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THE ITALIAN CONTRIBUTION TO THE FOUNDATION
AND DEVELOPMENT OF CONTINUED FRACTIONS *

Abstract. The role of Italian mathematicians in the foundation anddeeelopment of the
theory and applications of continued fractions is empleasiz

1. Introduction

A continued fraction is an expression of the form
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wherebg, by, by, ... anday,ap,as,... are numbers (arithmetical continued fraction) or
functions of a complex variable (analytic continued franji An abbreviated notation

IS
a1 |

by

The history of continued fractions is as long as the histdrgwonbers them-
selves since, in fact, Euclid’s algorithm for computing tireatest common divisor of
two integers leads to a (terminating, and not infinite) comid fraction. They also
implicitly appear in the approximation af given by Archimedes, in the solution of
Diophantine and Pell's equations, in various approxinretiof the square root of a
number, and in the famous quadrature of the circle, problhish all go back to
antiquity.

When truncating such a continued fraction after the ternhwidexn, and
after reduction to the same denominator, one gets an osdfreationC, = A,/Bn.
C, is called aconvergendf the continued fraction even if the sequeri€g) does not
converge. The partial numerataks and the partial denominatoB can be computed
by the following recurrence relations
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which were first given by Bhascara Il, an Indian mathematieido was born in Vi-
jayapura (in the present state of Mysore) in 1115 and bechenkdad of the observa-
tory of Ujjain where he died in 1185. These relations can befan his book.ilavati,

*A Lezione Lagrangiana given in Turin on 11 June 2009
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2 C. Brezinski

which means “beautiful” or “charming” and was the name of ofleis daughters, writ-
ten around 1150. In Europe, they will be rediscovered only ¥&ars later (in 1655)
by the English mathematician John Wallis (Ashford, 23 Nokenl616 — Oxford, 28
October 1703), who gave them Hsithmetica Infinitorum

On continued fractions, see [31].

2. About rabbits, and other things

We consider a couple of newly born rabbits, a male and a fenrdebits are able to
reproduce at the age of one month, and gestation lasts atsmonth. We assume that,
each time, the female gave birth to one male and one femal¢heAend of the first
month, we always have only one pair of rabbits. At the end efscond month, the
female gave birth to one male and one female, and so we nowhlvexeuples. At the
end of the third month, the first female gave birth to a new taupt the second pair
has no offspring. Thus, in total, we have three couples. Attid of the forth month,
the first and the second female gave birth to a couple, and wehawe five couples.
Andsoon...

The question is to find how many couples we have aft@onths. Its answer is
given by the sequence

1,1,2,3,5,8,13,21,34,55,89, 144,233, 377,610,987,...

This problem was settled and solved by an Italian mathematfoom Pisa who
was living in the twelfth century : Leonardo Fibonacci (Risall70 — Pisa, c. 1250).
His name is a contraction of “filius Bonacci”, but he was alatbedd Leonardo Bigollus.
In Tuscan dialect “Bigollo” is difficult to translate, but erinterpretation is “absent-
minded”. Leonardo was a merchant who travelled quite widlelthe East, visiting
Egypt, Syria, Greece and Sicily. He was in contact with thabde mathematical
writings. In 1202 he wrote a book entitlddber abacij revised in 1228, but only
published in 1857.

How might we build this sequence of numbers, calldéitzonacci sequence
Let u, be the number of couples of rabbits at monthAt the beginning of the story,
we have no rabbit at all, and we sgt= 0. The first month, we start with one couple.
Thus, at month 1, we hawg = 1. Since rabbits are becoming adult at the age of one
month, we have no additional rabbits at month 2, and thus 1. At the end of month
3, the couple of rabbits gives birth to a new couple, andsse 2. And so on. ..

The general argument is as follows. The number; of couples at month
n+ 1 is equal to the number of couples at montplus the number of couples born
during monthn+ 1. It is also the number of couples at momtiplus the number of
adult couples at month, or, in other words the number of couples at mamiius the
number of couples born at month- 1. That is, finally,
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up =0,
up =1,
U=u+uUp=1+0=1
Us=U+u=1+1=2
W=Uz+Up=2+1=3,
Us=Us+Uz=3+2=5,

and, more generally,
Unt1=Un+Un1, for n=12 ...

This recurrence relation appears in many other naturalghena such as the
genealogy of drones, the spirals of seashells, pineconafipwers, the optimal ar-
rangement of pistils, phyllotaxy which is the study of thpasition of leaves on the
stem of a plant, multiple reflections, the hydrogen atom, etc

Let us construct a Fibonacci sequence, starting from twdararp numbers,
for example,up = 1 andu; = 3. With the preceding recurrence relation, we obtain
4,7,11,18,29,47,76,123 199 ... Computing the ratio of each number to the preceding
one, we get

‘ n ‘ Un+1/Un value
0 3/1 = 3
1 4/3 = 1.333...
2 7/4 = 1.750...
3 11/7 = 1571...
4 18/11 = 1.6363...
7 76/47 = 1.6170...
10 322/199 = 1.618009...
14| 2207/1364 = 1.618035..

We see that these ratios converge to the fangmiden sectior{(sectio aurea)
(1++/5)/2 = 1.618033988.. This golden section is also called tBévine Propor-
tiong and is the title of the famous book by Luca Pacioli (Borgo Sapolcro, Umbria,
1445 — Roma, 1517) published in 1509. He wrote (Chap. VII):

When a segment is divided according to the proportion witheamrpoint
and two extremal ones, if we add to its longest fajtthe half of the total
length(a+ b), the square of their sum will always be 5 times the square of
the half of this total length.

Translating this sentence into mathematical formulaegyive

oy 2t P_g(ath\?
2 ) "\ 2 )"
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that is
a2—ab—b%=0
Setting
_a
p - b)
this relation becomes
p’—p-1=0,

an equation whose positive zero is

1++/5
5

A sequence of ratios with the same limit would have been nbthstarting from
other values oflp andus.

This number was the subject of an enormous literature. A&#sti qualities in
art (architecture, painting, music) were attributed tocSome mystical interpretations
were also given, and it is found in many mathematical proklamwell. It fascinated,
and is still fascinating.

Fibonacci numbers satisfyy = u; + Up. Dividing both sides byi;, we get

Similarly, we haveuz = uz + u; and, dividing byu,, we obtain

u u 1 1
= _l:1+ =1+ 1
U U Uz/ul 1+

ug/Uo

after replacingiz/u; by the expression above. If we go on, we get

u 1 1
214 =1+ I
us U3/U2 1+
1
u1/Uo
and then
u 1
u—5:1+ I
4 14 <
1+ 1

+
Ul/Uo
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and so on. Continuing indefinitely frooy = u; = 1, we obtain the continued fraction

1
1
1
1
1
1
A

1+
1+

1+

1+
1+

which converges to1 + /5) /2.

It was Robert Simson (West Kilbrich, Scotland, 14 Septen6&7 — Glasgow,
1st October 1768) who proved, in 1753, that the sequerz&5,8,13, ... studied by
Fibonacci consists in the successive convergents of thisreeed fraction [41].

Fibonacci’'s numbers and related questions form a reseapit Wwhich is still
extremely active, and a journal is entirely devoted to ig Fibonacci Quaterlypub-
lished byThe Fibonacci Association

3. Ascending continued fractions

Ascending continued fractions came to Europe during thedMid\ges. Leonardo
Fibonacci introduced this kind of fractions Rars sexta, septimi capituli: De disgre-
gatione partium in singulis partibusf his bookLiber abaci with the notation

e
C+?
eca a4ty
fdb b
~afd+cf+e §+E}+§}}
- bd f b db fbd’

He called thenfractiones in gradibusThe process of writing from the right to
the left is probably due to the Arabic influence. He also eitbibi 5% as equal to
19,55, these two ascending continued fractions representii@ao0. Fibonacci also
gave two other notations, one of them he described as fallows

And if on the line there should be many fractions and the ligelfi ter-
minated in a circle, then its fractions would denote othartiwhat has
been stated, as in thi§2580 the line of which denotes the fractions
eight-ninths of a unit, and six-sevenths of eight-ninths] four-fifths of
six-sevenths of eight-ninths, and two-thirds of four-ifi six-sevenths of
eight-ninths of an integral unit.
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This is 384
192+ —

3
484 — O
8-+ 5

7
9

In fact, Fibonacci did not need such a tedious representatiot it was the
tradition to expose the subject in mathematical treatis¢s.was the first to give an
abstract theory of ascending continued fractions that wasatated to any system of
fractional units, and to replace the Egyptian conversiblethy a rigorous method. His
method, known outside Italy as tfractica Italiang was presented in almost all the
famous arithmetical treatises of the 16th century.

8+

This type of ascending continued fraction is related to measent problems,
and it goes back to the Egyptians and the Rhind papyrus, whiahthe British Mu-
seum in London. This papyrus is not a mathematical book imtbdern sense, con-
taining rules for solving various problems, but it does dsinsf numerical examples
and a table for reducing fractions whose numerator is tw@@dgum of fractions with
numerators equal to one (unitary fractions). The reasontiMayEgyptians only used
unitary fractions (with the exception of 2/3) is becausehefitnotation. Such fractions
were represented by drawing a sort of horizontal bar abowéittroglyphic signs for
representing integers. This method of representing frastas a sum of unitary frac-
tions was connected with the units of measurement used ievifxyday life. For ex-
ample, the unit of capacity was called thekat(approximatively 292.24 cubic inches).
It was divided into ¥2,1/4,1/8,1/16,1/32 and ¥64, each of which was represented
by a different hieroglyphic sign. These signs were usuaitgreged in the celebrated
Horus eye, as it is called.

Now if we consider the problem of dividing 5 hekats (volumetsinof wheat
between 12 persons, we begin by dividing each hekat into 3 pad giving one of
them to each person. Three parts remain. Each of these ediwito 4 parts one
of which is given to each person, that is 1/4 of 1/3 of a hek#iusT each person has

received
5 1 1

2 31
of the total amount of wheat. But

1
5_1,11_ 173
12 3 43 37
which is an ascending continued fraction.

This method of counting goes back to the early ages of huyaanitd it is
related to the fractional units of measure which were wideslgd in various countries
and for various purposes. For example the ancient Romaushisas, also called the
libra (= 12 unciae), theincia( = 8 dramma), thelrammaor drachma( = 3 scrupuli),
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and thescrupulumas their weights. For example let us convert 6 unciee, 5 dragrima
scrupulum into libree. We have

6U +5D+1S = 6U +5D+%D

1
6U + (5+§)D

543 543
— U+ 38U =(6+—3u
T8 T8
1
5+§
6+—3
_ 8 [ _ (8,5, 1
= 1 - (12+96+288)L’

which gives 16¢288=5/9 L. A scrupulum was around 1.137 g and, thus, a dramma
was 3.411 g, the uncia 27.288 g, and the libra 327.456 g.

The universal medieval money system consistelibod (= 20 solidi), thesoli-
dus(= 12 denarii) and theenarius This system was preserved in the modern British
pounds, shillings and pence. We can also cite the systemefbby miles, furlongs,
chains, yards, feet and inches.

4. The square root

A large part of mathematics was developed for the purposaleifg) geometrical prob-
lems. It is the case for the computation of the square rootrafraber. Following the
theorem of Pythagoras (6th century BC), the square of thethgmuse of a rectangle
triangle is equal to the sum of the squares of the two othesssith order to obtain the
length of this hypothenuse, it is necessary to extract tharggoot of a number.

Denote this number bj. Let us see how this computation leads to continued
fractions (without respecting the historical chronolaglet a be the largest integer
whose square? is smaller tharA. We subtract it fromA. There is a remainder=
A— a2 Butwe have

r=A-a’=(VA—-a)(VA+a).

Thus, dividing both sides by/A+ a, we get

VA-a = '
VA+a
VA = at—— .
VA+a

In the first denominator, replacgéA by a+r/(v/A+a). This gives
r
VA=at—— 1.
2a+
a+vA
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The same replacement process/@ by a+r/(v/A+ a) can be used, again and
again, in each new denominator. Thus, we obtain the cordifraetion

I B I S P
\/Z‘*aﬂ 2a Jr| 2a +| 2a

N r . .
The approximation/A ~ a+ — was universally known and used during the

Antiquity and the Middle Ages. For example, it can also benfbin the work of
Paolo Dagomari (Prato, c. 1281 — between 1365 and 1372), walsaaw Italian math-
ematician, astronomer, astrologer and poet. His most itapbwork is theTrattato
d’abbaco, d’astronomie e di segreti naturali e medicinatitten in 1339, where con-
tinued fractions, called “rotti infilzati” are mentionedagll as the preceding rule for
finding the square root. Of course, the ancients did not gade that way. | only
wanted to show how square roots are related to continuetidnac

The discovery of continued fractions ran over a period of arg, and it is due
to two scholars from Bologna, the oldest University in theldio

Rafael Bombelli (Bologna, January 1526 — Roma ?, 1572), wangineer and
architect who studied with Pier Francesco Clementi da @ddim who drained swamps
and was later employed by Pope Paul Ill in the reclamatioh@ftarshes of Foligno.
Bombelli is the founder of complex numbers. In his bdd&lgebra parte maggiore
dell’arimetica divisa in tre libripublished by Giovanni Rossi in Bologna in 1572, but
probably written with the help of his brother Ercole betwéd&60 and 1567, and also
in its second edition published in 1579 under the titlalgebra opera he gave an
algorithm for extracting the square root of 13 which is coetgly equivalent to the

continued fraction
4 4
\/133+,?‘ +,Tl 4+

Bombelli claimed that his work was based on the work of theagreuslim
mathematician Al-Khowarizmi (Khiva, c. 830 — ?), who livedBagdad and gave his
name to the word “algorithm”, and also on the work of Luca Bldhe author of the
first mathematical encyclopedia of the Renaissance, ankleowdrk of Fibonacci.

The real discoverer of continued fractions is Pietro AndoGataldi (Bologna,
15 April 1548 — Bologna, 11 February 1626), professor of raathtics and astronomy
in Firenze, Perugia and Bologna. Cataldi follows the samthateas Bombelli for
computing the square root. He wrote a small booklet (140 glage this topics with
the title Trattato del modo brevissimo di trouare la radice quadraidaimeri et regole
da approssimarsi di continuo al vero nelle radici de’ nummsoih quadrati, con le cause,
& inuentioni loro, et anco il modo di pigliarne la radice cubapplicando il tutto alle
operationi militari & altre. It was dedicated to Lodovico Mariscotti (with his portjait
and was published in Bologna in 1613 by B. Cochi. But, in fdw,book was finished
in 1597 since, at the end of the book, it is writtéinij questa copia, data alla stampa,
lunedi alli 11 agosto 1597 a‘ hore 21 1/2 nella stanza in sré¥b vecchio, contrada
di Bologna, essendodo fatta le prima bozza alcuni anni auant
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Cataldi applied the method to the computation/df8, and gave all the conver-
gents of the continued fraction up to the 15th. He noticetittiey are alternately larger
and smaller than the exact value of the square root, andhitéwtpproximate it better
and better. He also invented our modern notation for cortifiactions. As noticed
by Guglielmo Libri (Firenze, 2 January 1803 — Firenze, 28tSeyore 1869), Newton’s
method for solving the equatiod — A = 0 produces a subsequence of the convergents
(the (2" — 1)th, as was proved by A. Moret-Blanc in 1878) of this contintredtion.
Around the same period, it was proved by Joseph Alfred SéPeets, 30 August 1819
— Versalilles, 2 March 1885) that the convergentsf the continued fraction for/A

satisfy
1 A
Xon = > Xn + <)
n

which is exactly Heron’s method for the square root. Relagsdlts by Padre Bellino
Carrara S.J. (1889) must also be noted [7]. Let us also metiigt, in 1606, Cataldi
defined ascending continued fractionsaaguantity written or proposed in the form of
a fraction of a fraction

For a more complete analysis of the works of Bombelli and I@ateve refer
the reader to [5, pp. 61-70].

5. Lagrange

Joseph Louis (Giuseppe Ludovico) Lagrange (Torino, 25 dgn736 — Paris, 10
April 1813) made many contributions to continued fractiomsd used them at many
occasions. We will now describe the most important ones. ©riifle, consult [6].
His complete works have been published [27], and could aéstobnd (and down-
loaded) from the numerical librargallica of the Bibliothéque Nationale de Franc
http://mathdoc.emath.fr/cgi-bin/oetoc?id=0E_LAGRANGE__1

In 1769, Lagrange published\éémoire sur la résolution des équations numér-
igueswhere he gave a method for approximating a real zero of a patyal by con-
tinued fractions [18]. Unlike the other methods, Lagrasgeéthod cannot fail, and it
rapidly became a classical one.

In February 1657, Pierre de Fermat (Beaumont-de-Lomagrag,Montauban,
17 August 1601 — Castres, 12 January 1665), claimed thas Bqliatiornx® = Dy?+ 1
has infinitely many solutions iD is a positive nonsquare integer. But Fermat was
known for not giving proofs. The first correct proof of the €eince of an infinity of
solutions, and their form as well, is due to Lagrange in 1788.[ The pair(x1,y1)
solving Pell's equation and minimizingis one of the convergents of the continued
fraction for/D. Itis called theundamental solutiorand it can be obtained by testing
each successive convergent until a solution to Pell’s éguét found. All the other
solutions(x;, yi) can be computed from the fundamental one by the formula

% +yivD = (x1+y1vD), i=23,...
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Developing this formula, we get by induction

(x1+y1vD)*t = (x¢+y1vD) (x1 +y1vD)
= XX + Dyayi + VD (Xayi + yiX),

and, thus, the other solutions can also be obtained by theresce relations

Xit1 = X1X + Dywyi,
YVirr = Xa¥i +Y1X.

Any solution(x,y) approximates/D, and thus is a special case of a continued fraction
approximation of a quadratic irrational. The relationstupcontinued fractions and
their matrix interpretation implies that the solutions @&flIR equation form a semi-
group which is a subset of the modular group. Therefore,sPetjuation is closely
related to the theory of algebraic numbers of the forea a+ by/D. Such arut is one

of the solutions of the quadratic equatidn- 2at + (a?> — Db?) = 0. Any quadratic ir-
rational number can be written in the foifp+1/d) /g, wherep,d, andq are integers,

d > 0 is not a perfect square, agdiividesp? — d.

Major contributions to the theory of continued fractions aue to Leonhard
Euler (Basel, 15 April 1707 — St. Petersburg, 18 Septemb@8)L7As early as 1731,
he used them for Riccati’s differential equation. His firgttanetical paper on the
subject was entitlede fractionihus continuisand it was published in 1737. Euler
proved that every rational number can be developed into tefauntinued fraction,
that an irrational number gives rise to an infinite continfradtion, and that a periodic
continued fraction is the zero of a quadratic equation. IfiQl71agrange wrote a
memoir where he proved the converse of this last result cél§2D]. He wrote

Now | claim that the continued fraction which expresses thiees of x
[the real positive irrational zero of a quadratic equatiail] always be
necessarily periodic.

In another paper dated 1770, Lagrange extended HuygensSandderson’s
method to solve the Diophantine equatipyv gx=r [21].

An interesting problem treated by Lagrange in 1772, andreigal 775, is the
solution of linear difference equations with constant €ioeits [22, 23]. At this oc-
casion, he made use of what is now known as the generatingdargf a sequence of
numbergcyp), namely

f(X) = Co+ CaX+ X% + ---

If fis arational function with a numerator of degiee 1 and a denominator of degree
k, then(cn) satisfies a recurrence relation of ortlerLagrange was also interested in
the inverse problem of searching for hidden periodicitiea sequence, and he proved
that, if (cq) is recurrent, its generating function is a rational funetiblis proof is based
on continued fractions.
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Lagrange also made use of continued fractions on severat otitasions, and
wrote about them in hid.econs élémentaires sur les mathématiques données ad'Ecol
Normale en 179%26].

In his memoirEssai d’analyse numérique sur la transformation des frati
published in 1798, he gave a method, very similar to that @faedo Fibonacci, for
developingB/A into a sum of unitary fractions, thus leading to the simpést most
rapidly convergent series. He noticed that ascending asdeteling continued frac-
tions proceed from the same idea [25]. Following Lagrartugsé fractions were called
Lambert’s fractions by Giovanni Polvani (Spoleto, Umbfi&92 — Milano, 11 August
1970), while Alfred Kunze used the namiufsteigende Kettenbriichehich exactly
corresponds to the name given by Fibonacci. Alfred Prinigsti®hlau, now Olawa,
Lower Silesia, now Poland, 2 September 1850 — Zurich, 25 1944), the father-in-
law of the writer Thomas Mann (Liibeck, 6 June 1875 — ZlrichAligust 1955) who
was awarded the Nobel Prize in literature in 1929, showetthiegeconnection between
ascending and descending continued fractions as treateargert and Lagrange fol-
lows from a formula due to Euler [39].

Let us now discuss Padé approximation. We consider a forave¢pseries
f(X) = Co+ C1X+ CX° + CaC+ -+ -,

and we are looking for a rational fraction with a numeratodegreep and a denomi-
nator of degreg such that the series expansion of this rational fractionades with

f as far as possible, that is up to the term of degreeq inclusive. Such a rational
fraction is called aPadé approximanf f. Padé approximants are related to continued
fractions, Hankel determinants, orthogonal polynomiatg] extrapolation methods as
explained in [3]. On this connection, let us only mentionttfia 1862, Nicola Trudi
(Campobasso, 21 July 1811 — Napoli, 3 October 1884) stutietirtks between Han-
kel determinants and the determinantal expression foilogahal polynomials (and,
therefore, with Padé approximants).

Padé approximants were not invented by the French mathearatienri Eu-
géene Padé (Abbeville, 17 December 1863 - Aix-en-Provendaely91953). He merely
studied them in detail in his Thesis, dated 1892, under thersision of Charles Her-
mite (Dieuze, 24 December 1822 — Paris, 14 January 1901) Z8]é approximants
are much older. They can be obtained by a division procesgof\er series expan-
sion which is quite similar to Euclid’s algorithm for the gig a procedure analyzed
in [4]. In fact, many mathematicians were using Padé appraris without knowing
their fundamental approximation-through-order propertyeir real discovery is due to
two prominent scientists : Johan Heinrich Lambert (Mulreus’28 — Berlin, 1777),
who derived them directly in 1758 by the definition given ad¢28], and Lagrange
who obtained them by means of continued fractions (the démators of successive
Padé approximants satisfy recurrence relations similtindgse for the convergents of
a continued fraction, thus the connection between the tyiz$d.

Indeed, in 1775, in a paper published in tNeuveaux Mémoires de I'’Académie
Royale des Sciences et Belles-Lettres de Bdrligrange gave the solution of certain



12 C. Brezinski

differential equations in the form of continued fractio24]. He wrote

Since the form of these continued fractions is not easy fetahic
manipulation, we shall reduce them to ordinary fractions. .

Then, he adds that these ordinary fractians exact up to the power of x that
is the product of the two highest powers of x in the numeratadria the denominator
which means up to the terrPxd = xP*9 inclusive.

This is the birth certificate of Padé approximants.

As he did each year, Lagrange sent the volume containingdpserpto Jean
Le Rond d’Alembert (Paris, 16 November 1717 — Paris, 29 Gatdly83). In his
accompanying letter, on 12 December 1778 (indeed, the qatldh was late!), he
wrote

As usual, there is something from me, but nothing that myoiis attention.

This was not a prophetic view!

6. Miscellaneous contributions

Let us now briefly mention some contributions to continuexttions due to Italian
mathematicians.

The first proof of the irrationality of/2, based on Proposition 2 of Euclid’s tenth
book, is due to Giovanni Alfonso Borelli (Castelnuova neaphli, 28 January 1608 —
Roma, 31 December 1679), who inserted it in his bdekclid restitutugpublished in
1658 in Pisa (second edition, Roma, 1695).

A method for computing zeros of polynomials was given by Balffini (Va-
lentano, 22 September 1765 — Modena, 10 May 1822) in his bdedria generale
delle equazionpublished in 1799, whose Chapter 20 is entitldella soluzione per
serie delle equazioni algebraiche col mezzo della frazommitinue, e riflessioni ulte-
riori intorno alle equazioni riducibili a grado inferiore

In 1840, Carlo D’Andrea (L'Aquila, 3 September 1802 — Napb885) proved
the solvability of Pell’s equation by means of continuecfiens.

Salvatore Pincherle (Trieste, 11 March 1853 — Bologna, 1i 7836) pub-
lished numerous contributions on continued fractions,[8&g His most important
result concerns sufficient conditions for the convergetficentinued fractions in 1889
[34]. One of his theorems was extended in 1890 by Dionisio Kalin(Pergola, 11
September 1853 — Roma, 4 November 1941). Pincherle alsedtinddepth the mini-
mal solution of three-term recurrence relations as thossfigal by continued fractions
[36].

Using simultaneous approximations to several series usitignal functions,
Charles Hermite was able to prove, in 1873, that the nurelietranscendental. In
1882, Ferdinand Lindemann (Hannover, 12 April 1852 — Mupgcklarch 1939) simi-
larly proved the transcendencemfthus ending in the negative a problem (the quadra-
ture of the circle) that was open for more than 2000 years:Heirie also made several
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contributions to such approximations which are now calledé>Hermite approxi-
mants, see [35].

In 1895, Emma Bortolotti (Bologna, 25 December 1867 — ?) edothat a
necessary and sufficient condition that the zero of a quiadeguation with integer
coefficients in the variablecan be developed into a periodic continued fraction is that
the indeterminate equation of the second de@re®e— v2 = 1 can be solved by integer
polynomials, wher® is the discriminant of the given equation. If the degre®adé
odd, the second equation is obviously impossible to soljieH&hma was the sister of
Ettore Bortolotti (Bologna, 6 March 1866 — Bologna, 17 Fetsy1947), a student of
Pincherle who made numerous contributions to continuedifras and approximations
by rational functions, and who is also remarkable as an figst@f mathematics; see,
for example, [1].

Giovanni Frattini (Roma, 8 January 1852 — 21 July 1925) id Wwebwn for his
contributions to group theory. The development of the sgueaot into a continued
fraction was the subject of several of his papers. We will tioenonly three of them.
Let a be the largest integer smaller thafD, and seta+ +/D)" = P, +Qnv/D. The
sequencéP,/Qy) is decreasing and it convergesy®. On the other side, consider
the continued fraction expansion

1 1
vD=a
1+,a—21 +,—I+

and letpn/qn be its convergents. In [12], Frattini proved ttR/Qy, is closer toy/D
than pn/gn. He obtained some of his results on group theory via the squent and
continued fractions [13]. In 1904, he proved thaDifs a positive integer or a polyno-
mial with integer coefficients, thext = Dy? + 1 is solvable if and only if/D —acan
be developed into a simple periodic continued fraction.[14]

Continued fractions appear in two other papers by Frating on chaos [15]
and the other one on relativity [11].

7. Conclusion

The history of continued fractions is far from finished. Nalags it remains quite an
active field of research, with many applications in variotsngches. To name a few,
let us mention: number theory where continued fractiony pla important role in
the transcendental characteristics of numbers; natuerices, for the approximation
of special functions used in particle physics, quantum dkeyn quantum physics,
guantum electrodynamics, and more generally quantum méa)anedical sciences
were they have applications in diagnostics through magmesonance spectroscopy;
economics for modelling time series data; complex analyiere they are used to
derive new convergence and approximation results; nualeaitalysis, for example,
in the treatment of the Gibbs phenomenon for Fourier and attirogonal series.

Let us just mention a quite recent result. In his Thesis, e in 2007, Jeroen
Demeyer related the Chebyshev polynomials of the first kiehd those of the second
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kind Uy to a form of Pell's equation, namely

T2(X) — (0@ — U2 1(x) = 1.

Thus, these polynomials can be generated by the stand&rddee for Pell’s equation
of taking powers of the fundamental solution

X) + Ui 1(x) V38 — 1= (x+ /5@ — 1)K
It follows that
Tira () + UV =1 = (x-+ V32— D¥(x-+ Ve - 1)

= (Tk(X) + Uk_1( X)\/X2—1 )(X+ —1)

= (¢ = DUk-1(3) +XTu(x)) + (Tk(X)+XUk—1(X)) x2—1,
and finally we recover the well-known formulae

X) = (—=1)U1(X)+XTk(X)
X) Tk(X) + XUk_1(X),

Tki1
Uk

(
(
with Ty (x) = xandUp(x) = 1.

Continued fractions have been generalized in several vgayas to define non-

commutative continued fractions, vector continued fatdi matrix continued frac-
tions, and simultaneous approximations.

Italian mathematicians have been prominent in the foundadnd the early
developments of continued fractions. Many important th@oal results are due to
them, and they were also present at the first steps of Padéxamyants. All these
topics are of most relevance today.
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