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GRASSMANN BUNDLES AND HARMONIC MAPS ∗

Introduction

The “classical” Gauss mapϒ associates to any pointx of an oriented surfaceM, im-
mersed inR3, the unit normal vectorNx applied at a pointO in R3, and so determines a
mapping fromM to the unit sphereS2. It is therefore called thespherical representation
of M.

This representation enables one to obtain plenty of information on various ge-
ometrical aspects of the surface. In particular, it provides an “extrinsic” interpretation
of the Gaussian curvature ofM. A classical result is expressed by the following:

THEOREM 1. The Gauss mapϒ : M→ S2 is conformal if and only if

1. M is a minimal surface, or

2. M is contained in a sphere.

In both cases,ϒ is a harmonic map. The analysis of Gauss maps, extended in a suit-
able way, is the focal point of many interesting research topics. Particular attention is
dedicated to the conditions under which those maps are conformal or harmonic.

In his article [19], R. Osserman provides an excellent overview on the evolution
of the concept of Gauss map and the information regarding thegeometry of submani-
folds that can be deduced from it.

Building on the classical concept of Gauss map, it is possibile to define the
“generalized” one, which associates to each pointx of an m-dimensional manifold
isometrically immersed inRn, the subspace ofRn parallel toTxM, i.e.,

ϒ : M→Gm(n),

whereGm(n) is the Grassmannian ofm-planes inRn, having a well-known structure of
a homogeneous (indeed, symmetric) Riemannian space.

Subsequently, M. Obata constructed in [18] a Gauss map for anm-dimensional
Riemannian manifoldM isometrically immersed in a simply connected spaceN with
constant sectional curvature. Such a construction of a Gauss map is based on the map-
ping of x∈M to them-dimensional totally geodesic submanifold ofN tangent toM at
x and leads to several particularly significant results regarding conformality conditions.

The more recent theory of harmonic maps (see for example the extensive reports
of J. Eells–L. Lemaire [8, 9]) immediately reveals remarkable points in contact with
the theory of Gauss maps. We mainly refer to those results (see [7]) generalizing the
theorem cited above (see [4]):
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THEOREM 2 (Chern [2]). Consider an isometric immersion f of an orientable
surface M insideRn. Then f is harmonic (i.e., minimal) if and only if the Gauss map
from M to G̃2(n) is anti-holomorphic, wherẽG2(n) is the Grassmannian of oriented
2-planes inRn which can be identified with the complex quadric Qn−2 in CPn−1.

THEOREM3 (Ruh–Vilms [21]). A submanifold M ofRn has parallel mean cur-
vature vector if and only if the Gauss mapϒ : M→Gm(n) is harmonic.

More recently, C.M. Wood [24] and G.R. Jensen–M. Rigoli [11], considering
a submanifoldM of a generic Riemannian manifoldN, define the Gauss map as the
map fromM to the Grassmann bundleGm(TN) of m-planes tangent toN endowed
with a suitable metric. They analyse several aspects of the harmonic and conformal
conditions, extending the previous results.

From another point of view, S.S. Chern and R.K. Lashof [6], considering a sub-
manifoldM isometrically immersed inRn, define the “spherical” Gauss map (another
extension of the classical concept) as the correspondenceν : M→ Sn−1 that associates
to each unit vectorv, normal toM in a pointx∈M, a point inSn−1 obtained by parallel
transport ofv to the origin ofRn.

In the article cited above, Jensen and Rigoli study the analogous problem in the
case of a manifoldM isometrically immersed in a generic Riemannian manifoldN,
associating to any unit vector normal toM the same element in the unit tangent bundle
T1N of N. They analyse also several problems related to the harmonicity of the map.

The present report aims also to expose some recent proper achievements regard-
ing the subject and is divided in three parts.

The first part, entitled “Grassmann bundles and distributions”, can be summa-
rized as follows. Section 1 describes the construction of the Riemannian metric on
the Grassmann bundleGp(TM) of p-planes tangent to a a manifoldM. This is due to
Jensen–Rigoli, and has been already applied by E. Musso–F. Tricerri [17] in the case
of unit tangent bundles. The fibres of the Riemannian submersion Gp(TM)→ M are
totally geodesic and isometric to the GrassmannianGp(m) endowed with the standard
metric.

Section 2 analyses some aspects related to the curvature ofGp(TM).

Any givenp-dimensional distribution overM singles out a sectionφ of Gp(TM),
and in Section 3 we determine the conditions under whichφ is harmonic. Section 4
contains some examples of such a situation in the case in which M is the sphereS3, the
Heisenberg group or another Lie group admitting a left-invariant metric.

In the second part “Isometric immersions and maps between Grassman bundles”
we analyse (starting in Section 5) the mapF from Gp(TM) to Gp(TN) induced by an
isometric immersionf of M insideN. If p = dimM thenGp(TM) can be identified
with M andF coincides with the Gauss mapϒ.

Then in Section 6 we define the tension field ofF and the conditions under
which it is harmonic. We exhibit a significant example of a minimal surfaceM of the
Heisenberg groupH for which the Gauss map is conformal but not harmonic.
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Section 7 develops a detailed analysis of the harmonic properties of F under
the hypothesis thatN has constant sectional curvature. The results are completely
analogous to those obtained by the author (see [22]) in the case of the map induced
between the unit tangent bundles by a Riemannian immersion of M to N. Furthermore,
whenF coincides with the Gauss map, the results we achieve are compared to those of
E. Ruh–J. Vilms and T. Ishihara described in [10].

The third part is dedicated to the “Spherical Gauss map”. In Section 8 we intro-
duce the Riemannian metric on the unit normal bundleT⊥1 M of a manifoldM isomet-
rically immersed inN. Later, in Section 9, we study the harmonicity of the spherical
Gauss mapν : T⊥1 M→ T⊥1 N applying a technique analogous to the one adopted in the
Second part (ν has already been analysed by Jensen–Rigoli with another method). In
Section 10, we add some remarks and examples in the case in which N has a constant
sectional curvature.

The present report contains two appendices:

– Appendix A, in which we recall several facts regarding the bundle of Darboux frames
and the classical conditions (Gauss, Codazzi, Ricci) on thecurvature tensors on a man-
ifold.

– Appendix B, which describes the computation of the tensionfield of a map be-
tween Riemannian manifolds in terms of orthonormal coframes, following the method
adopted by S.S. Chern–S.I. Goldberg [5].

I. GRASSMANN BUNDLES AND DISTRIBUTIONS

1. The Grassmann bundle of a Riemannian manifold

Let (M,g) be a Riemannian manifold of dimensionm. The bundle of orthogonal frames
of M, which has the orthogonal groupO(m) as a structure group, is characterized by the
Rm-valued canonical formθ = (θi) and theo(m)-valued 1-formω = (ωi

j) determined
by the Levi-Civita connection.

Denoting byRa right translation onO(m) determined by an elementa of O(m),
we have

(R∗aθ)i = (a−1)i
hθh,(1)

(R∗aω)i
j = (a−1)i

hωh
kak

j .(2)

Furthermore

dθi =−ωi
j ∧θ j (ωi

j +ω j
i = 0),(3)

dωi
j =−ωi

k∧ωk
j +

1
2

RM
i jhkθh∧θk,(4)
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whereRM
i jhk are the curvature functions onO(M) associated to the Riemannian curva-

ture tensorRM of g; i.e.,

(5) RM
i jhk(u) = RM(ui ,u j ,uh,uk) = ((∇[ui ,u j ]−∇ui ∇u j +∇u j ∇ui )uh,uk),

u= (x,u1, . . .um) is an element ofO(M).

DEFINITION 1. The Grassmann bundle of p-planes in the tangent spaces of M
is the bundle on M associated to O(M) with fibre the Grassmannian of p-planes inRm:

Gp(m) =
O(m)

O(p)×O(m− p)
.

In other words,

(6) Gp(TM) = O(M)×O(M) Gp(m).

The bundleGp(TM) can be defined in the following equivalent way (we refer
the reader to [13, vol. I, Prop. 5.5, p. 57]):

(7) Gp(TM) =
O(M)

O(p)×O(m− p)
,

whereO(M) is a principal bundle overGp(TM) with structure groupO(p)×O(m− p)
identified with a subgroup ofO(m) as follows:

(a1,a2) ∈O(p)×O(m− p) 7→
(

a1 0
0 a2

)
∈ O(m).

From now on, we shall exploit the representation ofGp(TM) defined by (6).

The canonical projectionψ : O(M)→Gp(TM) is given by

ψ(u) = [u1, . . . ,up]x

whereu= (x,u1, . . . ,up,up+1, . . . ,um) ∈ O(M) and[u1, . . . ,up]x denotes the subspace
of TxM generated by the orthonormal vectorsu1, . . . ,up.

Consider onO(M) the quadratic semidefinite positive form

(8) Q= ∑(θi)2+λ2∑(ωa
r )

2

with r = 1, . . . , p, a= p+1, . . . ,m, andλ an arbitrary real positive constant. The fol-
lowing facts are well known:

(i) The quadratic formQ is O(p)×O(m− p)-invariant: this follows directly from (1)
and (2) witha= (a1,a2) ∈O(p)×O(m− p).

(ii) The bilinear form onM associated toQ, i.e.,

Q(X,Y) = ∑θi(X)θi(Y)+λ2∑ωa
r (X)ωa

r (Y),

vanishes if and only ifX or Y are tangent to the fibres of the submersionψ : O(M)→
Gp(TM).
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For this reason (see also [17]), as the rank of the formQ is m+ p(m− p) and
equals to the dimension ofGp(TM), there exists a unique Riemannian metricds2

λ on
Gp(TM) such that:

ψ∗ds2
λ = Q.

In a sequel to this article, we shall considerGp(TM) endowed with the Riemannian
matricds2

λ defined by Jensen–Rigoli in [11].

Observe that if we consider onO(M) the Riemannian metric

g̃= ∑(θi)2+
1
2

λ2∑(ωi
j)

2,

one has thatψ is a Riemannian submersion with totally geodesic fibres of(O(M), g̃)
over(Gp(TM), ds2

λ).

Let U denote an open set ofGp(TM) and σ : U → O(M) a local section of

the bundleO(M)
ψ−→ Gp(TM). Thusσ associates to eachp-dimensional subspace

[π]⊂ TxM an orthonormal basis inx∈M such that its firstp vectors belong to[π].
Them+ p(m− p) 1-forms

(9) ρi = σ∗θi , ρar = λσ∗ωa
r

yield an orthonormal coframe onU with respect to the metricds2
λ. The forms associated

to the Levi-Civita connection with respect to the frame in question are determined by
the conditions:

dρi = −ρi
j ∧ρ j−ρi

ar∧ρar,

dρar = −ρar
j ∧ρ j −ρar

bs∧ρbs,

imposing also skew-symmetry.

A standard computation using (3) and (4), leads to

(10)





ρi
j =−ρ j

i = σ∗{ωi
j +

1
2λ2RM

ar ji ωa
r }

ρi
ar =−ρar

i = σ∗{ 1
2λRM

ar ji θ j}

ρar
bs=−ρbs

ar = σ∗{δa
bωr

s+ δr
sωa

b}.

Equation (8) implies also that the natural projectionΓ : (Gp(TM), ds2
λ)→ (M,g) is a

Riemannian submersionwith totally geodesic fibres.

This property can be verified directly using (10). Indeed, let us denote by
{Ei ,Ear} the dual basis of the orthonormal coframe (9), so{Ear} is the basis of the
vertical distributionV tangent to the fibres and{Ei} the basis of the horizontal oneH.
We have:

(∇EbsEar,Ei) = ρi
ar(Ebs) = 0.

In the next sections the horizontal and the vertical component of a vector fieldX, tan-
gent toGp(TM), will be denoted respectively byXH andXV , so

X = XH +XV .
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Finally, with a suitable choice of the constants, each fibre of Gp(TM) is isometric to
Gp(m) endowed with the canonical metric (we refer the reader to [13, vol. II, p. 272]).
Indeed, if we consider

Gp(m) =
O(m)

H
, H = O(p)×O(m− p),

and the decomposition of the Lie algebra

o= h+m

with

m=

(
0 −XT

X 0

)
X ∈M(m− p, p,R),

one has thatAd(H)m⊂m. The scalar product onm obtained by restriction tom of the
inner product

(11) (A,B) =−1
2

λ2Tr(AB)

on o(m) defines a metricds̄2
λ on Gp(m), invariant under the left action ofO(m) on

Gp(m). The choice of the same arbitrary positive constantλ in (8) and (11) implies
that the isometry betweenRm andTxM, determined by an orthonormal frame inx∈M,
extends to an isometry from(Gp(m), ds̄2

λ ) to Gp(TxM) (the fibre of(Gp(TM), ds2
λ)

corresponding tox).

In particular, we have aRiemannian product:

(12) (Gp(TR
m), ds2

λ)
∼= Rm× (Gp(m), ds̄2

λ ).

Recall that byVilms’ Theorem[1, (9.59), p. 249],ds2
λ is the unique Riemannian metric

on Gp(TM) for which the projectionΓ : (Gp(TM), ds2
λ)→ (M,g) is a Riemannian

submersion with completely geodesic fibres isometric to(Gp(m), ds̄2
λ ) and a horizontal

distribution associated to the Levi-Civita connection.

REMARKS 1. The canonical map ofGp(TM) to Gm−p(TM) which associates
to eachp-plane inTxM the orthogonal(m− p)-plane is an isometry (with the same
choice of the constantλ). This follows from (8) exchanging the indicesa andr.

2. The unit tangent bundleT1M of M can be identified (see [17]) with

T1M =
O(M)

O(m−1)
.

Its metric is determined by (8) withp = 1 and coincides with the Sasaki metric if
we assumeλ = 1. Let us denote byG1(TM) the quotient ofT1M with respect to the
equivalence relation identifying opposite unit vectors.

3. ObviouslyM can be identified withGm(TM), and from (8) it follows that this
identification is an isometry.
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2. The curvature of a Grassmann bundle

We denote byρX = (ρi ,ρar) the forms belonging to the orthonormal coframe (9) of
Gp(TM), with EX = (Ei ,Ear) the dual basis and withρX

Y the forms associated to the
Levi-Civita connection ofGp(TM) determined by (10).

Starting from the structure equations

(13) dρX
Y +ρX

Z ∧ρZ
Y =

1
2

RG
XYZTρZ∧ρT

by an elementary computation one can determine the components of the curvature ten-
sorRG of Gp(TM):

RG
i jhk(π) = {RM

i jhk +
1
2λ2RM

ar jiR
M
arhk− 1

4λ2RM
arhiR

M
ark j +

1
4λ2RM

arkiR
M
arh j}(σ[π]),

RG
i jh(ar)(π) =

1
2λ{∇hRM

ar ji}(σ[π]),

RG
i j (ar)(bs)(π) = {RM

rs jiδab−RM
ab jiδrs+

1
4λ2RM

arkiR
M
bs jk− 1

4λ2RM
bskiR

M
ar jk}(σ[π]),

RG
i(ar)h(bs)(π) = {

1
2λRM

srhiδab− 1
2λRM

abhiδrs− 1
4λ2RM

bs jiR
M
arh j}(σ[π]),

RG
i(ar)(bs)(ct)(π) = 0,

RG
(ar)(bs)(ct)(du)(π) =

1
λ2{δabδcd(δrt δsu− δruδst)+ δrsδtu(δacδbd− δadδbc)}(σ[π]).

From these expressions we obtain the components of the Riccitensor RicG of Gp(TM):

RicG
ih(π) =

{
RicM

ih +
1
2

λ2RM
ar ji R

M
arh j

}
(σ[π]),(14)

RicG
i(ar)(π) = −1

2
λ∇ jR

M
jiar (σ[π]),(15)

RicG
(ar)(bs)(π) =

{
m−2

λ2 δabδrs+
1
4

λ2RM
ar ji R

M
bs ji

}
(σ[π]),(16)

where the notation(ar) etc. is used only to separate the indices.

From (15) follows that the horizontal and the vertical distribution are orthogonal
with respect to RicG and thusH is a Yang–Mills distribution (see [1, p. 243–244]) ifM
has harmonic curvature.

In the sequel, we shall assume thatM has constant sectional curvaturec, i.e.,

RM
i jhk = c(δihδ jk− δikδ jh),

and we will examine the conditions under whichGp(TM) is Einstein. From (14) and
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(16) follows that the non-zero components of the tensor RicG are:

RicG
st = {c(m−1)− 1

2λ2c2(m− p)}δst,

RicG
ab = {c(m−1)− 1

2λ2c2p}δab,

RicG
(ar)(bs) = {m−2

λ2 + 1
2λ2c2}δabδrs.

These last equations imply immediately thatGp(TM) is Einstein if and only if

m= 2p,(17)

c2λ4(p+1)−2cλ2(2p−1)+4p−4= 0.(18)

Equation (18) is consistent if and only ifp= 1 and eithercλ2 = 0 or cλ2 = 1. So we
have:

PROPOSITION1. If M is a Riemannian manifold with constant sectional cur-
vature, its Grassmann bundle Gp(TM) is Einstein if and only if M is a quotient of the
plane or the sphere S2 and p= 1.

On the other hand, it is well-known (see [12]) thatT1(S2), of which G1(S2) is
obviously a quotient, is isometric toRP3.

3. Sections of the Grassmann bundle

A distributionD of rankp onM determines a sectionφ of the Grassmann bundle

Gp(TM)
Γ−→M

in a natural way. It therefore appears reasonable to seek a relationship between geomet-
rical properties of the distributionD, and those of the mapφ between the Riemannian
manifolds(M,g) and(Gp(TM), ds2

λ).

Afterwards, we will determine the conditions under whichφ is harmonic.

Let us consider, as in Section 1, a sectionσ of the bundleO(M)
ψ−→ Gp(TM).

The distributionD determines a section

σ ·φ : M→O(M),

which means
(σ ·φ)(x) = (x, ē1, . . . , ēm)

where(ē1, . . . , ēm) is an orthonormal frame ofTxM in which the firstp elements belong
to Dx⊂ TxM.

In relation to the orthonormal coframe (9) ofGp(TM), we have

φ∗ρi = φ∗σ∗θi = ω̄i ,(19)

φ∗ρar = λφ∗σ∗ωa
r = λΓ̄a

jr ω̄ j .(20)
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(i = 1, . . . ,m, r = 1, . . . , p, a= p+1, . . . ,m), where(ω̄i) is the coframe dual to(ēi), and
Γ̄i

jk are the components of the Levi-Civita connection with respect to (ēi), i.e.,

Γ̄i
jk = (∇M

ēj
ēk, ēi).

From (19) and (20), it immediately follows that

φ∗(ds2
λ) = ∑(ω̄i)2+λ2∑(Γ̄a

jr ω̄ j)2.

Thusφ is an isometric immersion if and only if

Γ̄a
jr = 0,

or in other words∇M
X mapsD into D for all X ∈ TM. Then we set

ρX = (ρi ,ρar), φ∗(ρX) = aX
j ω̄ j

and (19) and (20) directly imply that

ai
j = δi

j , aar
j = λΓ̄a

jr .

We indicate the tension field ofφ by

τ(φ) = τi(φ)Ei + τar(φ)Ear,

with
τH(φ) = τi(φ)Ei , τV = τar(φ)Ear;

its components are determined following the method described in Appendix B, exploit-
ing in particular (10). A simple computation leads to

τi(φ) = λ2RM
ar ji Γ̄a

jr ,(21)

τar(φ) = λ{ēj(Γ̄a
jr )− Γ̄a

hrΓ̄
h
j j − Γ̄a

jsΓ̄s
jr + Γ̄a

jbΓ̄b
jr}.(22)

From these relations we observe that ifΓ̄a
jr = 0, i.e., ∇M

X D ⊆ D. The mapφ, being
isometric, is also harmonic and thus minimal.

The following section will give several examples of harmonic maps fromM into
Gp(TM) which are non-trivial in the sense that they correspond to distributions that are
not parallel. It is important to keep in mind:

PROPOSITION2. If the mapφ : M→Gp(TM) determines a harmonic distribu-
tion D, then the mapφ⊥ : M→ Gm−p(TM) determined by the distribution D⊥ is also
harmonic.

This result follows directly from (21) and (22) exchanging the role of the indicesa,b=
p+1, . . . ,m with r,s= 1, . . . , p.
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The conditionτar(φ) = 0 on its own characterizes thevertically harmonic dis-
tributionsstudied by C.M. Wood [25]. With a simple computation one can prove that
the vanishing of (22) is equivalent (see [25], Theorem 1.11)to

∇̄∗∇̄d⊥|D = 0 (= ∇̄∗∇̄d|D⊥),

whered andd⊥ are respectively the projections onD andD⊥, and∇̄ is the connection
determined over the vector bundlesD andD⊥ by the Levi-Civita connection onM, i.e.,

∇̄Xv=





d(∇M
X v) if v∈ D,

d⊥(∇M
X v) if v∈ D⊥.

4. Examples of distributions with harmonic map into the Grassmann bundle

Example 1. The sphere S3.

Consider the sphereS3 in R4 given by

x2
1+ x2

2+ x2
3+ x2

4 = 1,

and the orthonormal basis ofS3 formed by the vectors

e1 = (−x2,x1,x4,−x3), e2 = (−x3,−x4,x1,x2), e3 = (−x4,x3,−x2,x1).

Denoting by(ω1,ω2,ω3) the dual basis, and by(ωi
j) the matrix of the Levi-Civita

connection, we easily obtain

ω2
1 = ω3, ω3

1 =−ω2, ω3
2 = ω1,

exploiting mainly the fact that

[e1,e2] = 2e3, [e3,e1] = 2e2, [e2,e3] = 2e1.

Referring to (21) and (22), we have:

– the one-dimensional distributions determined bye1,e2,e3 respectively are (non-tri-
vial) harmonic sections ofG1(TS3);

– the two-dimensional distributions{e1,e2}, {e1,e3}, {e2,e3} determine harmonic sec-
tions ofG2(TS3), in accordance with Proposition 2.

As S3 can be identified with the groupSp(1) of unit quaternions, it is easy to prove that
e1,e2,e3 form a basis of left-invariant vector fields. The metric ofS3 is bi-invariant and
the Levi-Civita connection is given by

∇XY =
1
2
[X,Y],

whereX andY are left-invariant vector fields. Furthermore, it is easy toprove that every
unit left-invariant vector fieldu, and so the two-dimensional distribution orthogonal to
u, determines a harmonic section ofG1(TS3) and one ofG2(TS3).
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Example 2. The three-dimensional Heisenberg group.

Let us consider the Heisenberg group (we refer the reader to [23, p. 72–74] for
example), i.e., the subgroup ofGL(3,R) formed by the matrices

(23)




1 x y
0 1 z
0 0 1


 ,

endowed with the left-invariant metric

(24) g= dx2+dz2+(dy− xdz)2.

Considering the orthonormal coframe

(25) ω1 = dx, ω2 = dz, ω3 = dy− xdz

with dual frame

(26) e1 =
∂

∂X
, e2 =

∂
∂Z

+X
∂

∂Y
, e3 =

∂
∂Y

we easily obtain:
[e1,e2] = e3, [e2,e3] = [e3,e1] = 0.

The connection forms of the Levi-Civita connection are

ω2
1 =−

1
2

ω3, ω3
1 =−

1
2

ω2, ω3
2 =

1
2

ω1

and the non-vanishing components of the curvature tensor are

(27) R1212=−
3
4
, R1313= R2323=

1
4
.

Comparing with (21) and (22) we can prove that

– the one-dimensional distributions determined bye1,e2,e3 and their orthogonal com-
plements induce harmonic maps fromH to G1(TH) andG2(TH);

– (with some computations) the only left-invariant unit vector fields that determine
harmonic sections ofG1(TH) are±e3 and all the unit vectors of the plane{e1,e2} (a
situation quite different from the case ofS3).

Observe that{e1,e2} describes a contact distribution onH that has been extensively
studied for its remarkable geometric properties (we refer the reader to [15] and [20]).

Example 3. Three-dimensional unimodular Lie groups.

The groupsS3 andH are examples of three-dimensional unimodular Lie groups.
The classification of these groups has been provided by J. Milnor [16]. For such a group
G there exists a basis of left-invariant vector fields{e1,e2,e3} such that:

[e2,e3] = λ1e1, [e3,e1] = λ2e2, [e1,e2] = λ3e3.



438 A. Sanini

Considering onG a left-invariant metric with respect to which{e1,e2,e3} is an or-
thonormal basis and denoting by{ω1,ω3,ω3} the dual basis, it is easy to prove that the
Levi-Civita connection forms are

ω2
1 =

1
2(λ1+λ2−λ3)ω3,

ω3
1 =

1
2(−λ1+λ2−λ3)ω2,

ω3
2 =

1
2(λ2+λ3−λ1)ω1 .

Some computations determine the non-zero components of thecurvature tensor

Ri ji j =
1
4
{λ2

i +λ2
j −3λ2

k+2λiλk+2λ jλk−2λiλ j},

wherei 6= j 6= k assume the values 1,2,3.

Referring to (21) and (22), it is easy to prove thate1, e2, e3 (and the corresponding
orthogonal distributions) determine harmonic maps fromG to G1(TG) andG2(TG).

Example 4.Certainly the three-dimensional unimodular Lie groups do not exhaust the
examples of groups with left-invariant metrics admitting harmonic distributions.

This is the case of a four-dimensional group with orthonormal left-invariant
basise1, e3, e3, e4 such that

[e1,e3] = e4, [e1,e4] =−e3

and all other commutators vanishing. It is easy to prove thatthis group is flat (R= 0)
and the unique non-zero connection form isω4

3 = ω1. We can verify for example
that the two-dimensional distribution determined by{e1,e3} is a non-parallel harmonic
section ofG2(TG).

II. ISOMETRIC IMMERSIONS, MAPS BETWEEN GRASSMANN BUNDLES

5. The map induced by an isometry between Grassmann bundles

A Riemannian immersionf : M→ N induces in a natural way an immersion

F : Gp(TM)→Gp(TN)

which associates to eachp-plane tangent toM in a pointx its image inTf (x)N via the
differential of f . In the special case in whichp = m= dimM, F coincides with the
Gauss mapϒ : M→Gm(TN).

We can define onGp(TN) (with p≤ dimM) a metricds̃2
λ in a way that is com-

pletely analogous to the one described in Section 1 in the case ofGp(TM). The choice
for the metric onGp(TN) with the same constantλ as onGp(TM) corresponds to
rendering an isometry the inclusion of the fibre ofGp(TM) into the fibre ofGp(TN)
relative to the same pointx∈M. Recalling the discussion at the end of Section 1, this
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means that the immersion ofGp(m) into Gp(n) induced by the natural immersion of
Rm in Rn, namelyRm→ (Rm,O)⊂ Rn, is isometric.

Let us denote bỹθ = (θ̃A) and ω̃ = (ω̃A
B) the Rn-valued canonical form and

theo(n)-valued form associated to the Levi-Civita connection defined onO(N). Let σ̃
denote a section of the bundle

O(N)
ψ̃−→Gp(TN).

The Riemannian metricds̃2
λ onGp(TN) is determined by the orthonormal coframe

(28) ρ̃A = σ̃∗θ̃A, ρ̃ar = λσ̃∗ω̃a
r , ρ̃αr = λσ̃∗ω̃α

r .

The indices involved in the previous equations for the entire second part of the present
report will vary as follows:

A,B, . . .= 1, . . . ,n, i, j, . . . = 1, . . . ,m, r,s, . . . = 1, . . . , p,

a,b, . . .= p+1, . . . ,m, α,β, . . .= m+1, . . . ,n.

In analogy to equation (10), the Levi-Civita connection forms for (Gp(TN), ds̃2
λ) are

given by:

(29)





ρ̃A
B =−ρ̃B

A = σ̃∗(ω̃A
B+

1
2λ2RN

arBAω̃a
r +

1
2λ2RN

αrBAω̃α
r )

ρ̃A
ar =−ρ̃ar

A = σ̃∗(1
2λRN

arBAθ̃B)

ρ̃A
αr =−ρ̃αr

A = σ̃∗(1
2λRN

αrBAθ̃B)

ρ̃ar
bs=−ρ̃bs

ar = σ̃∗(δa
bω̃r

s+ δr
sω̃a

b)

ρ̃ar
βs =−ρ̃βs

ar = σ̃∗(δr
sω̃a

β)

ρ̃αr
βs =−ρ̃βs

αr = σ̃∗(δα
β ω̃r

s+ δr
sω̃α

β).

Since we wish to explore the geometrical implications of an Riemannian immersion
f : M → N, we need to exploit the bundle of Darboux framesO(N,M) along f (for
more details see Appendix A).
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It will be helpful to keep in mind the following diagram:

Here,η = ψ◦s is the submersion which associates to each adapted orthonormal frame
u= (x,u1, . . . ,up,up+1, . . . ,um,um+1, . . . ,un) the subspace[u1, . . . ,up]⊂ TxM.

Let χ be a local section of the bundle

O(N,M)
η−→Gp(TM)

defined on an open subsetU of Gp(TM); it determines a local sectionσ of

O(M)
ψ−→Gp(TM)

such that

(30) σ = s◦χ;

let thenσ̃ denote a local section ofO(N)
ψ̃−→Gp(TN) such that

(31) σ̃◦F = k◦χ.

Consider
ρ̃Σ = (ρ̃A, ρ̃ar, ρ̃αr), ρX = (ρi ,ρar),

the 1-forms corresponding to the orthonormal coframes ofGp(TN) andGp(TM) as in
(28) and (9), and set

(32) F∗ρ̃Σ = aΣ
XρX.

In the sequel we will denote bȳθA andω̄A
B the forms induced onO(N,M) by the forms

θ̃A andω̃A
B defined onO(N) via the injectionk, i.e.,

(33) θ̄A = k∗θ̃A, ω̄A
B = k∗ω̃A

B.

Using equation (31) we obtain for example

χ∗θ̄i = χ∗k∗θ̃i = F∗σ̃∗θ̃i = F∗ρ̃i ,
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and from (30) we obtain
χ∗θ̄i = χ∗s∗θi = σ∗θi = ρi ,

which implies
F∗ρ̃i = ρi .

Analogously

F∗ρ̃α = 0, F∗ρ̃ar = ρar, F∗ρ̃αr = λχ∗(hα
r j θ̄ j) = λ(χ∗hα

r j ρ j),

where the functions

(34) χ∗hα
r j = hα

r j ·χ

evaluated on an element[π] ∈Gp(TM), are the components of the second fundamental
form of the immersionf with respect to the adapted frameχ([π]).

It follows that the coefficientsaΣ
X in (32) are given by

(35)





ai
j = δi

j , ai
ar = 0

aα
j = 0, aα

ar = 0

aar
j , aar

bs= δa
bδr

s

aαr
j = λχ∗(hα

r j ), aαr
bs = 0.

Equations (35) imply that

(36) F∗ds̃2
λ = ∑(ρi)2+∑(ρar)2+λ2(∑hα

ri h
α
r j ·χ)ρiρ j .

Since the metric onGp(TM) is given by

(37) ds2
λ = ∑(ρi)2+∑(ρar)2,

the mapF is anisometric immersionof (Gp(TM), ds2
λ) in (Gp(TN), ds̃2

λ) if and only
if f is totally geodesic(i.e.,h= 0).

Furthermore, ifp < m, the forms (36) and (37) are proportional if and only if
they coincide and this occurs only in the caseh= 0.

If p= m, from (36) and (37) (in which the formsρar do not appear any more)
occurs that thatF = ϒ is conformalif and only if there exists a functionℓ on M such
that

m

∑
k=1

hα
ikkα

jk = ℓ2δi j

so, setting

(38) L(X,Y) =
m

∑
k=1

(h(uk,X),h(uk,Y)), X,Y ∈ TM,

we have

(39) L(X,Y) = ℓ2g(X,Y).
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Observe that equation (39) is independent from the frame andequivalent to:

(40) L(X,Y) = 0, X⊥Y.

Keeping in mind the Gauss equations (see (100)) we obtain

(41) RN(uk,ui ,uk,u j) = RicM(ui ,u j)+L(ui,u j)−mH·h(ui,u j).

The bilinear formQ̃λ associated toϒ∗ds̃2
λ is therefore given by:

(42) Q̃λ(X,Y) = (X,Y)+λ2{mH·h(X,Y)−RicM(X,Y)+RN(uk,X,uk,Y)},

with X,Y ∈ TM.

Equation (42), and the conditions implying that the Gauss map ϒ is conformal,
are developed in the article of Jensen–Rigoli that we have already cited and also in
[24]. Hence we get an extension of the results obtained by Obata in [18] expressed by

THEOREM 4 (Obata).Assume that N has constant sectional curvature and

1. ϒ is conformal,

2. M is Einstein,

3. M is pseudo-umbilical, i.e., h(X,Y) ·H = h(X,Y)|H|2;

then two of the above conditions imply the third.

In the case in whichM is a surface inR3 (and thus RicM(X,Y) = Kg(X,Y) whereK is
the Gaussian curvature) we obtain the classical result, as observed in the Introduction
of this report:

The Gauss map M→ S2 is conformal if either M is a minimal surface, or M
is contained in a sphere. In fact, these conditions are equivalent to being pseudo-
umbilical in the case of surfaces inR3.

6. Tension field of the map induced between Grassmann bundles

For the computation of the tension field ofF , we exploit the method described in
Appendix B, and we set

DaΣ
X ≡ daΣ

X−aΣ
YρY

X +aΩ
XF∗ρ̃Σ

Ω = aΣ
XYρY,

whereaΣ
X, ρY

X and ρ̃Σ
Ω are given by (35), (10) and (29), respectively. Recalling (10),

(30), (33), we obtain

(43)





ρi
j = χ∗

{
ω̄i

j +
1
2λ2RM

ar ji ω̄a
r

}

ρi
ar = χ∗

{
1
2λRM

ar ji θ̄ j
}

ρar
bs= χ∗

{
δa

bω̄r
s+ δr

sω̄a
b

}
.
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Then (29), (31), (33) imply

(44)






F∗ρ̃A
B = χ∗{ω̄A

B+
1
2λ2RN

arBAω̄a
r +

1
2λ2RN

αrBAω̄α
r }

F∗ρ̃A
ar = χ∗{ 1

2λRN
ar jAθ̄ j}

F∗ρ̃A
αr = χ∗{ 1

2λRN
αr jA θ̄ j}

F∗ρ̃ar
bs= χ∗{δa

bω̄r
s+ δr

sω̄a
b}

F∗ρ̃ar
βs = χ∗{δr

sω̄α
β}

F∗ρ̃αr
βs = χ∗{δr

sω̄α
β + δα

βω̄r
s}.

The components of the tension fieldτ(F) with respect to the orthonormal basis
ẼΣ = {Ẽi, Ẽα, ẼarẼαr} dual of the basis (28) ofGp(TN) are given by

τΣ(F) = aΣ
XX

and so, using equations (35), (43) and (44) we get

τi(F) = λ2χ∗(RN
αr ji h

α
r j )(45)

τα(F) = χ∗(hα
j j +λ2RN

βr j αhβ
r j )(46)

τar(F) = −λχ∗(hα
r j h

α
a j)(47)

ταr(F) = (hα
r j j ).(48)

The computations leading to the previous equations are simple except for case (48),
which we display explicitly:

(49)

Daαr
j = daαr

j −aαr
i ρi

j +ai
jF
∗ρ̃αr

i +aβs
j F∗ρ̃αr

βs

= λχ∗(dhα
r j )−λχ∗(hα

ri )χ∗(ω̄i
j +

1
2λ2RM

ar ji ω̄a
r )− 1

2λχ∗(RN
αrk j θ̄

k)

+λχ∗(hβ
s j)χ∗(δr

sω̄α
β + δα

βω̄r
s)

= aαr
jk ρk+aαr

j(bs)ρbs.

(50)

Daαr
bs = daαr

bs−aαr
j ρ j

bs+act
bsF
∗ρ̃αr

ct

= −λχ∗(hα
r j )χ∗(

1
2λRM

bsk jθ̄
k)+χ∗(δr

sh
α
bkθ̄

k)

= aαr
(bs)kρk+aαr

(bs)(ct)ρ
ct.

From (50), we obtain

aαr
(bs)(ct) = 0, aαr

(bs)k = χ∗(hα
bkδ

r
s−

1
2

λ2RM
bsk jh

α
r j ).
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Since
aαr
(bs)k = aαr

k(bs),

substituting in (49) yields

λχ∗(dhα
r j )−λχ∗(hα

ri ω̄i
j)− 1

2λχ∗(RN
αrk j θ̄

k)+λχ∗(hβ
r j ω̄α

β −hα
s jω̄s

r)

= aαr
jk χ∗(θ̄k)+χ∗(hα

β j)δ
r
sχ∗(λω̄b

s),

from which we get

aαr
jk χ∗(θ̄k) = λχ∗

{
dhα

r j −hα
ri ω̄

i
j −hα

i j ω̄
i
r +hβ

r j ω̄
α
β −

1
2

RN
αrk j θ̄

k
}
.

From equation (103), it follows that

aαr
jk = λχ∗

{
hα

r jk −
1
2

RN
αrk j θ̄

k
}
,

taking the trace of which we obtain equation (48).

With particular attention to (109), we also have

(51) ταr(F) = λχ∗(m∇⊥r Hα−RN
jr j α).

The vanishing of all the components ofτ(F) corresponds to the fact thatF is har-
monic. On the other hand, the vanishing ofτar(F) andταr(F) is equivalent to beingF
vertically harmonic.

We postpone the analysis of these conditions in the relevantcase in whichN has
constant sectional curvature to the following section. Here we provide an example of a
Gauss map (p= m) which highlights the role of the curvature ofN.

From equations (44) – (48) it follows naturally that, ifM is a totally geodesic
submanifold ofN, the mapF is harmonic irrespective of the curvature ofN. For this
reason, we will not consider this trivial case in the sequel.

Example.

In the three-dimensional Heisenberg groupG (recall Section 4,2), we consider
the isometrically immersed surface defined by the equationy= 0. In other words, this
is the submanifold consisting of matrices of the type




1 x 0
0 1 z
0 0 1


=




1 0 0
0 1 z
0 0 1






1 x 0
0 1 0
0 0 1


 ,

which is therefore generated by the product of two one-parameter subgroups ofH.

We will show thatS is aminimal surfacein H whoseGauss mapϒ is conformal
but neither harmonic nor vertically harmonic.
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Adopting the same notation as in Section 4, we consider the orthonormal basis
u= {u1,u2,u3} of H defined as

u1 = e1, u2 =
1√

1+ x2
(e2− xe3), u3 =

1√
1+ x2

(xe2+e3).

It is easy to prove that the restrictionu|S yields a Darboux frame withu3 unit normal
vector.

Denoting byh the second quadratic form ofS in H, we get

h(u1,u1) ·u3 = 0, h(u1,u2) ·u3 =
x2−1

2(x2+1)
, h(u2,u2) ·u3 = 0,

which implies thatS is a minimal surfacenot totally geodesic ofH.

The components of the curvature tensorR with respect to the frameu are

R1212=
x2−3

4(x2+1)
, R1213=−

x
1+ x2 , R1223= 0,

R1313=
1−3x2

4(1+ x2)
, R1323= 0, R2323=

1
4
,

whereR1212= R(u1,u2,u1,u2) etc. Bearing in mind (45), (46) and (48), for the tension
field of the Gauss map ofS in G2(TH) we have

τ1(ϒ) = λ2 x(1− x2)

2(1+ x2)2 , τ2(ϒ) = 0, τ3(ϒ) = 0,

τ3,1(ϒ) = 0, τ3,2(ϒ) = λ
x

1+ x2 ,

which implies thatϒ is neither harmonic nor vertically harmonic.

7. Harmonicity of the map between Grassmann bundles

We examine the different cases that can occur for the harmonicity of the map

F : (Gp(TM), ds2
λ)→Gp(TN), ds̄2

λ )

induced by a Riemannian immersionf of M in N. We will distinguish the casep< m
from p= m, and we will discuss with particular attention the case of constant sectional
curvature onN.

Case 1. p< m= dimM.

The vanishing of the componentsτar(F) given in (47) corresponds to the fact
that, for each couple of orthogonal vectorsX,Y tangent toM, we have

(52) L(X,Y) = ∑h(u j ,X) ·h(u j ,Y) = 0, (X ⊥Y) .
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This condition is equivalent (via (40)) to the fact that the Gauss mapϒ : M→Gp(TN)
is harmonic.

Suppose thatN has constant sectional curvaturec, and let us distinguish further
the casec= 0 fromc 6= 0.

Subcase 1.1. p< m, RN = 0.

We still obtainτi(F) = 0; the conditionτα(F) = 0 is equivalent toH = 0, i.e.,
that f is a minimal immersion. Under such hypothesis we have alsoτar = 0. Observe
that if H = 0 andRN = 0, equation (41) implies that

(53) RicM =−L

and for this reason the conditionτar = 0 can be expressed by one of the following
equivalent conditions:

– M is Einstein;

– the Gauss mapϒ : M→Gm(TN) is conformal (and thus recalling (53), homothetic).

This fact motivates the following:

PROPOSITION3. If N is a flat space, the map F: Gp(TM)→ Gp(TN) with
p< dimM is harmonic if and only if the following conditions are satisfied:

– f is a minimal immersion;

– M is Einstein or (equivalently) the Gauss mapϒ : M→ Gm(TN) is con-
formal (homothetic ifdimM > 2).

Under the same hypothesis, F is vertically conformal if and only if

– the mean curvature vector is parallel;

– the Gauss map is conformal.

Subcase 1.2. p< m, N has constant sectional curvaturec 6= 0.

In this case the conditionτi(F) = 0 is still identically satisfied, but we have

τα(F) = mHα− cλ2
p

∑
r=1

hα
rr .

For this reason, the conditionτα = 0 is satisfied (independently of the choice of frame)
if and only if for each vectorX tangent toM we have that

h(X,X) =
m

cpλ2H.

Thus

λ2 =
m
pc

(54)

h(X,X) = H, ∀X, |X|= 1,(55)
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conditions leading toc> 0 and then

(56) h(X,Y) = g(X,Y)H, X,Y ∈ TM.

Equation (56) means thatM should be atotally umbilical submanifoldof N. The con-
ditionsτar(F) = 0 andταr(F) = 0 are then identically satisfied (indeedM has constant
curvature and∇⊥X H = 0, see for example [3, p. 50–51]).

Obviously a choice ofλ different from (54) implies thatF is harmonic only if
h= 0, which means thatM is a totally geodesic submanifold ofN.

In conclusion,

PROPOSITION4. If N is a manifold with constant positive sectional curvature,
the map F: Gp(TM)→Gp(TN) (with p< dimM) is harmonic if either M is a totally
geodesic submanifold of N, or the following conditions hold:

– M is a totally umbilical submanifold of N;

– the choice of the constantλ for the metric of Gp(TN) is the same as in(54).

As in the case in whichN is flat, the map F is vertically conformal if and only if:

– the Gauss map is conformal;

– the mean curvature vector H is parallel.

REMARK 1. The results we have obtained are substantially independent of the
rank p < dimM of the Grassmannian bundles (except for the choice of the constant
λ according to equation (54)). In this way we obtain results completely analogous to
those proved in [22] for the case of unit tangent bundles.

Case 2. p= mand thusF = ϒ.

In such a case, there is no componentτar(F). Assuming thatN has constant
sectional curvature, we distinguish the following subcases:

Subcase 2.1. p= m, RN = 0.

We get alwaysτi(F) = 0 andτα(F) = 0 only if M is minimal, from which
follows alsoταr(F) = 0. From these considerations we deduce

PROPOSITION5. If N is flat, the Gauss mapϒ : M→ Gm(TN) is harmonic if
and only if M is a minimal submanifold of N.

REMARK 2. If N = Rn it turns out that

(Gm(TN,ds̃2
λ))
∼= Rn× (Gm(n), ds̄2

λ ),

(recall from Section 1), whereF = ϒ = ( f , ϒ̄) andϒ̄ : M→ Gm(n) is the generalized
Gauss map. Thevertical harmonicity ofϒ coincides with the harmonicity of̄ϒ and
may be expressed (recall (48)) by the condition∇⊥H = 0. In such a way we recover
the result of Ruh–Vilms presented in [21].
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Subcase 2.2. p= m, N has constant sectional curvaturec 6= 0.

The conditionτi(F) = 0 is always satisfied, and (46) implies that

τα(F) = m(1−λ2c)Hα

so eitherH = 0 and consequentlyταr = 0, or

(57) λ2 =
1
c
, ∇⊥H = 0.

In conclusion,

PROPOSITION 6. If N has non-zero constant sectional curvature, the Gauss
mapϒ : M→Gm(TN) is harmonic if one of the following conditions holds:

– M is a minimal submanifold of N;

– M has parallel mean curvature vector, N has positive curvature c and the
metric of Gm(TN) is obtained by settingλ2 = 1/c.

Furthermoreϒ is vertically harmonic if the mean curvature vector is parallel.

REMARK 3. WhenN is a sphereSn(r) (and soc = 1/r2), besides the Gauss
mapϒ : M→Gm(TSn(r)), T. Ishihara in [10] and M. Obata in [18] analyse other types
of Gauss mappings related to the immersion of ofSn(r) in Rn+1. We can therefore
consider the following mappings:

(i) ϒ1 : M→Gm(n+1),

which associates to each pointx∈M them-dimensional subspace ofRn parallel to the
tangent space ofTxM;

(ii) ϒ2 : M→Gm+1(n+1),

which associates tox∈M the subspace ofRn+1 singled out by the space tangent toM
and the unit vectorX/r; this is exactly the Gauss map introduced by Obata.

Regarding the harmonicity of these maps we have

(i)′ ϒ1 is harmonic if and only if the mean curvature vectorH∗ of M in Rn+1 is parallel,
in accordance with the Ruh–Vilms Theorem. Since the mean curvatureH of M in Sn(r)
is determined by:

H = H∗+
x
r2 ,

H∗ parallel is equivalent toH parallel and thusϒ1 harmonic is equivalent toϒ verti-
cally harmonic.

(ii) ′ The mapϒ2 is harmonic if and only ifM is a minimal submanifold ofSn(r) (see
Theorem 4.8 in [10] where theϒ1 is denoted byg3). In conclusion,ϒ2 harmonic
implies thatϒ is harmonic.
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III. THE SPHERICAL GAUSS MAP

A Riemannian immersionf : M→ N induces a mapν : T⊥1 M→ T1N between the unit
normal bundle ofM and the unit tangent bundle ofN, defined by

ν(x,v) = ( f (x),v).

Jensen and Rigoli (see [11]) examine in particular the conditions under whichν is har-
monic, exploiting a method analogous to the one adopted in [22] for the map induced
by f on the unit tangent bundles.

In this part of the report, the analysis of the harmonic properties ofν will be de-
veloped using therepère mobile(moving frame) method that we have already adopted
in the previous sections.

If N = Rn, thenT1N ∼= Rn×Sn−1 and the map fromT⊥1 M to Sn−1 coincides
with the map defined by Chern–Lashof in [6] for the study of thetotal curvature.

8. Riemannian structure of the normal unit bundle of a submanifold

Our aim is to examine the spherical Gauss mapν : T⊥1 M→ T1N,

(58) ν(x,v) = ( f (x),v),

induced by the isometric immersionf of an m-dimensional submanifoldM in an n-
dimensional manifoldN, so first of all we specify the metrics onT⊥1 M andT1N.

Since

T1N =
O(N)

O(n−1)
,

its metric is the one already introduced in Section 5 forGp(TN) with p= 1, which we
re-propose with a slight variation of the notation.

Let ψn : O(N)→ T1N denote the canonical submersion

(59) ψn(y,u1, . . . ,un) = (y,un),

and define onT1N the metricds̃2
λ so that

(60) ψ∗ns̃2
λ = ∑(θ̃A)2+λ2∑(ω̃a

n)
2,

whereA= 1, . . . ,n, a= 1, . . . ,n−1, and(θ̃A), (ω̃A
B) denote as usual the canonical form

and the Levi-Civita connection form onO(N).

Given a local sectioñσ of the bundleO(N)
ψn−→ T1N, the 1-forms

(61) ρA = σ̃∗θ̃A, ρ̃an = λσ̃∗ω̃a
n
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give an orthonormal coframe ofT1N. The forms associated to the Levi-Civita connec-
tion of (T1N,ds̃2

λ) computed with respect to this coframe are:

(62)





ρ̃A
B =−ρ̃B

A = σ̃∗{ω̃A
B+

1
2λ2RN

anBAω̃
a
n}

ρ̃A
an =−ρ̃an

A = σ̃∗{ 1
2λRN

anBAθ̃
B}

ρ̃an
bn =−ρ̃bn

an= σ̃∗(ω̃a
b) .

To determine the metric onT⊥1 M, we consider the submersionπn of the bundle of
Darboux framesO(N,M) onT⊥1 M defined by

(63) πn(x,u1, . . . ,um,um+1, . . . ,un) = (x,un) .

Observe that the fibres ofπn are diffeomorphic toO(m)×O(n−m−1) immersed in
O(n) as follows:

(64) (a′,a′′) 7→ a=




a′ 0 0
0 a′′ 0
0 0 1



, a′ = (ai
k)∈O(m), a′′ = (aα

β)∈O(n−m−1),

with i,k= 1, . . . ,m andα,β = m+1, . . . ,n−1.

Therefore

T⊥1 M =
O(N,M)

O(m)×O(n−m−1)
.

Denoting byκ the canonical immersionO(N,M)→O(N) and setting

θ̄A = κ∗θ̃A, ω̄A
B = κ∗ω̃A

B,

we consider onO(N,M) the quadratic form

(65) Q̄= ∑(θ̄i)2+λ2∑(ω̄α
n)

2.

For eacha∈O(m)×O(n−m) of type (64), we have

(66) Ra ·κ = κ ·Ra.

If a is of the form specified by (64) then

R∗aθ̄i = (a−1)i
kθ̄k, R∗aω̄α

n = (a−1)α
β ω̄β

n,

and hence

(i) Q̄ is invariant under the right action ofO(m)×O(n−m−1) onO(N,M).

(ii) Q̄ is a semidefinite positive form onO(N,M) of rank equal ton−1, the dimension
of T⊥1 M.

(iii) The bilinear form associated tōQ annihilates the vertical vector fields of the sub-
mersionπn.
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For this reason, there exists unique Riemannian metricds2
λ onT⊥1 M such that

π∗nds2
λ = Q̄,

and this is the metric onT⊥1 M that we will refer to in the sequel of the section. Given

a local sectionχ of O(N,M)
πn−→ T1M, i.e.,

χ(x,v) = (x,u1, . . . ,um,um+1, . . . ,un−1,v),

the 1-forms

(67) ρi = χ∗θ̄i , ραn = λχ∗ω̄α
n

constitute an orthonormal basis ofT⊥1 M. Since we have

(68) ω̄α
i = κ∗ω̃α

i = hα
i j θ̄

j , ω̄n
i = hn

i j θ̄
j ,

a standard computation leads to the following expression ofthe Levi-Civita connection
forms on(T⊥M,ds2

λ) with respect to the orthonormal frame (67):

(69)






ρi
j =−ρ j

i = χ∗{ω̄i
j +

1
2λ2(RN

αn ji +hα
k jh

n
ki−hα

kih
n
k j)ω̄

α
n}

ρi
αn =−ραn

i = 1
2λχ∗{(RN

αn ji +hα
k jh

n
ki−hα

kih
n
k j)θ̄

j}

ραn
βn =−ρβn

αn = χ∗(ω̄α
β).

Also, considering the normal curvature tensorR⊥, and referring to (101),

(70)





ρi
j =−ρ j

i = χ∗{ω̄i
j +

1
2λ2R⊥αn jiω̄α

n}

ρi
αn =−ραn

i = χ∗{ 1
2λR⊥αn jiθ̄ j}

ραn
βn =−ρβn

αn = χ∗(ω̄α
β).

REMARK 4. If M is a hypersurface ofN, equations (67) imply directly thatT1M
is isometric toM.

9. The tension field of the spherical Gauss map

Assume that the sectioñσ of O(N)
ψn−→ T1N is chosen in a way that

(71) σ̃◦ν = κ◦ν

and so we are in the situation described by the following diagram:
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O(N,M)
κ−→ O(N)

πn

y
xχ σ̃

x
yψn

T⊥1 M
ν−→ T1N

y
y

M
f−→ N.

Considering (71), the orthonormal coframes ofT1N andT⊥M defined by (61) and (67)
satisfy

(72)

ν∗ρ̃i = ρi , ν∗ρ̃α = 0, ν∗ρ̃n = 0,

ν∗ρ̃in =−λχ∗ω̄n
i = λχ∗(hn

i j )ρ j ,

ν∗ρ̃i = λχ∗ω̄α
n = ραn.

In other words, denoting the coframes ofT1N andT⊥M by ρ̃Σ = (ρ̃i , ρ̃α, ρ̃n, ρ̃in, ρ̃αn)
andρX = (ρi ,ραn), we set

(73) ν∗ρ̃Σ = aΣ
XρX.

It follows that

(74)






ai
j = δi

j , ai
αn = 0

aα
j = 0, aα

βn = 0

an
j = 0, an

αn = 0

ain
j =−λχ∗(hn

i j ), ain
αn = 0

aαn
j = 0 ain

αn = δα
β .

From the above relations, we deduce that

(75) ν∗ds̃2
λ = ∑(ρi)2+∑(ραn)2+λ2∑(hn

i j h
n
ik ·χ)ρ jρk.

Sinceds2
λ = ∑(ρi)2+∑(ραn)2 is the metric onT⊥1 M, it follows that:

(i) ν is an isometry only ifh= 0, i.e.,M is a totally geodesic submanifold ofN;

(ii) if dim N− dimM ≥ 2 and if h 6= 0 the metricν∗ds̃2
λ cannot be conformal or in

particular homothetic tods2
λ;

(iii) if M is a hypersurface (in such a case we should not consider the formsραn) the
metricsν∗ds̃2

λ andds2
λ are mutually conformal if and only if onM there exists a function

ℓ such that

(76) hn
i j h

n
ik = ℓ2δ jk,
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which is the same condition as (39).

Equation (76) is equivalent to asserting that the absolute values of the principal
curvatures ofM are equal. This can be easily proved using an orthonormal frame onM
diagonalising the matrix(hn

i j ).

The tension field of the mapν is determined as usual following the method
described in Appendix B, by setting

(77) DaΣ
X ≡ daΣ

X−aΣ
YρY

X +aΩ
Xν∗(ρ̃Σ

Ω) = aΣ
XYρY.

Thus

(78) τΣ(ν) = aΣ
XX,

where the coefficientsaΣ
X are given by (74),ρY

X are the coefficients of the Levi-Civita
connection onT⊥M (see (69)) and the formsν∗(ρ̃Σ

Ω) can be computed starting from
(62) and using (71), (72).

Simple computations lead to

τi(ν) =−λ2χ∗(RN
kn jih

n
k j)(79)

τα(ν) = χ∗(hα
j j −λ2RN

in jαhn
i j )(80)

τn(ν) = χ∗(hn
j j −λ2RN

in jnhn
i j )(81)

τin(ν) =−λχ∗(hn
i j j ) =−λχ∗(m∇⊥i Hn−RN

ji jn )(82)

ταn(ν) =−λχ∗(hn
i j h

α
i j ).(83)

The computation of the components ofτ(ν) is simple. The only slightly more compli-
cated case is (82), which is treated in a manner analogous to (48).

10. Harmonicity of the spherical Gauss map

We now examine the conditions under which the spherical Gauss mapν is harmonic,
devoting particular attention to the case in whichN has constant sectional curvature.

With the intention of interpreting the vanishing of the componentsταn(ν) given
by (83) (which makes sense only ifn−m≥ 2), we consider for each elementv∈ T⊥M
the symmetric 2-form

hv = h ·v,
or better

(84) hv(X,Y) = h(X,Y) ·v.

We then obtainταn(ν) = 0 if and only if

(85) hv ·hw = ∑hv(ui ,u j) ·hw(ui ,u j) = 0, ∀v,w∈ T⊥1 M, v⊥w,
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for any orthonormal frame{ui} on M. There should therefore exist a functionµ on M
such that

(86) hv ·hw = µ2(v,w), ∀v,w∈ T⊥1 M,

which implies in particular that

‖h‖2 = ∑hvα ·hvα = (n−m)µ2,

where{vα} is an orthonormal basis ofT⊥1 M. In the language introduced in [11], equa-
tion (86) means thatthe second fundamental form is conformal.

Assuming thatN has constant sectional curvaturec, then the tangential compo-
nentτi(ν) always vanishes, while

(87) τα(ν) = mHα, τn(ν) = m(1−λ2c)Hn,

so both these expressions should be zero in order forν to be harmonic. For this reason
if n−m≥ 2, thenH = 0, from which it follows thatταn(ν) = 0. In conclusion:

PROPOSITION7. Let N be a manifold with constant sectional curvature. The
spherical Gauss mapν : T⊥1 M→ T1N induced by the isometric immersion f of M in
N, withdimN−dimM ≥ 2, is harmonic if and only the following conditions hold:

1. f is minimal;

2. the second fundamental form is conformal.

Example.

If M is a minimal surface inN, with dimN≥ 4, an orthonormal frame ofM can
be chosen in a way thathα

i j = 0 for α > 4. The minimality conditions reduce to

h3
11+h3

22= 0, h4
11+h4

22= 0,

and with a suitable choice of an orthonormal basis ofM we can assumeh3
12 = 0. The

condition that the second fundamental form is conformal leads to

h4
11 = h4

22 = 0, (h3
11)

2 = (h4
12)

2.

This implies thatM should be aminimal isotropic surface, i.e., |h(X,X)| = constant
for |X|= 1.

Otherwise, ifM is ahypersurfaceinside the manifoldN with constant curvature
c, the components ofτ(ν) are determined by (79), (81) and (82). The components not
identically zero are:

τ(ν) = m(1−λ2c)Hn, τin(ν) =−λm∇⊥i Hn,

and so the spherical Gauss mapν is harmonic if and only if

(88) (1−λ2c)H = 0, ∇⊥i H = 0.

We conclude that:
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1. eitherN is flat andM is a minimal hypersurface; or

2. N is not flat,

c> 0, λ2 =
1
c
, ∇⊥i H = 0,

and soM is a hypersurface with mean curvature vector with constant norm, a condition
equivalent in such a case to∇⊥i H = 0.

REMARK 5. The spherical Gauss mapν associated to the Riemannian submer-
sionT1N→N, is calledvertically harmonicif the vertical component ofτ(ν) vanishes,
i.e.,

τin(ν) = 0, ταn(ν) = 0.

Equations (82) and (83) imply therefore that under the hypothesis thatN has constant
sectional curvature,ν is vertically harmonic if the following conditions are satisfied:

1. the mean curvature vector is parallel;

2. the second fundamental form is conformal.

If M is a hypersurface, the only condition is|H|= constant.

Appendix A. Darboux frames

Consider a Riemannian immersionf of anm-dimensional manifoldM in ann-dimen-
sional manifoldN. We denote byO(M) andO(N) the principal bundles of orthonormal
frames onM andN, with structure groupsO(m), O(n).

We denote byθ = (θi) andω = (ωi
j) (i, j = 1, . . . ,m) the canonicalRm-valued

form onO(M) and theo(m)-valued form associated to the Levi-Civita connection on
M respectively. Theñθ = (θ̃i) andω̃ = (ω̃i

j), (A,B = 1, . . . ,n) denote the analogous
forms onO(N). Hence,

dθi =−ωi
j ∧θ j (ωi

j +ω j
i = 0),(89)

dωi
j =−ωi

k∧ωk
j +

1
2RM

i jhkθhθk.(90)

Given an orthonormal frameu= (x,u1, . . . ,um) of O(M), we have

(91) RM
i jhk(u) = RM(ui ,u j ,uh,uk) = ((∇M

[ui ,u j ]
−∇M

ui
∇M

u j
+∇M

u j
∇M

ui
)uh,uk).

Similarly,

dθ̃A =−ω̃A
B∧ θ̃B, (ω̃A

B+ ω̃B
A = 0),(92)

dω̃A
B =−ω̃A

C∧ ω̃B
C+ 1

2RN
ABCDθ̃C∧ θ̃D.(93)

IdentifyingM with its imagef (M) in N, the bundle of Darboux framesO(N,M) along
f is the bundle onM defined as follows. An element

u= (x,u1, . . . ,um,um+1, . . . ,un), x= δ(u),
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of O(N,M) (whereδ is the canonical projection ofO(N,M) onM) is such that

u′ = (x,u1, . . .um), u′′ = (x,um+1, . . . ,un)

are orthonormal frames of respectivelyTxM andTxM⊥ (the subspace ofTxN orthogonal
to TxM with respect to the metric ofTxN).

The structure groupO(m)×O(n−m) of O(N,M) is naturally immersed inO(n)
as follows:

(a′,a′′) ∈O(m)×O(n−m) 7→
(

a′ 0
0 a′′

)
∈ O(n).

Let s : O(N,M) → O(M) and κ : O(N,M) → O(N) denote the submersion and the
natural immersion defined by the diagram

O(M)
s←− O(N,M)

κ−→ N
yπ

yδ
yπ̃

M ←− M = f (M) −→ N

Observe that (we refer the reader to [13, vol. II, p. 3–4]):

κ∗θ̃i = s∗θi = θ̄i , i = 1, . . . ,m,(94)

κ∗θ̃α = 0, α = m+1, . . . ,n.(95)

If we set
κ∗(ω̃A

B) = ω̄A
B,

then differentiating (94), we obtain

ω̄i
j = κ∗ω̃i

j = s∗ωi
j .

The forms(ω′,ω′′) = (ω̄i
j , ω̄α

β), representing theo(m) and theo(n−m) components of
κ∗ω̃, define a connection onO(N,M). Given a local sectionχ of

O(N,M)
δ→M,

i.e., a local field of frames

(96) χ(x) = (x,e1, . . . ,em,em+1, . . . ,en)

adapted along the immersionf , it obviously follows that

(χ∗ω̄i
j)(X) = (∇N

Xej ,ei) = (∇M
X ej ,ei)

(χ∗ω̄α
β)(X) = (∇N

Xeβ,eα) = (∇⊥X eβ,eα),

where∇⊥ is the connection onT⊥M singled out byω′′ = (ω̄α
β).
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Differentiating equation (95) we have

0= κ∗(dθ̃α) =−κ∗ω̃α
i ∧κ∗θ̃i = ω̄α

i ∧ θ̄i ,

from whichCartan’s Lemmaimplies that

ω̄α
i = hα

i j θ̄
j , hα

i j = hα
ji ,

wherehα
i j are the components of the second fundamental formh of the immersionf of

M in N, i.e.,
hα

i j (u) = (∇N
ui

u j ,uα).

Differentiating the equations

κ∗ω̃i
j = ω̄i

j(97)

κ∗ω̃α
β = ω̄α

β(98)

κ∗ω̃α
i = hα

i j θ̄
j ,(99)

we obtain theequations of Gauss, Ricci, Codazzi. Indeed

κ∗dω̃i
j = κ∗(−ω̃i

k∧ ω̃k
j − ω̃i

α∧ ω̃α
j +

1
2RN

i jABθ̃A∧ θ̃B)

= −ω̄i
k∧ ω̄k

j +hα
ihhα

jkθ̄h∧ θ̄k+ 1
2RN

i jhkθ̄h∧ θ̄k.

From another point of view,

κ∗dω̃i
j = s∗dω̄i

j = s∗(−ωi
k∧ωk

j +
1
2RN

i jhkθh∧θk)

= −ω̄i
k∧ ω̄k

j +
1
2RN

i jhkθ̄h∧ θ̄k.

Comparing the last expressions we obtain the following (Gauss equations):

(100) RM
i jhk = RN

i jhk +hα
ihhα

jk−hα
ikhα

jh.

Similarly, from (98), we have

κ∗dω̃α
β = κ∗(−ω̃α

i ∧ ω̃i
β− ω̃α

γ ∧ ω̃γ
β +

1
2RN

αβABθ̃A∧ θ̃B)

= hα
ihhβ

jkθ̄h∧ θ̄k− ω̄α
γ ∧ ω̄γ

β +
1
2RN

αβhkθ̄
h∧ θ̄k.

Then setting

dω̄α
β =−ω̄α

γ ∧ ω̄γ
β +

1
2

R⊥αβhkθ̄
h∧ θ̄k,

whereR⊥ is the curvature tensor of the connection∇⊥ onT⊥M→M, we find the Ricci
equations

(101) R⊥αβhk = RN
αβhk+hα

ihhβ
ik−hα

ikhβ
ih.
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Finally, differentiating equation (99), we have

κ∗dω̃α
i = κ∗(−ω̃α

h ∧ ω̃h
i − ω̃α

β ∧ ω̃β
i +

1
2RN

αiABθ̃A∧ θ̃B)

= −hα
hkθ̄

k∧ ω̄h
i −hβ

ikω̄α
β ∧ θ̄k+ 1

2RN
αi jk θ̄h∧ θ̄k.

From another point of view, we have

d(hα
i j θ̄ j) = dhα

i j ∧ θ̄ j −hα
ihω̄h

j ∧ θ̄ j .

Comparing the last equations we obtain:

(dhα
ik−hα

ikω̄h
k−hα

hkω̄
h
i +hβ

ikω̄α
β −

1
2

RN
αihkθ̄h)∧ θ̄k = 0.

Cartan’s Lemma implies

dhα
ik−hα

ikω̄h
k−hα

hkω̄
h
i +hβ

ikω̄α
β −

1
2

RN
αihkθ̄h = Aα

ik j θ̄
j ,

(102) Aα
ik j = Aα

i jk .

If we set

(103) dhα
ik−hα

ikω̄h
k−hα

hkω̄
h
i +hβ

ikω̄α
β = hα

ik j θ̄
j ,

with hα
ik j = hα

ki j then, because of the symmetry of the second fundamental form, we
have

(104) hα
ik j = Aα

ik j +
1
2

RN
αi jk .

The relations expressed by (102) and (104) lead to theCodazzi equations

(105) hα
ik j = hα

i jk +RN
αi jk .

In fact, the first term of (103) gives an expression of the covariant differential of the
second fundamental formh, since (given a frameu∈O(N,M)), (103) implies that

(106)
hα

ik j(u) = (∇⊥u j
(h(ui ,uk))−h(∇M

u j
ui ,uk)−h(ui,∇M

u j
uk), uα)

= ((∇̄u j h)(ui ,uk), uα).

The mean curvature vectorH of the Riemannian immersionf is given by

(107) H =
1
m

h(ui,ui) =
1
m

hα
ii uα,

and together with equation (106), we obtain

hα
ii j = m(∇⊥u j

H,uα) = m∇⊥u j
Hα.
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It follows thatH is parallel (in the normal bundle) if and only if

(108) hα
ii j = 0.

Equation (105), upon settingk= i and summing overi, implies that

(109) hα
ii j = hα

i ji +RN
αi ji = hα

jii +RN
αi ji .

For this reason,if N has constant sectional curvature, the conditions

(110) hα
ii j = 0, hα

jii = 0, ∇⊥H = 0

are equivalent.

Appendix B. The tension field of a map

Let (M,g) and (N,h) be Riemannian manifolds of respective dimensionsm,n. Let
{ei} and{eA} be local orthonormal local frames onM andN, and let{θi}, {θA} be
the corresponding dual coframes and{ωi

j}, {ωA
B} the local forms reppresenting the

Levi-Civita connections with respect to these local frames. We therefore have

(111)
dθi =−ωi

j ∧θ j , (ωi
j +ω j

i ) = 0,

θi(Z) = (X,ei), ωi
j(X) = (∇N

Xei ,ej).

Similarly,

(112)
dθA =−ωA

B∧θB, (ωA
B+ωB

A) = 0,

θA(Z) = (Z,eA), ωA
B(Z) = (∇N

Z eB,eA).

Consider a smooth mapf : M→ N. Its differentiald f can be viewed either as
a map fromTM to TN determined by

d f(x,X) = ( f (x),d fx(X)), X ∈ TxM,

or as af−1(TN)-valued 1-form onM.

Setting

(113) d f(ei) = aA
i eA,

it turns out that

(114) f ∗θA = aA
i θi .

Differentiating equations (114) we have

f ∗(−ωA
B∧θB) = daA

j ∧θ j −aA
j ωi

j ∧θ j .
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Equivalently,
(daA

j −aA
i ωi

j +aB
j f ∗ωA

B)∧θ j = 0,

from which byCartan’s Lemmawe obtain

(115) DaA
j ≡ daA

j −aA
i ωi

j +aB
j f ∗ωA

B = aA
jkθk,

with
aA

jk = aA
k j.

The functionsaA
jk are the components of the covariant differentialDd f , also called the

second fundamental quadratic form of the mapf ; the differentialDd f may also be
introduced as thef−1(TN)-valued symmetric 2-form defined by

(116) Dd f(X,Y) = (DYd f)X = DY(d f X)−d f∇M
Y X,

whereD is a metric connection onf−1(TN)→M induced by the Levi-Civita connec-
tion onN.

It is easy to see that equations (115) and (116) are actually equivalent; indeed
(116) implies

Dd f(ej ,ek) = Dek(a
A
j eA)−d f(ωi

j(ek)ei)

= ek(aA
j )eA+aB

j ωA
B(d f ek)eA−ωi

j(ek)aA
i eA

= (daA
j +aB

j f ∗ωA
B−aA

i ωi
j)(ek)eA = aA

jkeA,

with the same coefficientsaA
jk as in equation (115). It is obvious that the computation of

the covariant differentialDd f according to (115) (put in evidence by Chern–Goldberg
[5]), is particulary useful when orthonormal coframes on the manifolds are chosen.

The mapf : M→N is calledtotally geodesicif Dd f = 0, equivalently ifaA
jk = 0.

The tension fieldτ f is the trace ofDd f , i.e., the f−1(TN)-valued field onM
defined by

(117) τ( f ) = Dd f(ej ,ej) = aA
j j eA.

Furthermore the mapf is calledharmonicif τ f = 0, i.e.,aA
j j = 0.
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