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GRASSMANN BUNDLES AND HARMONIC MAPS *

Introduction

The “classical” Gauss may associates to any poirtof an oriented surfac®, im-
mersed irfR3, the unit normal vectaXy applied at a poin® in R2, and so determines a
mapping fromM to the unit spher&. Itis therefore called thepherical representation
of M.

This representation enables one to obtain plenty of inftionan various ge-
ometrical aspects of the surface. In particular, it progide “extrinsic” interpretation
of the Gaussian curvature bf. A classical result is expressed by the following:

THEOREM1. The Gauss mal: M — S is conformal if and only if
1. M is a minimal surface, or
2. M is contained in a sphere.

In both casesY is a harmonic map. The analysis of Gauss maps, extended iit+ a su
able way, is the focal point of many interesting researclictogParticular attention is
dedicated to the conditions under which those maps are noaf@r harmonic.

In his article [19], R. Osserman provides an excellent oeenwn the evolution
of the concept of Gauss map and the information regardingebenetry of submani-
folds that can be deduced from it.

Building on the classical concept of Gauss map, it is po&stioi define the
“generalized” one, which associates to each paiiof an m-dimensional manifold
isometrically immersed ifR", the subspace @" parallel toTyM, i.e.,

Y: M — Gm(n),

whereGn(n) is the Grassmannian af-planes inR", having a well-known structure of
a homogeneous (indeed, symmetric) Riemannian space.

Subsequently, M. Obata constructed in [18] a Gauss map fordimensional
Riemannian manifold/ isometrically immersed in a simply connected sphlceith
constant sectional curvature. Such a construction of assaagp is based on the map-
ping ofx € M to them-dimensional totally geodesic submanifolddtangent taV at
x and leads to several particularly significant results réigarconformality conditions.

The more recent theory of harmonic maps (see for examplextbagve reports
of J. Eells—L. Lemaire [8, 9]) immediately reveals remaikgioints in contact with
the theory of Gauss maps. We mainly refer to those resulés[@ggeneralizing the
theorem cited above (see [4]):

*Translation of éRapporto Interno, Politecnico di Torino, 1988.
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THEOREM 2 (Chern [2]). Consider an isometric immersion f of an orientable
surface M insideR". Then f is harmonic (i.e., minimal) if and only if the Gausspma
from M to G,(n) is anti-holomorphic, wher&,(n) is the Grassmannian of oriented
2-planes inR" which can be identified with the complex quadrig.@in CP"2.

THEOREM 3 (Ruh-Vilms [21]). A submanifold M oR" has parallel mean cur-
vature vector if and only if the Gauss m#&p M — Gm(n) is harmonic.

More recently, C.M. Wood [24] and G.R. Jensen—M. Rigoli [1ddnsidering
a submanifoldv of a generic Riemannian manifold, define the Gauss map as the
map fromM to the Grassmann bund®,(TN) of m-planes tangent tdl endowed
with a suitable metric. They analyse several aspects of énednic and conformal
conditions, extending the previous results.

From another point of view, S.S. Chern and R.K. Lashof [6hsidering a sub-
manifoldM isometrically immersed iiR", define the “spherical” Gauss map (another
extension of the classical concept) as the correspondenide— S'~1 that associates
to each unit vectov, normal toM in a pointx € M, a point inS™~* obtained by parallel
transport ofv to the origin ofR".

In the article cited above, Jensen and Rigoli study the gais problem in the
case of a manifoldM isometrically immersed in a generic Riemannian manifd|d
associating to any unit vector normalthe same element in the unit tangent bundle
T1N of N. They analyse also several problems related to the haritypafdche map.

The present report aims also to expose some recent propevewctents regard-
ing the subject and is divided in three parts.

The first part, entitled “Grassmann bundles and distrim&fipcan be summa-
rized as follows. Section 1 describes the construction efRiemannian metric on
the Grassmann bund@,(T M) of p-planes tangent to a a manifdidl. This is due to
Jensen—Rigoli, and has been already applied by E. Mussoi€ErT[17] in the case
of unit tangent bundles. The fibres of the Riemannian subore@,(TM) — M are
totally geodesic and isometric to the Grassman@gfm) endowed with the standard
metric.

Section 2 analyses some aspects related to the curvatGg oM).

Any givenp-dimensional distribution oveM singles out a sectiopof Gp(TM),
and in Section 3 we determine the conditions under wigich harmonic. Section 4
contains some examples of such a situation in the case irhwhis the spher&®, the
Heisenberg group or another Lie group admitting a left-ifara metric.

In the second part “Isometric immersions and maps betweassBran bundles”
we analyse (starting in Section 5) the nfagirom Gp(T M) to Gp(T N) induced by an
isometric immersiorf of M insideN. If p= dimM thenGp(TM) can be identified
with M andF coincides with the Gauss maf

Then in Section 6 we define the tension fieldFofand the conditions under
which it is harmonic. We exhibit a significant example of a imial surfaceM of the
Heisenberg groupl for which the Gauss map is conformal but not harmonic.
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Section 7 develops a detailed analysis of the harmonic ptiepeof F under
the hypothesis thall has constant sectional curvature. The results are corhplete
analogous to those obtained by the author (see [22]) in the chthe map induced
between the unit tangent bundles by a Riemannian immersibhto N. Furthermore,
whenF coincides with the Gauss map, the results we achieve areareahfo those of
E. Ruh-J. Vilms and T. Ishihara described in [10].

The third part is dedicated to the “Spherical Gauss map” elctiSn 8 we intro-
duce the Riemannian metric on the unit normal bufgté/ of a manifoldM isomet-
rically immersed inN. Later, in Section 9, we study the harmonicity of the splagric
Gauss map : T{"*M — T;"N applying a technique analogous to the one adopted in the
Second party has already been analysed by Jensen—Rigoli with anothéroahetin
Section 10, we add some remarks and examples in the casedh Minas a constant
sectional curvature.

The present report contains two appendices:

— Appendix A, in which we recall several facts regarding thedie of Darboux frames
and the classical conditions (Gauss, Codazzi, Ricci) octingature tensors on a man-
ifold.

— Appendix B, which describes the computation of the tendield of a map be-
tween Riemannian manifolds in terms of orthonormal cofrafalowing the method
adopted by S.S. Chern-S.1. Goldberg [5].

I. GRASSMANN BUNDLES AND DISTRIBUTIONS

1. The Grassmann bundle of a Riemannian manifold

Let (M, g) be a Riemannian manifold of dimension The bundle of orthogonal frames
of M, which has the orthogonal gro@{m) as a structure group, is characterized by the
RM-valued canonical forrd = (8') and theo(m)-valued 1-formw = (wij) determined
by the Levi-Civita connection.

Denoting byR, right translation orO(m) determined by an elemeatof O(m),
we have

(1) (Ri)' = (a 6",

@ (Riw)} = (a H)hwal.
Furthermore

®) do' = A0 () +w =0).

: : 1
(4) dod, = e Al + ERi'\jAhkeh A B,
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WhereR}\j"hk are the curvature functions @d(M) associated to the Riemannian curva-
ture tensoRM of g; i.e.,

(5) Rl (U) = RY (Ui, uj, Un, U) = (O i) — Oy Ou; + Oy; Oy )Un, U,
u=(X,U1,...Uy) is an element oO(M).

DEFINITION 1. The Grassmann bundle of p-planes in the tangent spaces of M
is the bundle on M associated td k) with fibre the Grassmannian of p-planedif":

~ om
o™ = 5 < Om—p)

In other words,
(6) Gp(TM) = O(M) Xo(M) Gp(m).

The bundleGy(T M) can be defined in the following equivalent way (we refer
the reader to [13, vol. |, Prop. 5.5, p. 57]):

Oo(M)

(7) Gp(TM) - W,

whereO(M) is a principal bundle oveBp (T M) with structure grou®(p) x O(m— p)
identified with a subgroup dd(m) as follows:

0
(a1,a2) € O(p) x O(M—p) < T . ) e O(m).
7
From now on, we shall exploit the representatiolsgf T M) defined by (6).
The canonical projectiogy : O(M) — Gp(TM) is given by

whereu = (X,Ug,...,Up,Upt1,...,Un) € O(M) and]uy,...,up]x denotes the subspace
of TyM generated by the orthonormal vectats. .., up.
Consider orO(M) the quadratic semidefinite positive form

®) Q=S +NY ()

withr=1,...,p,a= p+1,...,m, andA an arbitrary real positive constant. The fol-
lowing facts are well known:

(i) The quadratic fornQ is O(p) x O(m— p)-invariant: this follows directly from (1)
and (2) witha = (ag,az) € O(p) x O(m— p).

(ii) The bilinear form onM associated tQ), i.e.,

QX.Y) = 5 8(X)8 (Y) + A2 5 G (X)ef(Y),

vanishes if and only iX orY are tangent to the fibres of the submersijonO(M) —
Gp(TM).
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For this reason (see also [17]), as the rank of the fQie m+ p(m— p) and
equals to the dimension @, (T M), there exists a unique Riemannian med§ on
Gp(TM) such that:

rds =Q.
In a sequel to this article, we shall consides(TM) endowed with the Riemannian
matricds? defined by Jensen—Rigoli in [11].
Observe that if we consider dd(M) the Riemannian metric

~ i 1 i

G=3 02+ 5N Y ()2
one has thatp is a Riemannian submersion with totally geodesic fibre6aiM), §)
over(Gp(TM), ds?).

Let U denote an open set @,(TM) ando : U — O(M) a local section of

the bundleO(M) v, Gp(TM). Thuso associates to eagh-dimensional subspace
[1] € TxM an orthonormal basis ine M such that its firsp vectors belong térg.

Them+ p(m— p) 1-forms
(9) pi — 0.*ei7 par — )\O-*(,O?

yield an orthonormal coframe @hwith respect to the metr'nt§. The forms associated
to the Levi-Civita connection with respect to the frame iresfion are determined by
the conditions: ) ) o
dp' = —pjAp —pa AP,
dp? = —p{'ApI—pRiAR®,
imposing also skew-symmetry.
A standard computation using (3) and (4), leads to

pj=—pl =0o"{w+ %%2&“’!;@?}
(10) Par = —P{" = 0" {7ARY;61)
P = P17 = 0" (3l + 30},
Equation (8) implies also that the natural projection(Gp(T M), dﬁ) — (M,g)is a

Riemannian submersiomith totally geodesic fibres
This property can be verified directly using (10). Indeed,us denote by
{Ei,Ear} the dual basis of the orthonormal coframe (9),{&a,} is the basis of the
vertical distributionvV tangent to the fibres aniE;} the basis of the horizontal orré.
We have: _
(OeysEar, Ei) = Par (Eps) = 0.

In the next sections the horizontal and the vertical compbaga vector fieldX, tan-
gent toGp(T M), will be denoted respectively byt andXV, so

X =Xx" 4 xV.
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Finally, with a suitable choice of the constants, each fiir&g(T M) is isometric to
Gp(m) endowed with the canonical metric (we refer the reader to\aB I, p. 272]).
Indeed, if we consider

H = O(p) x O(m—p),
and the decomposition of the Lie algebra

o=h+m
with

X 0

one has thaAd(H)m C m. The scalar product om obtained by restriction tm of the
inner product

yT
m= (0 X ) X eM(m—p,p,R),

(11) (A,B) = — %)\ZTr(AB)

on o(m) defines a metricis? on Gp(m), invariant under the left action dd(m) on
Gp(m). The choice of the same arbitrary positive constaim (8) and (11) implies
that the isometry betweeh™ andTyM, determined by an orthonormal framexir M,
extends to an isometry frofGp(m), ds?) to Gp(TxM) (the fibre of (Gp(TM), ds?)
corresponding ta).

In particular, we have Riemannian product
(12) (Gp(TR™), ds}) = R™ x (Gp(m). dS?).

Recall that byilms’ Theorenjl, (9.59), p. 249]d§ is the unique Riemannian metric
on Gp(TM) for which the projectior : (Gp(TM), d$) — (M,g) is a Riemannian
submersion with completely geodesic fibres isometri€&g(m), d§/\2) and a horizontal
distribution associated to the Levi-Civita connection.

REMARKS 1. The canonical map d&,(TM) to Gm_p(T M) which associates
to eachp-plane inTyM the orthogona(m— p)-plane is an isometry (with the same
choice of the constam). This follows from (8) exchanging the indicasandr.

2. The unit tangent bundi®M of M can be identified (see [17]) with

o(M)

TIM=
Y= om-1)

Its metric is determined by (8) witlp = 1 and coincides with the Sasaki metric if
we assume\ = 1. Let us denote b (T M) the quotient ofTl3M with respect to the
equivalence relation identifying opposite unit vectors.

3. ObviouslyM can be identified withGm(TM), and from (8) it follows that this
identification is an isometry.
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2. The curvature of a Grassmann bundle

We denote byp* = (p',p?") the forms belonging to the orthonormal coframe (9) of
Gp(TM), with Ex = (Ei, Ear) the dual basis and Witb{} the forms associated to the
Levi-Civita connection oG, (T M) determined by (10).

Starting from the structure equations

(13) dpff +pZ Ap§ = RGYZTp ApT

by an elementary computation one can determine the comfmogkthe curvature ten-
sorRC of Gp(TM):

Cric(10 = {Rihy + 3R Rityc— 2R R+ 3A°RE1 R} (01T,
REar) () = 2 {OnRY i} (o[rd),
RS () by (T) = {RGjiBan — REL s + ZA°RELGREL j— 3A°RELRA i (alTd).
Car s (10 = { 3AR i Bab — SARKL s — 2A°RELiRAMy } (o[md),
Ritan b (e () =0

R?ar) (bs)(ct)(du) (T[) = )\_12 {6ab60d (5rt 6SU - 6I‘u 6St) + 6r56tu (6306bd - 6ad6bc) } (G[T':] ) .

From these expressions we obtain the components of thetRiwar Ri€ of Gp(TM):

(14) Ry — {Ric+ 53R R} (o).
(15) RICS, (1) = — AR (ort),
(16) Ric?ar)(bs)(n) = {m}\zzéab&er }\2 rJIRbSJI}( [])

where the notatiofar) etc. is used only to separate the indices.

From (15) follows that the horizontal and the vertical disition are orthogonal
with respect to Ri€ and thusH is a Yang—Mills distribution (see [1, p. 243—244] ¥
has harmonic curvature.

In the sequel, we shall assume thMahas constant sectional curvatuare.e.,
Rtk = C(Bindjk — didjh),

and we will examine the conditions under whiGl3(T M) is Einstein. From (14) and
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(16) follows that the non-zero components of the tensof Rie:
Ricg = {c(m—1) — $A%c?(m— p)} s,

RicS = {c(m— 1) — 1A2c?p} ap,

These last equations imply immediately tkif(T M) is Einstein if and only if
a7 m=2p,

(18) A4 (p+1) —2cA\%(2p—1) + 4p—4=0.

Equation (18) is consistent if and onlypf= 1 and eithecA? = 0 orcA? = 1. So we
have:

PropPoOsITIONL. If M is a Riemannian manifold with constant sectional cur-
vature, its Grassmann bundle, M) is Einstein if and only if M is a quotient of the
plane or the sphere’and p= 1.

On the other hand, it is well-known (see [12]) tiatS?), of which GY(S) is
obviously a quotient, is isometric P2,

3. Sections of the Grassmann bundle
A distributionD of rank p on M determines a sectiapof the Grassmann bundle
Gp(TM) -5 M

in a natural way. It therefore appears reasonable to seditereship between geomet-
rical properties of the distributioD, and those of the map between the Riemannian
manifolds(M,g) and(Gp(T M), d<).

Afterwards, we will determine the conditions under whigis harmonic.

Let us consider, as in Section 1, a sectiaf the bundleO(M) LN Gp(TM).
The distributionD determines a section

o-0:M— O(M),
which means
(0-9)(X) = (X.€1,...,8m)

where(ey, ..., &n) is an orthonormal frame @M in which the firstp elements belong
to Dy C TYM.

In relation to the orthonormal coframe (9) Gf(T M), we have
(19) P =¢0o8 =,

(20) PPN =A@TT R =A% .
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(i=1,....mr=1,...,p,a=p+1,...,m), where(w) is the coframe dual t¢e), and
I are the components of the Levi-Civita connection with respe(e)), i.e.,

M = (g & &)
From (19) and (20), it immediately follows that
¢ (ds) = 5 (@) +A% Y (M2
Thus@is an isometric immersion if and only if
r_?r = 07

or in other word$7Y mapsD into D for all X € TM. Then we set

pP*=(pp"), ¢ (") =alw
and (19) and (20) directly imply that
aj =g, CE NS

We indicate the tension field gfby

(@) = T(QEi + 1 (¢)Ear,

with .

=T, 1V=1"(QEa
its components are determined following the method desdritb Appendix B, exploit-
ing in particular (10). A simple computation leads to

(21) T(Q) = }\ZRa'\('rjir_?r,

(22) () = M& (M) = TR} — TS + T
From these relations we observe that'ff =0, i.e.,0¢D C D. The mapg, being
isometric, is also harmonic and thus minimal.

The following section will give several examples of harmmomiaps fronM into
Gp(T M) which are non-trivial in the sense that they correspondgtitiutions that are
not parallel. It is important to keep in mind:

ProPOSITION2. If the mapp: M — G,(T M) determines a harmonic distribu-
tion D, then the magp' : M — G p(TM) determined by the distribution-Dis also
harmonic.

This result follows directly from (21) and (22) exchangihg role of the indicea,b =
p+1,....mwithr,s=1,... p.
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The conditiomt® (@) = 0 on its own characterizes tlertically harmonic dis-
tributions studied by C.M. Wood [25]. With a simple computation one cewvp that
the vanishing of (22) is equivalent (see [25], Theorem 1t&1)

0*0d D=0 (=00d|D"),
whered andd™ are respectively the projections BrandD*, and is the connection
determined over the vector bund@sindD by the Levi-Civita connection oNl, i.e.,

d(@¥v)  if veD,
Oxv =
d-(OMv)  if ve DL

4. Examples of distributions with harmonic map into the Grassmann bundle

Example 1. The spheré.S
Consider the sphei®® in R* given by

X2+ X5+ X5+ X2 =1,
and the orthonormal basis 8% formed by the vectors
€ = (_X25X1;X4) _X3)a € = (_X37 _X4)X1)X2)a e3 = (_X47X37 _X27X1)'

Denoting by(w',w?, w®) the dual basis, and bfw) the matrix of the Levi-Civita
connection, we easily obtain

2 3 3
W =w, wW=-Ww, wW=0w,

exploiting mainly the fact that

[e1,€2] =2e3, [e3,@1] =2ep, [e2,€3] = 2ey.
Referring to (21) and (22), we have:

— the one-dimensional distributions determinedepye,, e3 respectively are (non-tri-
vial) harmonic sections &1 (T S%);

—the two-dimensional distributiod®;, 2}, {e1, €3}, {€2, €3} determine harmonic sec-
tions of Go(T S%), in accordance with Proposition 2.

As S® can be identified with the groupp(1) of unit quaternions, it is easy to prove that
er, e, e3 form a basis of left-invariant vector fields. The metricSBfis bi-invariant and
the Levi-Civita connection is given by

1
OxY = =[X,Y
X 2[ B ]7
whereX andY are left-invariant vector fields. Furthermore, it is easgitove that every

unit left-invariant vector fields, and so the two-dimensional distribution orthogonal to
u, determines a harmonic section®f(T ) and one ofG,(TS).
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Example 2. The three-dimensional Heisenberg group.

Let us consider the Heisenberg group (we refer the read@3tqo] 72—74] for
example), i.e., the subgroup 6iL(3, R) formed by the matrices

@ (217)

endowed with the left-invariant metric
(24) g=dx¥ +dZ + (dy—xd2?.

ocor
o K X
N <

Considering the orthonormal coframe

(25) w=dx w’=dz w =dy—xdz
with dual frame
0 0 0 0
2 = — = +X— -
(26) Q=og &=+ Xs, &=
we easily obtain:
€1, €2] = €3, [€2,€3] = [€3,€1] = 0.
The connection forms of the Levi-Civita connection are
o 1ls 4 1 31,4
ml* 2(*) ) (*)l* 2(*)25 mZ* 2(*)

and the non-vanishing components of the curvature tensor ar

(27) Ri212= *g, Ri313= Rog23= %

Comparing with (21) and (22) we can prove that
— the one-dimensional distributions determinecepye,, e3 and their orthogonal com-
plements induce harmonic maps fréirto G, (T H) andGx(TH);
— (with some computations) the only left-invariant unit i@cfields that determine
harmonic sections db;(TH) are+e3 and all the unit vectors of the plafe;,e;} (a
situation quite different from the case 89).
Observe thafe;,e;} describes a contact distribution éhthat has been extensively
studied for its remarkable geometric properties (we réfereader to [15] and [20]).

Example 3. Three-dimensional unimodular Lie groups.

The groupsS® andH are examples of three-dimensional unimodular Lie groups.
The classification of these groups has been provided by aoMiL6]. For such a group
G there exists a basis of left-invariant vector fiefds, e, 3} such that:

[e2,63] = M1€1, [e3,€1] =A2€2, [e1,€2] = Azes.
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Considering orG a left-invariant metric with respect to whicfe;, ey, es} is an or-
thonormal basis and denoting bgo', w*, w*} the dual basis, it is easy to prove that the
Levi-Civita connection forms are

W2 = 3(A\1+A2—A3)w’,
(x)? = %(*)\1+}\27}\3)Q)2,
(.0% = %(}\24-)\3—)\1)(,01.

Some computations determine the non-zero components ofithature tensor
1,2 52 2
Rijij = Z{}\i Jr)\j *3)\k+2}\i}\k+2}\j}\k*2)\i}\j},

wherei # | # k assume the values2, 3.

Referring to (21) and (22), it is easy to prove tlegt e, €3 (and the corresponding
orthogonal distributions) determine harmonic maps f@no G1(T G) andG,(T G).

Example 4 Certainly the three-dimensional unimodular Lie groups dbaxhaust the
examples of groups with left-invariant metrics admittirayimonic distributions.

This is the case of a four-dimensional group with orthondreft-invariant
basisey, e3, €3, &4 such that

[e1, 3] = €4, [e1,64] = —6€3

and all other commutators vanishing. It is easy to provetthiatgroup is flat R = 0)
and the unique non-zero connection formui$ = w!'. We can verify for example
that the two-dimensional distribution determined{ley, e3} is a non-parallel harmonic
section ofGy(T G).

[I. ISOMETRIC IMMERSIONS, MAPS BETWEEN GRASSMANN BUNDLES

5. The map induced by an isometry between Grassmann bundles
A Riemannian immersiofi : M — N induces in a natural way an immersion
F:Gp(TM) — Gp(TN)

which associates to eaghplane tangent tdl in a pointx its image inT¢ )N via the
differential of f. In the special case in which= m= dimM, F coincides with the
Gauss mafy': M — Gn(TN).

We can define o&,(TN) (with p < dimM) a metricd§ in a way that is com-
pletely analogous to the one described in Section 1 in the @&S, (T M). The choice
for the metric onGp(TN) with the same constak as onG,(TM) corresponds to
rendering an isometry the inclusion of the fibre@§f(T M) into the fibre ofGy(TN)
relative to the same pointce M. Recalling the discussion at the end of Section 1, this
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means that the immersion &f,(m) into Gp(n) induced by the natural immersion of
RMinR", namelyR™ — (R™ O) C R", is isometric.

Let us denote by = (8*) and & = (&f) the R™-valued canonical form and
theo(n)-valued form associated to the Levi-Civita connection defionO(N). Let &
denote a section of the bundle

oN) % Gp(TN).
The Riemannian metrids?f onGp(TN) is determined by the orthonormal coframe
(28) PA=G0A, PV =AGTER, P =AGTG

The indices involved in the previous equations for the erg&cond part of the present
report will vary as follows:

AB,...=1....n, ij,...=1,...,m, rs...=21...,p,
ab,...=p+1,...m af,...=m+1...n

In analogy to equation (10), the Levi-Civita connectionnfigrfor (Go(TN), d§) are
given by:

PE = —Ph = 6" (6 + AR gabf + 3A R paGF)

(29) ~ar ~bs Sk rxacr r o~
Phs= —Par=0 (6b0‘)s+65(*)g)

PR = —Par = 5" (3L6H)

par = —Par = 5" (B30 + 8L&p).

Since we wish to explore the geometrical implications of anfnnian immersion
f: M — N, we need to exploit the bundle of Darboux frant@d\,M) along f (for
more details see Appendix A).
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It will be helpful to keep in mind the following diagram:

OM) —— O(N,M) —— o)

LI i

G,TM G,(TN)
! !
M f N

Here,n = Yosis the submersion which associates to each adapted orthahfsame
U= (X,U1,...,Up,Ups1,...,Um,Uns1,...,Un) the subspacy, ..., up] C M.
Letx be a local section of the bundle

O(N,M) -1 Gp(TM)
defined on an open subdgtof G,(T M); it determines a local sectianof

oM) % Gp(TM)

such that

(30) 0=SoY;

let thend denote a local section @(N) 9, Gp(TN) such that
(31) GoF =kox.

Consider _
p> = ("p*.p%). P =(p.p*),

the 1-forms corresponding to the orthonormal coframeS il N) andGp(T M) as in
(28) and (9), and set

(32) F*p* = axpx.

In the sequel we will denote tﬁf\ andwf the forms induced o®(N, M) by the forms
0” and@p, defined orO(N) via the injectiork, i.e.,

(33) A =Kk®, B =Kh.
Using equation (31) we obtain for example

X*éi :X*k*él _ F*a.*él _ F*f)i,
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and from (30) we obtain _ . S
X*el — X*S*el _ O.*GI — pl,
which implies o
F*ﬁl — pl.

Analogously

F'p* =0,  F'p¥=p"  F'B" =AX"(h{}0)) = A(x"h}p)),
where the functions
(34) X*he =hj - x

evaluated on an elemejmi € G,(T M), are the components of the second fundamental
form of the immersiorf with respect to the adapted frarg€r).

It follows that the coefficientas; in (32) are given by

aij = 6IJ7 alar = 0
a? =0, 2 =0
@) | s
al, agl = 0pog
a'=Ax(h),  al=0,
Equations (35) imply that
(36) Frdg = 5 (1) + 5 (™) + (3 hihd -x)p'p.
Since the metric oBp(T M) is given by
(37) dg =5 ()?+ 3 (p™)?

the mapF is anisometric immersionf (G,(TM), d) in (Gp(TN), d&) if and only
if f istotally geodesigi.e.,h=0).

Furthermore, ifp < m, the forms (36) and (37) are proportional if and only if
they coincide and this occurs only in the cése 0.

If p=m, from (36) and (37) (in which the forms®" do not appear any more)
occurs that thalf = Y is conformalif and only if there exists a functiohon M such
that

m
3 hikii = €28
k=1

S0, setting
m

(38) L(X,Y) = Z(h(uk,X),h(uk,Y)), X,YeTM,
K=1

we have

(39) L(X,Y) = £2g(X,Y).
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Observe that equation (39) is independent from the framesgod/alent to:
(40) L(X,Y) =0, XLY.

Keeping in mind the Gauss equations (see (100)) we obtain

(41) RN (U, Ui, Uk, uj) = Ric (i, uj) + L(ui, uj) — mH-h(ui, uj).

The bilinear formQ, associated tbf*déf is therefore given by:

42)  Qu(X.Y) = (X,Y)+A2{mH-h(X,Y) - Ric" (X,Y) + RY(ux, X, ug, ),

with X,Y € TM.

Equation (42), and the conditions implying that the Gausp W& conformal,
are developed in the article of Jensen—Rigoli that we haremdy cited and also in
[24]. Hence we get an extension of the results obtained byadh418] expressed by

THEOREM4 (Obata). Assume that N has constant sectional curvature and
1.Yis conformal,
2. M is Einstein,
3. M is pseudo-umbilical, i.e.,(X,Y) -H = h(X,Y)|H|?;

then two of the above conditions imply the third.

In the case in whiclM is a surface irR® (and thus Rit! (X,Y) = Kg(X,Y) whereK is
the Gaussian curvature) we obtain the classical resulthssreed in the Introduction
of this report:

The Gauss map M+ S is conformal if either M is a minimal surface, or M
is contained in a sphere. In fact, these conditions are exjeit to being pseudo-
umbilical in the case of surfaces R®.

6. Tension field of the map induced between Grassmann bundles

For the computation of the tension field Bf we exploit the method described in
Appendix B, and we set

PR A e PR S S
Day = dax —aypx +axF " Pg = axyp'

whereaZ, pY andpg are given by (35), (10) and (29), respectively. Recallin@)(1
(30), (33), we obtain

P =X" {(*_)ij + %AZRglll’ji(Bra}
(43) Phr =X {%}‘Rg/'rji@}

Phs = X" {BpwE + B} -
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Then (29), (31), (33) imply
F B = X" {0 + sA Ry gt + sA°RGpat'}
Fph =X {3ARN20)
F*ﬁér =X {3ARN 28’}
= X*{Opwk + 6w}
F*pﬁs =X {86}
F e = x*{égo_og + 636'5}.

(44)

The components of the tension fietdF) with respect to the orthonormal basis
Es = {Ei,Eq, EarEqr } dual of the basis (28) a&(T N) are given by

TZ(F) :a>z<x

and so, using equations (35), (43) and (44) we get

(45) T (F) = N (Raji he})
(46) T(F) = X" (h, + ARy, 1))
(47) T(F) = —AX"(hfjhg))
(48) T(F) = (h};)-

The computations leading to the previous equations arelsieytept for case (48),
which we display explicitly:

Dal" = d&f’ - a1“'pj+a'F pl‘”+a °F p
AX*(dhfy) —Ax*(h)x* ((:)‘j+%}‘2Rarji6?)_%)‘x*(Ryrkj§k)

(49) . Y st —
+AX (hE))x" (BLaa + 8a)
= AP all g e
Dajl = da{ —&ppo-+ allF Bl
(50) = —AX*(h)x (1}\Rbsk]6k)+x (6’h°‘k9k)

- bs kpk + aabrs)(ct) P

From (50), we obtain

* 1 2
alpgy ey = 0, allpgk = X" ( gk&*j\ Rbeik1F5 )-
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Since
= a(lgrbs)’
substituting in (49) yields

X (P — A (S, ) — AX" (RN, 65) + AX* (hF) O — hgjc?)
= af}x"(68%) + x" (hg;BX " (Aa®),

from which we get

(j}er*( ) *{dhl('] hﬁ_‘fh (*)r+hr1w[3 Rarkj }

From equation (103), it follows that

Jk*)\X { rik — R'(;Irkjék}v

taking the trace of which we obtain equation (48).
With particular attention to (109), we also have

(51) TT(F) = A" (MO HY — RJ“:JG)

The vanishing of all the components ofF ) corresponds to the fact th&t is har-
monic. On the other hand, the vanishingr¥f(F ) andt®' (F) is equivalent to bein§
vertically harmonic

We postpone the analysis of these conditions in the releasg in whiciN has
constant sectional curvature to the following section.eHee provide an example of a
Gauss mapg{ = m) which highlights the role of the curvature Nt

From equations (44) — (48) it follows naturally thatNff is a totally geodesic
submanifold ofN, the mapF is harmonic irrespective of the curvatureldf For this
reason, we will not consider this trivial case in the sequel.

Example.

In the three-dimensional Heisenberg grdgirecall Section 42), we consider
the isometrically immersed surface defined by the equatier®. In other words, this
is the submanifold consisting of matrices of the type

which is therefore generated by the product of two one-patansubgroups dfl.

We will show thatSis aminimal surfacen H whoseGauss majY'is conformal
but neither harmonic nor vertically harmonic
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Adopting the same notation as in Section 4, we consider tth@oormal basis
u={ug,up,uz} of H defined as

up = ey, Up = (&2 —xe3), Uz = (xe2+ €3).

1
V1+x2

It is easy to prove that the restrictiafs yields a Darboux frame withiz unit normal
vector.
Denoting byh the second quadratic form &fin H, we get

14 x2

2
xc—1

h(uz,u1)-us=0 h(ui,u2) U3 = —5—~ h(uz,uz)-u3 =0

(Ug,u1)-uz3 =0, (U, Up) - U3 2085 1)’ (Uz,uz) -uz =0,
which implies thaSis a minimal surfaceot totally geodesic oH.

The components of the curvature tenBawrith respect to the frame are

X2 —3 X

Ri212= 21 Rizis= —7775, Ri223=0,
1—3x? 1
Riz1z= AT Ri323=0, Ro323= vk

whereRy212= R(uz, Uz, U, Up) etc. Bearing in mind (45), (46) and (48), for the tension
field of the Gauss map &in G2(TH) we have

2 X%

T(Y) =\ ALEx) ?(Y)=0, ©(Y)=0,
iy =0, Y

X
B WA
1+x2’

which implies thatY'is neither harmonic nor vertically harmonic.

7. Harmonicity of the map between Grassmann bundles
We examine the different cases that can occur for the haitpoif the map
F:(Gp(TM), ds) — Gp(TN), dS?)

induced by a Riemannian immersidrof M in N. We will distinguish the casp < m
from p=m, and we will discuss with particular attention the case ofstant sectional
curvature orN.

Case 1.p < m=dimM.

The vanishing of the component¥ (F) given in (47) corresponds to the fact
that, for each couple of orthogonal vectdtsy tangent tavl, we have

(52) L(X,Y) = h(uj,X)-h(u;,Y) =0, (X LY).



446 A. Sanini

This condition is equivalent (via (40)) to the fact that theuss mapy": M — Gp(TN)
is harmonic.

Suppose thdll has constant sectional curvaturend let us distinguish further
the case =0 fromc # 0.

Subcase 1.1. g m, RN = 0.

We still obtaint'(F) = 0; the conditiort®(F) = 0 is equivalent tdH = 0, i.e.,
that f is a minimal immersion. Under such hypothesis we have &lse- 0. Observe
that if H = 0 andR = 0, equation (41) implies that

(53) Rid" = —L
and for this reason the conditia?” = 0 can be expressed by one of the following
equivalent conditions:
—M is Einstein;
—the Gauss majf: M — G (T N) is conformal (and thus recalling (53), homothetic).
This fact motivates the following:
PropPOsITION3. If N is a flat space, the map FGp(TM) — Gp(TN) with
p < dimM is harmonic if and only if the following conditions are si@d:

— f is a minimal immersion;

— M is Einstein or (equivalently) the Gauss mépM — Gn(TN) is con-
formal (homothetic itlimM > 2).

Under the same hypothesis, F is vertically conformal if anty af

—the mean curvature vector is parallel;
—the Gauss map is conformal.

Subcase 1.2. g m, N has constant sectional curvaturg 0.

In this case the conditiodl(F) = 0 is still identically satisfied, but we have
a( ) o 2 o o
T(F) =mH" —cA hrr -
er 18

For this reason, the conditiafl = 0 is satisfied (independently of the choice of frame)
if and only if for each vectoK tangent tavl we have that

m
Thus

2_ M
(54) A= o

(55) h(X,X)=H, VX, [X|=1,
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conditions leading t@ > 0 and then
(56) h(X,Y)=g(X,Y)H, X, Y e TM.

Equation (56) means th# should be dotally umbilical submanifoladf N. The con-
ditionst® (F) = 0 andt® (F) = 0 are then identically satisfied (indekbhas constant
curvature andlxH = 0, see for example [3, p. 50-51]).

Obviously a choice ok different from (54) implies thaF is harmonic only if
h = 0, which means tha¥l is a totally geodesic submanifold bf.

In conclusion,

ProrPOsSITIONA. If N is a manifold with constant positive sectional curvatur
the map F: Gp(TM) — Gp(TN) (with p < dimM) is harmonic if either M is a totally
geodesic submanifold of N, or the following conditions hold

— M is atotally umbilical submanifold of N;

— the choice of the constantfor the metric of G(TN) is the same as i(64).

As in the case in whicNN is flat,the map F is vertically conformal if and only if:

—the Gauss map is conformal;
— the mean curvature vector H is parallel.

REMARK 1. The results we have obtained are substantially indepeiodéhe
rank p < dimM of the Grassmannian bundles (except for the choice of thetanh
A according to equation (54)). In this way we obtain result:pketely analogous to
those proved in [22] for the case of unit tangent bundles.

Case 2.p=mand thus =Y.

In such a case, there is no componghitF). Assuming thalN has constant
sectional curvature, we distinguish the following subsase
Subcase 2.1. g m RN =0.

We get alwayst'(F) = 0 andt®(F) = 0 only if M is minimal, from which
follows alsot®"(F) = 0. From these considerations we deduce

ProPoOsITIONS. If N is flat, the Gauss mal: M — Gn(TN) is harmonic if
and only if M is a minimal submanifold of N.

REMARK 2. If N=R"it turns out that
(Gm(TN,d%)) = R" x (Gm(n), dS7),

(recall from Section 1), where = Y = (f,Y) andY: M — Gn(n) is the generalized
Gauss map. Theertical harmonicity of Y coincides with the harmonicity of and
may be expressed (recall (48)) by the conditibhH = 0. In such a way we recover
the result of Ruh-Vilms presented in [21].
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Subcase 2.2. g m, N has constant sectional curvatuarg 0.

The conditiort! (F) = 0 is always satisfied, and (46) implies that
T(F) = m(1—A%c)H®

so eitheH = 0 and consequentfi?” = 0, or
2 1 1
(57) M=, O'H =0.

In conclusion,

PropPoOSITIONG. If N has non-zero constant sectional curvature, the Gauss
mapY': M — Gm(TN) is harmonic if one of the following conditions holds:

— M is a minimal submanifold of N;

— M has parallel mean curvature vector, N has positive cuikatc and the
metric of Gn(T N) is obtained by setting? = 1/c.

FurthermoreY is vertically harmonic if the mean curvature vector is péeél

REMARK 3. WhenN is a sphereS(r) (and soc = 1/r?), besides the Gauss
mapY: M — Gy(TS'(r)), T. Ishihara in [10] and M. Obata in [18] analyse other types
of Gauss mappings related to the immersion oSir) in R"1. We can therefore
consider the following mappings:

() Y1:M = Gm(n+1),

which associates to each poie M them-dimensional subspace Bf' parallel to the
tangent space GiM;

(i) Y2: M — Gpr1(n+1),

which associates toc M the subspace @&+ singled out by the space tangentMio
and the unit vectoX /r; this is exactly the Gauss map introduced by Obata.

Regarding the harmonicity of these maps we have
(i)’ Y1 is harmonic if and only if the mean curvature vedtbrof M in R™+1 is parallel,
in accordance with the Ruh—Vilms Theorem. Since the mearatureH of M in S'(r)
is determined by:

X
_ *
H=H"+5,
H* parallel is equivalent t&d parallel and thusY; harmonic is equivalent t& verti-
cally harmonic

(i)’ The mapY> is harmonic if and only iM is a minimal submanifold o8'(r) (see
Theorem 4.8 in [10] where th¥; is denoted bygs). In conclusion,Y> harmonic
implies thatY'is harmonic.
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[ll. THE SPHERICAL GAUSS MAP

A Riemannian immersiofi : M — N induces a map : T;"M — TiN between the unit
normal bundle oM and the unit tangent bundle i, defined by

v(x,v) = (f(x),v).

Jensen and Rigoli (see [11]) examine in particular the dardi under whictv is har-
monic, exploiting a method analogous to the one adopted?pffiz the map induced
by f on the unit tangent bundles.

In this part of the report, the analysis of the harmonic proggofv will be de-
veloped using theepére mobil§moving frame) method that we have already adopted
in the previous sections.

If N=R" thenT;N = R" x $"-1 and the map fronT;*M to S"~* coincides
with the map defined by Chern—Lashof in [6] for the study oftttal curvature.

8. Riemannian structure of the normal unit bundle of a submarifold

Our aim is to examine the spherical Gauss mafi;"M — TN,
(58) v(x.v) = (F(x),V),

induced by the isometric immersidnof an m-dimensional submanifol in ann-
dimensional manifoldN, so first of all we specify the metrics "M andT;N.

Since
O(N)

N=Sm-1)

its metric is the one already introduced in Section 5@g(T N) with p = 1, which we
re-propose with a slight variation of the notation.

Letyn: O(N) — T1N denote the canonical submersion
(59) Wn(Y. U1, Un) = (¥, Un),
and define 01N the metricd& so that
(60) UE =5 B2+ 22 (@h)2

whereA=1,....n,a=1,...,n—1,and(8"), (68) denote as usual the canonical form
and the Levi-Civita connection form dd(N).

Given a local sectiod of the bundleD(N) S, TN, the 1-forms

(61) ph=5"0", P =\GGR
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give an orthonormal coframe @iN. The forms associated to the Levi-Civita connec-
tion of (T1N, d§) computed with respect to this coframe are:

PR = —PR =6 {08+ N Ripadf}
(62) pan = 7pin G {1)‘RanBAeB}
Pon=—Pin=05"(Gx) -

To determine the metric of;-M, we consider the submersiam of the bundle of
Darboux frame©(N, M) on T;*M defined by

(63) Th(X, U1, - - -, Umy Umt1, - - -, Un) = (X, Un)

Observe that the fibres af, are diffeomorphic t@(m) x O(n—m— 1) immersed in
O(n) as follows:

o O Y
o® o
~ OO

(64) (d,a") > a= ( ), a =(al) eO(m), a’ = (ag) € O(n—m-1),

withi,k=1,... manda,p=m+1,....n—1.

Therefore
O(N,M)

O(m xO(n—m—1)
Denoting byk the canonical immersio®(N,M) — O(N) and setting
éA = K*éAa (’T@ = K*Géa

we consider oi©O(N, M) the quadratic form

Ti'M =

(65) Q=S (@) +NY (@)%
For eacha € O(m) x O(n— m) of type (64), we have
(66) Ry k=K Ra.

If ais of the form specified by (64) then
R =(a i8Rk =(@ ek,
and hence
(i) Qs invariant under the right action €(m) x O(n—m— 1) on O(N,M).

(i) Qis a semidefinite positive form d@(N, M) of rank equal t; — 1, the dimension
of T*M.

(iii) The bilinear form associated 1Q annihilates the vertical vector fields of the sub-
MersionT,.
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For this reason, there exists unigue Riemannian métfion T;*M such that

mds = Q.

and this is the metric ofi;-M that we will refer to in the sequel of the section. Given
a local sectiory of O(N,M) = TyM, i.e.,

X(X,V) = (X,u1,...,Um,Un+1,- - -, Un—1,V),
the 1-forms
(67) p=x0, M =Axe
constitute an orthonormal basis Bf M. Since we have
(68) W =k'6f =hlel,  a=hlel,

a standard computation leads to the following expressidhekevi-Civita connection
forms on(TiM,di) with respect to the orthonormal frame (67):

pl = —pl = X {0} + 3A%(Rinji + hii ki — highigj)en }
(69) Pon = —P{" = l)\X*{(Rc'}lnji+h(|3jhﬂi*hgihﬂj)gj}
PSR = —plin = X ().
Also, considering the normal curvature tenBor, and referring to (101),
Pl = —pl = X{W, + 3R iR }
(70) Phn = —P" = X*{%)\Rénjiéj}
PSR = —plin = X ().

REMARK 4. If M is a hypersurface dfl, equations (67) imply directly th&yM
is isometric toM.

9. The tension field of the spherical Gauss map
Assume that the sectianof O(N) n, TiN is chosen in a way that
(71) GoV=KoV

and so we are in the situation described by the following idiag
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O(N,M) =5 O(N)

i e

\Y

™M % TN

| |

M = N

Considering (71), the orthonormal coframedgfl andT M defined by (61) and (67)
satisfy

V*f)izpi, v* a:O, V*ﬁn:O,

o

(72) VRN = —Ax ! = Ax*(h} )p!,
V*f)i — )‘X*ég _ pan.

In other words, denoting the coframesTaN andT+M by p* = (p',p%,p",p", 5")
andpX = (p',p"), we set

(73) vipE = axp~.

It follows that

a =3, al,=0
aj =0, agn =
(74) al =0, al, =0
an= (), =0
a"=0 agn = 3.

From the above relations, we deduce that
(75) Vg = 5 (p)7+ S (P2 + A% (W hik-X)p' P
Sinceds = ¥ (p')2+ 3 (p“")? is the metric oril;* M, it follows that:

(i) v is an isometry only ih=0, i.e.,M is a totally geodesic submanifold bf;

(i) if dim N —dimM > 2 and ifh # 0 the metricv*d?.f cannot be conformal or in
particular homothetic tdsg;

(ii) if M is a hypersurface (in such a case we should not consider thres f§"") the
metricsv*ds“.f andd§ are mutually conformal if and only if okl there exists a function
¢ such that

(76) hi i = €28,
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which is the same condition as (39).

Equation (76) is equivalent to asserting that the absolaliges of the principal
curvatures oM are equal. This can be easily proved using an orthonornrakienivi
diagonalising the matrigh) ).

The tension field of the map is determined as usual following the method
described in Appendix B, by setting

(77) Da} = dak — aypy + a)%v*(f)é) =agyp".
Thus
(78) (V) = ay,

where the coefficientay are given by (74)p¥ are the coefficients of the Levi-Civita
connection ofT M (see (69)) and the formzi‘(ﬁé) can be computed starting from
(62) and using (71), (72).

Simple computations lead to

(79) T(v) =~ (R, k)

(80) T9(v) = X" (hf; — AR 1))

(81) (v) = X" (hy — AR johi})

(82) TN(V) = =Ax* () = =AX* (MO H = RYj,)
(83) (V) = —Ax" (] h).

The computation of the componentstw¥) is simple. The only slightly more compli-
cated case is (82), which is treated in a manner analogodsjo (

10. Harmonicity of the spherical Gauss map

We now examine the conditions under which the spherical &mepv is harmonic,
devoting particular attention to the case in whittas constant sectional curvature.

With the intention of interpreting the vanishing of the campntst®"(v) given
by (83) (which makes sense onlyrif- m > 2), we consider for each element T-M
the symmetric 2-form
hy=h-v,

or better
(84) hy(X,Y) =h(X,Y) -V
We then obtairt®"(v) = 0 if and only if

(85) hV'hW:ZhV(Ui,Uj>'hW(Ui,UJ‘):0, wW,we TiM, viw,
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for any orthonormal framéu;} on M. There should therefore exist a functipon M
such that

(86) hy-hw = 2(VW),  YWwe M,
which implies in particular that
HhHZ = Z hVa : hVu = (n - m)p'za

where{vy } is an orthonormal basis @M. In the language introduced in [11], equa-
tion (86) means thahe second fundamental form is conformal

~Assuming thalN has constant sectional curvatarghen the tangential compo-
nentt'(v) always vanishes, while

(87) (V) =mH% (V) =m(1—A%c)H",

so both these expressions should be zero in order fobe harmonic. For this reason
if n—m> 2, thenH = 0, from which it follows that®"(v) = 0. In conclusion:

PROPOSITIONT7. Let N be a manifold with constant sectional curvature. The
spherical Gauss map: T;*M — TiN induced by the isometric immersion f of M in
N, withdimN — dimM > 2, is harmonic if and only the following conditions hold:

1. f is minimal;

2. the second fundamental form is conformal.

Example.

If M is a minimal surface itN, with dimN > 4, an orthonormal frame d&fl can
be chosen in a way thhﬁ = 0 for a > 4. The minimality conditions reduce to

h31+h3, =0, hi1+h3,=0,

and with a suitable choice of an orthonormal basi#ofve can assumi, = 0. The
condition that the second fundamental form is conformalsda

hi=h3, =0, (hf)? = ()

This implies thatM should be aminimal isotropic surfacei.e., |h(X,X)| = constant
for |X| =1.
Otherwise, ifM is ahypersurfacénside the manifoldN with constant curvature
¢, the components af(v) are determined by (79), (81) and (82). The components not
identically zero are:

(V) =m(1—A20H",  T"(v) = —AmOH",
and so the spherical Gauss majs harmonic if and only if
(88) (1-NcH=0, [OfH=0.

We conclude that:
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1. eitherN is flat andM is a minimal hypersurface; or
2. N is not flat,

c>0, A== OiH =0,

)

and saM is a hypersurface with mean curvature vector with constammhna condition
equivalent in such a case i H = 0.

REMARK 5. The spherical Gauss mamssociated to the Riemannian submer-
sionTiN — N, is calledvertically harmonidf the vertical component af(v) vanishes,
ie.,

™(v) =0, ™"(v) =0.
Equations (82) and (83) imply therefore that under the hypsis thatN has constant
sectional curvature) is vertically harmonic if the following conditions are ssdied:

1. the mean curvature vector is parallel;

2. the second fundamental form is conformal.
If M is a hypersurface, the only condition|i$| = constant.

Appendix A. Darboux frames

Consider a Riemannian immersiérof anm-dimensional manifoldM in ann-dimen-
sional manifold\. We denote byp(M) andO(N) the principal bundles of orthonormal
frames orM andN, with structure group®(m), O(n).

We denote by = (6') andw = () (i, j = 1,...,m) the canonicaR™-valued
form onO(M) and theo(m)-valued form associated to the Levi-Civita connection on
M respectively. The = (8') and& = (&@}), (A,B = 1,...,n) denote the analogous
forms onO(N). Hence,

©) = a0 (6 of O
(90) d(,oij = _OQL/\ w‘J( + %Rl!\jﬂhkehek-
Given an orthonormal frame= (X, us,...,Um) of O(M), we have

91)  RY¥(u) = RM(ui, uj, up,w) = ((OY . — O} DUMJ. + D[‘f: O ) U, Ug).-

[uhuj]
Similarly,
(92) doA = —RABB,  (BR+aR=0),
(93) d6f = — G A GE + FRNg B 1 BP.

IdentifyingM with its imagef (M) in N, the bundle of Darboux framé&3(N, M) along
f is the bundle oM defined as follows. An element

u=(X,Ug,...,Un,Unt1,.--,Un), X=0(u),
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of O(N,M) (whered is the canonical projection @(N, M) on M) is such that
u = (X,U1,...Um), U’ = (X,Unt1,---,Un)

are orthonormal frames of respectivajM andTyM~ (the subspace aiN orthogonall
to TxM with respect to the metric GiN).

The structure grou@(m) x O(n—m) of O(N, M) is naturally immersed i®(n)

as follows: /
(@,a") € O(m) x O(N—m) s < 3 ;, > e o(n).

Lets: O(N,M) — O(M) andk : O(N,M) — O(N) denote the submersion and the
natural immersion defined by the diagram

OoM) < ONM) S N
ln \a Jﬁ
M <«~— M=fM) — N
Observe that (we refer the reader to [13, vol. Il, p. 3—4]):
(94) K9 =s0=0, i=1..m
(95) K0 =0, a=m+1,....n

If we set

then differentiating (94), we obtain

w

j =K

:S(A)J'.

* o P
J

The forms(«f, ") = (o_o‘j ,@g), representing the(m) and theo(n—m) components of

K*@, define a connection o®@(N,M). Given a local sectioy of
3
O(N,M) > M,
i.e., alocal field of frames

(96) X(X) = (X,er,...,em,em1, ..., €n)

adapted along the immersidnit obviously follows that
(X"@)(X) = (ORej, @) = (D ey, @)
(X" @) (X) = (0% ep, &) = (Ox€p. &),

where[J* is the connection ofi *M singled out by’ = ((Bg).
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Differentiating equation (95) we have
0=k"(d8%) = —k*& AK*® =aF A D,
from which Cartan’s Lemmamplies that
o =h?6l,  hY=nhd,

wherehf; are the components of the second fundamental toafthe immersionf of
Min N, I.e.,
hij (u) = (O} uj, Ua)-

Differentiating the equations

(97) K&, = o
(98) K'Gyg = wy
(99) K& = hflel,

we obtain theequations of Gauss, Ricci, Codazrideed
K@, = K (@ AGK— @l NG + FRY, ;84 1 68)
= —@ A&K+hgheh Ao+ IRY, 6N A8k,
From another point of view,
K'd@, = s'da =s(— Aak+ RN 68N ABK)
Comparing the last expressions we obtain the following €Saguations):
(100) Rk = Rl + hish% — hikht,.

Similarly, from (98), we have

KGR = K (—Gff A G — G A QY+ SR04 1 89)
= hghfen A8k — i A+ R, BN B

Then setting
— — 1

whereR* is the curvature tensor of the connectidh onT-M — M, we find the Ricci
equations

(101) Raphk = Riipnk T hishb — hihf.
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Finally, differentiating equation (99), we have
G = K~ NG — G AGY + 3R A/\GB)
= —ha S A — b A 6K+ IR, 6N A
From another point of view, we have
d(h%e’) = dif A8 —hdl A 6.
Comparing the last equations we obtain:
(dh — hi ok — hiyef + hlk('oB — SR8 A6 =0.

Cartan’s Lemma implies

1 _
dhf — hgaof — hiyo + hiﬁ'ﬁ - ER'&Iihkéh =A};9',

(102) A = Ak
If we set
(103) dh — h,kmK (o + h,ka = h,kJGJ,

with hﬁ‘(J = hﬁ‘” then, because of the symmetry of the second fundamental foem
have

1
(104) i = Akj + SRk
2
The relations expressed by (102) and (104) lead t&Cthdazzi equations

In fact, the first term of (103) gives an expression of the dava differential of the
second fundamental fortn since (given a frame € O(N,M)), (103) implies that

hij(u) = (Og (h(ui,uc)) — h(OY ui, u) — h(ui, O ug), Ua)
= ((Hyh)(ui, ug), Ua).
The mean curvature vectbr of the Riemannian immersiohis given by

1 1
(107) H = —h(ui,u) = —hifua,

(106)

and together with equation (106), we obtain

hifj = m(Og;H, Ua) = mOg HE.
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It follows thatH is parallel (in the normal bundle) if and only if
(108) hij = 0.

Equation (105), upon settirlg= i and summing ovel, implies that
(109) hifj = hfj +Raij = hi + Raiji-

For this reasorif N has constant sectional curvatythe conditions
(110) hi =0, hf§i=0, O'H=0

are equivalent.

Appendix B. The tension field of a map

Let (M,g) and (N,h) be Riemannian manifolds of respective dimensioma. Let
{e} and{ea} be local orthonormal local frames o andN, and let{6'}, {6"} be
the corresponding dual coframes a{‘rd'l} {wg} the local forms reppresenting the
Levi-Civita connections with respect to these local franWe therefore have

do' =~ A B, () +w)) =0,
(111) _ _

0'(2) = (X,e), wj(X) = (OXe, ).
Similarly,

de” = —wh A B8, (0h+wB) =0,
(112)

0AZ) = (Z,en), wg(Z) = (OYes,€n).

Consider a smooth map: M — N. Its differentiald f can be viewed either as
a map fromT M to T N determined by

dfX) = (F(x),d&(X)), X TM,

or as af ~*(TN)-valued 1-form orM.

Setting
(113) df(e) = alea,
it turns out that
(114) f o = alg'.
Differentiating equations (114) we have

* B j A j
f*(—wp A 6F) =daf A B — afw; A 6.
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Equivalently, . _
(daf —al'od, +af f*wl) A6l =0,

from which byCartan’s Lemmave obtain
(115) Daf = da* — af'w) + aP f*wh = a6k,

with
A A
a.jk - a.kJ
The functionsay, are the components of the covariant differenblf, also called the

second fundamental quadratic form of the nfaphe differentialDd f may also be
introduced as thé (T N)-valued symmetric 2-form defined by

(116) Dd f(X,Y) = (Dydf)X = Dy(d fX) —d fO¥'X,

whereD is a metric connection ofi~*(TN) — M induced by the Levi-Civita connec-
tion onN.

It is easy to see that equations (115) and (116) are actuglliv&ent; indeed
(116) implies

Ddf(ee) = De(aben)—df(c(e0e)
= a(@)en+aPwp(d faden — o ()l en
— (O e — b)) (e)en = dhen,

with the same coefficieneq}( as in equation (115). Itis obvious that the computation of
the covariant differentidbd f according to (115) (put in evidence by Chern—Goldberg
[5]), is particulary useful when orthonormal coframes oa mhanifolds are chosen.

The mapf : M — N is calledtotally geodesidf Dd f = 0, equivalently ifa’j}( =0.

Thetension fieldtf is the trace oDdf, i.e., thef (T N)-valued field onM
defined by

(117) 1(f) =Ddf(ej,g)) = afj ea.

Furthermore the map is calledharmonicif tf =0, i.e.,a® = 0.

il =
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