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S. Remogna

PSEUDO-SPECTRAL DERIVATIVE OF
QUADRATIC QUASI-INTERPOLANT SPLINES

Abstract. In this paper we propose alocd spline method for the gproximation o the
derivative of afunction f. It is based onan optimal spline quasi-interpolant operator Qy,
introduwced in [12]. Differentiating Q2 f, we cnstruct the pseudo-spedral derivative & the
quasi-interpoation knds and the correspondng dff erentiation matrix. An error anaysis is
proposed. Some numericd results and comparisons with other known methods are given.

1. Introduction

In the gpproximation o the derivative of a function f in a cetain interval [a,b], the
choice of the methodis not a secondary problem.

The differentiation of interpolation pdynomials leals to clasdgcd finite differ-
ences for the goproximate computation o derivatives, but this approximation is not
stable for increasing values of polynomial degreein case of uniform knat partition. In
order to overcomethis problem the Gauss L obatto Chebyshev knots can be considered
[10.

Ancther approach can consist in approximatingthe derivative of f by the deriva-
tive of aspline, generally expressed byalocd basis of B-splinesand defined by either a
quasi-interpolating operator or an interpolating ore. However, whil e quasi-interpolant
(g-i) splines [9, 11, 12, 13] have adired construction, the interpolant ones need the
solution o alinea system of equations. Thisis one of the reasons why, in the liter-
ature, locd g-i spline operators represent very useful tools in many applications[14].
In particular, in [9], a general methodto construct quasi-interpolant spline operators,
that can be dso applied to approximate the derivative of a function f, is presented,
and some mnvergence properties are proved. Recently, in [8, 13], the authors have
proposed some uniform discrete quasi-interpolant spline operators, givingasimple ex-
plicit formula, and have presented a method for numericd differentiation based on
these operators. In particular they have constructed the diff erentiation matrices for
uniform quadratic and cubic splines, that are very useful in applicaions.

When we have to approximate afunction exibiting varied feaures and abrupt
transitions, apossble gproachisto ‘adapt’ the knot partition bythickening the points
where the function has more irregularities. For this reason, in the literature, non un-
form quasi-interpolant spline operators have been introduced (see eg. [1, 9, 11, 12)).
In particular, in [12], anon uriform optimal locd quasi-interpolant spli ne operator, the
discrete quadratic C* Q», is presented, providing an explicit formulafor the coefficient
functionals.

In this paper we propcse amethod, based onthe éowe operator Qo, for the
numericd evaluation o the first derivative of a function f. Such method generalizes
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some results, obtained in [13], for the uniform case to the non uriform one. In Sedion
3 we mnstruct the derivative of Q2 f, cdled the pseudo-spedra derivative and the
correspondng dff erentiation matrix D». In Sedion 4 we propose the a@ror analysis.
Finally, in Sedion 5we present some numericd results, giving comparisonswith other
known methods.

We remark that the same technique could be used to estimate higher-order
derivatives of f considering non umform quasi-interpolant splines of higher degree
if the functional s defining them are known.

2. On alocal discrete quadratic C! spline quasi-interpolant
Let | = [a,b] be abounded interval endaved with some partition

Ac={a=Xg <X <...<X < Xp1=Db},

we define

sH0) = {seCH(ab)) s,  €Pai=01.. Kk}

where IP» denates the spaceof polynomialsin x of degree2.

Wedenateby A¢ = {N?(x)}'*3 the basis of normali zed quedratic B-spli neswith
knats:

(1) X2 =X1=X0 < X1 <. < X < Xt 1 = X2 = Xt 35

spanning s3 (Ax) [2]. With our notations the suppat of the B-spline N? is[xj 3, Xj].
Consideringthe knot partition (1), we definehj = xj_1 —Xj_2for 0 < j <k+4
andthe set of paints 7y = {tj,i = 1,...,k+ 3}, where

t1=a,
ti:%(xifz'i_xifl% fori:za"'ak+27
tkyz=h.

Now we consider alinea quasi-interpolant operator exadt onP; (i.e. Q2p = p,
pe P, <2)of theform:
Q2:C(1) — 55(&),
introduced in [11] and defined by

k+3

2) Qaf =5 mj(fN?
2 ; j j

with knat partition (1). The ooefficients m; are locd li nea functional which are com-
bination o discrete valuesof f at pointsin 7, layingin the suppat of NJ?-:

my(f) = f1, Ms(f) = firs,
mj(f):ajfj,1+bjfj+cjfj+l, forj=2,...,k+2,
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where f; = f(tj) and

i
aj=— 9
P (hj—a+hy)(hj_1+ 2hj+ hjyq)
h2
(3) b = 1+ ! 3
. (hj—1+hj)(hj+hji1)
h2
CJ' = — !

(hj +hjea) (hj-1+2hj+ hji1)°
We can express(2) in the following form

k+3

(4) Qf=73 ff?
=1

where {sz}‘j‘ii are the fundamental functions of Q,, definedin [11] by

(5)
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3. Pseudo-spedral derivative and diff erentiation matrix
We define the pseudo-spedral derivative of f as the derivative of the quadratic quasi-

interpolant spline Q2 f. We denateit by Q, f and we remark that it belongsto 5S(Ak),
spaceof linea splines defined onAy.

Therefore, taking into acourt (2) and (4), we have:
k+3 R " k3 "
(6) Qyf = > M(HONF | = fi(N] ).
=1 =1
Sincethe derivative of the spline NJ-2 [2]is

N (%) N (x)
7 N2) (x) =2 =22 ] j=1,...k+3
( ) ( J)(X) <hj+hjl hj+l+hj ’ J ) ’ + )

with N3(x) = 0, N, 5(x) = 0 and {N}(x) }7 set of normali zed linea B-splines pan-
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ning s2(Ax), from (5) and (7) we obtain

wr = 2(S ),
N2y = 2(hjf1+;j2|\|]12+ﬁ1+?]1 L,
AN

Evaluating (6) at the points of 7i, we have

ki3
Qft) =Y fi(NP)'(t), i=1....k+3.
=1

Therefore the pseudo-spedral derivative & the quasi-interpolation knds can be com-
puted orly usingthe values of f and (N?)’ at 7.

The values of (N?)’ at 7i can be stored in a matrix D € RIH3)*(kH3): ¢y —
(sz)’(ti), fori,j=1,...,k+ 3, cdled differentiation matrix.

Settingy for the vedor with comporentsy; = f(tj), j =1,...,k+3 andy for
the vedor with comporentsy’j =Q5f(t)), j=1,....k+ 3, wesimply write:

(8) y =Dyy.

The diff erentiation matrix D, has a structure as foll ows;

X X X X O D(Zl)

3
O X X X X D(Z)
X X X

where DSV, DY) € R2x(k+3) D2 ¢ R(-1x(k+3) s a banded matrix, with bandwidth
2 (i.e. 2 bandsabove and below the diagoral) and the dements diff erent from zero are:
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o for D<21):
di1=2(ax—1)/hy, dip=2by/hp, diz=2c/hy,

do1= (a2 —1)/ha—ap/(hy+h3), doo=by/hp+ (az—b2)/(ha+ hs),
d23 = C2/h2+ (b3 —2)/(h2+h3), d2a=c3/(h2+ha),

o for D(zz):
diji—2=—a_1/(hi—1+h),
dij—1=(a—bi_1)/(hi—1+h)—a/(hi+hi1),
dij = (bi —ci—1)/(hi—a+hi) + (ai+1—bi)/(hi + hita),
dijt1=¢ci/(hi—a+h) + (bir1—c)/(hi + his1),
dii+2 = Cita/(hi + hita),
=3, K+l
o for D(Zs):

Oky2k = —akr1/ (Mg + hep2),

Okt 2k+1 = (A2 — Bk1) /(M1 + iy 2) — a2/ his 2,
Akt 2k+2 = (B2 — Ckr1) /(M + M 2) — by 2/hir2,
it 2k+3 = Ckr2/ (Mkea + Mi2) + (1 — Cii2) /s 2,

Oki3kr1 = —28k2/Mk2, Okiskr2 = —20ki2/Nii2,
O3 k3 = 2(1— Cky2) /iy

4. Error analysis

In this dionwe analysethe aror E; = (f — Qaf) when f e C'(1),1<r < 3.

In order to doit, werecdl that a sequenceof partitions {Ax} islocdly uniform
if there existsa constant A > 1 such that
i+1— Xi . -
H41=X <A, foraliandj=i+1.
Xj+1 =X

We introduece for 1 < p < k+ 1, the following ndations

lp = [Xp-1,Xp],

Jp = [Xp-3,Xp+2];

hp= max hj,

_ p—1<j<p+3
(9 h= max h;j,

1<j<k+3

Op= mMin  Xijo—X;.
P pasjep1 2T
e}

= min 9.
1<j<k+l



356 S. Remogma

To estimate ||E4 ||, we procead asin [7] and [9].
Firstly, we want to obtain alocd boundfor |Es(t)|, witht € I, 1 < p <k+1,

and then we extend the results to the interval |.
We definefor any x e Jp and f € C"(Jp)

10
RO = f<X>ZDf i!(t>

(Xit)iv

andto give aboundto |E;(t)| it isonly necessary to estimate |Q,R(t)|, as shownin [9].
Sincet € I, we have

p+3 - p+3 5
(10 |GRO)[ =] Y lR(to(N,?)'(t) <5 1|R(tj>| [(N2Y ()],
I=p—- J=p—

with N2 = N2, , = 0and R(to) = R(tk:4) = 0.
InLemmaland 2we estimate |R(t;)| and ’(sz)’(t)‘ respedively.

LEMMA L. Let f €C'(Jp),r=1,2. Thenfori=p—1,...,p+3

(5/2)r+1ﬁr
r! P

}R(tJ)| < m(f(r)vﬁpv‘]p)'

The proof of Lemmalis smilar to that givenin Lemma3.3 of [ 7] andthen here
we omit it.

LEMMA 2. Suppeet € lp. Then, for j =3,...,k+1

(19 (Y1) < 5
p
and
12/ 3 12 / 3
(12 [(N§)'(t)] < 6_p’ |(Ng,3) (1)] < 5_p’
(13 N2y (1)) < §p (2. ()] < 6%

Proof. From (5), for j =3,... . k+ 1, we have
[(NFY ()] < Jej-alINF_y |+ [bj]INF] + @] [NF. 4.
Takinginto acourt Lemma2.1 of [9], we can boundthe first derivative of the normal-

ized B-splines {N?}, obtaining

(19 (R2Y(1)] < 53p<|c,-1| T by + [ay-1))
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and, sincefrom Theorem 1.2 of [12] we have |aj| < 3, |bj| < 2and [¢j| < 3, we get
(15 |Cj—a| +[bj| + |aj+1| < 3.

Therefore (14) and (15) yield (11).
For j =1and j = k+3, from (5), we have

[(NE) ()] < INZ|+ JalINZ], [(NZ,5)' ()] < [oicral INE o] + INE.
and, from Theorem 1.2 of [12]

NI W
I\)_IOO

(I+]ag]) < 5, (I+]cks2)) <

Therefore we obtain (12).
For j =2and j = k+ 2, from (5), we have
|(N8)'(1)] < Jea]INE| + |bzl N3] + [as] N5

52 2 2 2
|(NEy2)" ()] < JewralINg 1]+ [bir 2l INE o] + 3 3] INg 3] -

Since, from (3), ¢1 and ax, 3 are equal to zero, takinginto acournt Theorem 1.2 of [12],
we get

5 5
(Ib2] +fagl) < 5, ([Gral +[Bs2]) < 5,
andwe ohtain (13). O

Now we can give alocd estimate for |E; (t)].

THEOREM 1. Suppeet € Ip andlet f € C'(Jp), r =1,2. Then

— 71 —
(16) |(F = Qaf)'(1)] < Cr gy “w(f), By, Jp),
where
_ Tp(5/2)"hy
(17 Cp= S
andlMp < 30.

Ifin addtion {A} islocally uniformwith constant A, then

(18) Cp= MAZ.

Proof. Theinequality (16) andthe constant values (17) foll ow immediately from (10),
LemmalandLemma?2.

If {Ay} islocdly uniform with constant A, then [5]

ho= max (Xii1—X%) < A%(Xp—Xp_
p= A (1 =) < AT(Xp—Xp-1),
Op= Min (Xiz2—X) > (Xp— Xp—1)-

p-2<i<p-1



358 S. Remogma

Therefore
(19 Mo < A2
Op
From (19) and (17), we get (18). O

Theorem 1 leads immediately to the following gobal results.
THEOREM 2. Let f € C'(l),r < 2. Then
[(f=Qat)||, <Ch tw(fO) R,

where _
c - 30(5/2)r+1 h
T

Ifin addtion f € C3(1), then
I(f = QefY|L., <Ch”[[ 1| .

If {Ag} islocally uniformwith constant A, then the constants C, are independent on k
and
r+1
c 3052,
r!
Now we analyse the eror E; at thepointstj,i=1,... . k+3.

Thelogica scheme here proposed is smilar to that one presented in [14] for the
error of spline derivative in the uniform case.

THEOREM 3. If f € C3(1),fori =3,...,k+ 1, we obtain

_ hi2+1Hi+1 + hizleifl — 2hiZHi 3 + O(ﬁ-‘?’ 1)
48(hi—1 +hi)(hi +hiy1) o

where hi_1 isdefined in (9) and

Hiva = 2hipa(hi—g +hi) + hiz2(hi—g +hi) —hihi—g,
Hi—1 = 2hi_1(hiya +hi) 4+ hi2(hiy 1 +hi) — hihi g,
Hi = 2hi(hi_1 + hit1) +h2 + 4hipahi 1.

(20) yi—fi =

For i = 1,2 we have

ha(2h, + h =
21 v f= -2 o o)

where we define hg = maxo<i<3h; and

_ h%(h4 + 2h3) — Zh%(hz + 2h3)
48(hy + hg)

and anaogotus results hald for i = k+ 2, k+ 3.

3

1))

(22) yo— = £13 + o(h
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Proof. From (8), for 3<i < k+ 1, wehave

a—bi—1 aj
f(ti_ — f(ti_
(ti—2) + (hi1+hi hi+hi+l) (ti—1)

bi —ci—1 ai+l—bi)
23 + + f (t
23 (hi1+hi hi +hi1 (t)

@
' hi—1+hj

Gi bi+lCi> Gt
" - f(tiv1) +——f (ti12).
<hi1+hi hi + hiy1 (tive) + - —f(ti+2)

Now we gply Taylor formulato the function f in a neighbouhood d tj, and we eval-
uate the correspondng pdynomial at the paintsti_», tji_1, ti.1 andtj . For example &
the point tj, 1 we have

f(tia) = f(ti)+(ti+1—ti)f'(ti)+%(tm—ti)zf(z)(ti)

ko4
+é(ti+1*ti)3f(3)(ti)+o <<%) )

Then, in (23), wereplacef (ti_2), f(ti_1), f(tir1), f(tiy2) with their Taylor expansion
and, takinginto acourt (3), after some dgebra, we obtain (20).

Using the same technique for y; and y,, we obtain the expressons (21), (22)
and analogots results hold for ty o andty, 3. O

5. Numerical results

In this s2dionwe propase some humerica results, obtained by a computational proce-
dure that we have developed in Matlab environment [3].

We use the foll owing test functions fp, p=1,2:

1
=13 16e
1 .
fa(x) = 17168 sin(3mx),
ontheinterval | = [—3,3], shownin (a) in Figures 1 and 2, with their first derivatives

shownin (b).

In particular we compare our method, based on the spline operator Q, using
both auniform and anon uriform knot partiti on, with the dasdcd centered-diff erence
formula of order 2 (see eg. [10]) of f, at the point t; and with the derivative of the
quadratic splineinterpoatingthe data { (&, fp(ti) }<-2. More predsely, given these data,
we onstruct the parabdli ¢ spline interpdlating the function f at the data sites {t; }1<3,
denoted by S, and then we compute its derivative, S, f,. For the construction o the
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@

Figure 1: Thefunction f; (a) anditsfirst derivative (b)

@ )

Figure 2: Thefunction f; (a) anditsfirst derivative (b)

quadraticinterpolant splinewe carefer to[2] and|[3] for theoreticd and computational
considerations, respedively.

For the non uriform cases we use the partition Ay = {X; }‘j‘j defined by

p— b— A ? i=0 ktl

XJ a+( a) k+2 ) J a"'aI: 2}7
Ny

—b-(b—a)( 2L j =[] 41, k+1

XJ ( a) k+2 ) J [2}4» (A + ’

with knas thickening aroundthe origin. The sequence of partitions {Ax}, above de-
fined, islocdly uniform, with constant A = 3 [6]. Thiskind o partitionis a particular
case of symmetricdly graded meshes proposed in [4]. We remark that chocsinga non
uniform partition Ax, we can control the behaviour of the first derivative of f using a
greder number of knotswhereit has grong variations.
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We set, for p=1,2,

g = max | Tp(v) = (@) fp(v)|

€ = max| 1v) — (5" fp(v)

chu. _ f/ _ f
& rVT;an\ p(V) = S fp(V)|

€ = max|f5(v) — 8p(V)|

where (Q4)' f, and (Q5%)' f,, are the gpproximations given by the spline operator Q.
using a uniform and a non uriform partition respedively, &f, is the gproximation
given by the centered-difference formula and S, f, is the derivative of the quadratic
interpolant spline. The label n.u. denatesthe use of anon unform knat partitionin the
construction o the aorrespondng approximation, whil e the label u. denotes the use of
auniform one.

The results obtained by wsing the diff erent methods above introduced are re-
portedin Table 4.1, for increasing values of k.

We can ndticethat, using a non unform partition, we obtain better results, and
that the behaviour of the quasi-interpalant spline and the interpolant one is ailmost the
same, but, as remarked abowe, in the g-i case we do nd solve any system of equations.

64 | 1.9(-1) 1.5(-2) | 1.3(-2) 3.8(-1)
128 | 3.3(-2) 3.6(-3) || 3.4(-3) 1.0(-1)
256 | 7.3(-3) 8.9(-4) || 8.8(-4) 2.6(-2)
512 | 1.7(-3) 2.2(-4) || 22(-4) 6.8(-3)
1024 | 4.3(-4) 5.6(-5) || 5.6(-5) 1.7(-3)

64 | 1.2(0) 75(-2) | 6.9(-2) 2.1(0)
128 | 21(-1) 1.8(-2) || 1.8(-2) 6.0(-1)
256 | 4.4(-2) 5.0(-3) || 45(-3) 1.6(-1)
512 | 1.0(-2) 1.3(-3) || 1.1(-3) 4.0(-2)
1024 | 2.5(-3) 3.3(-4) || 2.9(-4) 9.9(-3)

Table 4.1: Maximum absolute arors by diff erent methods

6. Conclusion

In this paper we have proposed a locd spline method, based onthe optimal quadratic
spline quasi-interpolant operator Q,, introduced in [12], for the gpproximation o the
derivative of a function f in a cetain interval [a,b]. Differentiating Q-f, we have
constructed the pseudo-spedral derivative & the quasi-interpolation knas and the cor-
respondng dff erentiation matrix D,. Furthermorewe have presented an error analysis
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and we have given some numericd results, comparing ou method with other known
methodk.

We can remark that a generalization o the obtained results to quesi-interpolant
splines of higher degree ould be an interesting future topic.

Acknowledgement. The author is grateful to Prof. C. Dagninofor helpful discussons
and comments.
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