)(η,z) = ∑

λ∈Λ
Kn(λ)e−2πi(s−t)λ·zδλ(η)F (aε)λ(z)

= ∑
λ∈Λ

Kn(λ)δλ(η)F (T(s−t)λ(aε)λ)(z)

and, sinceTa= F−1MF where (M f )(η,z) = e−2πi(s−t)η·z f (η,z),

(Taε,n)(x,ξ) = ∑
λ∈Λ

Kn(λ)(T(s−t)λ(aε)λ)(ξ)e2πiλ·x

= ∑
λ∈Λ

Kn(λ)(aε)λ(ξ− (s− t)λ)e2πiλ·x.

Hence(Taε,n)(·,ξ) isa trigonometric polynomial, becausethesum isfinite, so wemay
concludethat (Taε,n)(·,ξ) ∈ CAP(Rd) for any ξ ∈ Rd, ε > 0 andn∈ N.

REMARK 1. Wehaveworked in theKohn–Nirenbergquantizationandthetrans-
formation a 7→ U(a). For the Weyl quantization, the corresponding transformation is
a 7→V(a) where

V(a)(ξ)λ,λ′ = aλ′−λ

(
ξ−

λ+λ′

2

)
.

With the Weyl product defined by a1/2(x,D)b1/2(x,D) = (a#b)1/2(x,D), we then have
V(a#b)(ξ) =V(a)(ξ) ·V(b)(ξ), correspondingto Theorem 2. Moreover,V(a)(ξ)λ,λ′ =

V(a)(ξ)λ′,λ, i.e. V(a)(ξ) =V(a)(ξ)∗ whereA∗ denotestheHermitian (conjugatetrans-
pose) matrix, which gives V(a)(D) = V(a)(D)∗. Since a1/2(x,D) = a1/2(x,D)∗, we
obtain as a consequence that the transformation a1/2(x,D) 7→ V(a)(D), as well as
a(x,D) 7→U(a)(D), respectsadjoints.
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