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THE ITALIAN CONTRIBUTION TO THE FOUNDATION

AND DEVELOPMENT OF CONTINUED FRACTIONS ∗

Abstract. The role of Italian mathematicians in the foundation and thedevelopment of the
theory and applications of continued fractions is emphasized.

1. Introduction

A continued fraction is an expression of the form

b0+
a1

b1+
a2

b2+
a3

b3+ . . .

whereb0,b1,b2, . . . anda1,a2,a3, . . . are numbers (arithmetical continued fraction) or
functions of a complex variable (analytic continued fraction). An abbreviated notation
is

b0+
a1

b1
+

a2

b2
+

a3

b3
+ · · ·

The history of continued fractions is as long as the history of numbers them-
selves since, in fact, Euclid’s algorithm for computing thegreatest common divisor of
two integers leads to a (terminating, and not infinite) continued fraction. They also
implicitly appear in the approximation ofπ given by Archimedes, in the solution of
Diophantine and Pell’s equations, in various approximations of the square root of a
number, and in the famous quadrature of the circle, problemswhich all go back to
antiquity.

When truncating such a continued fraction after the term with index n, and
after reduction to the same denominator, one gets an ordinary fractionCn = An/Bn.
Cn is called aconvergentof the continued fraction even if the sequence(Cn) does not
converge. The partial numeratorsAn and the partial denominatorsBn can be computed
by the following recurrence relations

An = bnAn−1+anAn−2, A1 = 1, A0 = b0,

Bn = bnBn−1+anBn−2, B1 = 0, B0 = 1,

which were first given by Bhascara II, an Indian mathematician who was born in Vi-
jayapura (in the present state of Mysore) in 1115 and became the head of the observa-
tory of Ujjain where he died in 1185. These relations can be found in his bookLilavati,
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which means “beautiful” or “charming” and was the name of oneof his daughters, writ-
ten around 1150. In Europe, they will be rediscovered only 500 years later (in 1655)
by the English mathematician John Wallis (Ashford, 23 November 1616 – Oxford, 28
October 1703), who gave them hisArithmetica Infinitorum.

On continued fractions, see [31].

2. About rabbits, and other things

We consider a couple of newly born rabbits, a male and a female. Rabbits are able to
reproduce at the age of one month, and gestation lasts also one month. We assume that,
each time, the female gave birth to one male and one female. Atthe end of the first
month, we always have only one pair of rabbits. At the end of the second month, the
female gave birth to one male and one female, and so we now havetwo couples. At the
end of the third month, the first female gave birth to a new couple, but the second pair
has no offspring. Thus, in total, we have three couples. At the end of the forth month,
the first and the second female gave birth to a couple, and we now have five couples.
And so on. . .

The question is to find how many couples we have aftern months. Its answer is
given by the sequence

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987, . . .

This problem was settled and solved by an Italian mathematician from Pisa who
was living in the twelfth century : Leonardo Fibonacci (Pisa, c. 1170 – Pisa, c. 1250).
His name is a contraction of “filius Bonacci”, but he was also called Leonardo Bigollus.
In Tuscan dialect “Bigollo” is difficult to translate, but one interpretation is “absent-
minded”. Leonardo was a merchant who travelled quite widelyin the East, visiting
Egypt, Syria, Greece and Sicily. He was in contact with the Arabic mathematical
writings. In 1202 he wrote a book entitledLiber abaci, revised in 1228, but only
published in 1857.

How might we build this sequence of numbers, called aFibonacci sequence?
Let un be the number of couples of rabbits at monthn. At the beginning of the story,
we have no rabbit at all, and we setu0 = 0. The first month, we start with one couple.
Thus, at month 1, we haveu1 = 1. Since rabbits are becoming adult at the age of one
month, we have no additional rabbits at month 2, and thusu2 = 1. At the end of month
3, the couple of rabbits gives birth to a new couple, and sou3 = 2. And so on. . .

The general argument is as follows. The numberun+1 of couples at month
n+ 1 is equal to the number of couples at monthn plus the number of couples born
during monthn+ 1. It is also the number of couples at monthn plus the number of
adult couples at monthn, or, in other words the number of couples at monthn plus the
number of couples born at monthn−1. That is, finally,



The foundation and development of continued fractions 3

u0 = 0,
u1 = 1,
u2 = u1+u0 = 1+0= 1,
u3 = u2+u1 = 1+1= 2,
u4 = u3+u2 = 2+1= 3,
u5 = u4+u3 = 3+2= 5,

and, more generally,

un+1 = un+un−1, for n= 1,2, . . .

This recurrence relation appears in many other natural phenomena such as the
genealogy of drones, the spirals of seashells, pinecones, sunflowers, the optimal ar-
rangement of pistils, phyllotaxy which is the study of the repartition of leaves on the
stem of a plant, multiple reflections, the hydrogen atom, etc.

Let us construct a Fibonacci sequence, starting from two arbitrary numbers,
for example,u0 = 1 andu1 = 3. With the preceding recurrence relation, we obtain
4,7,11,18,29,47,76,123,199, . . .Computing the ratio of each number to the preceding
one, we get

n un+1/un value

0 3/1 = 3
1 4/3 = 1.333. . .
2 7/4 = 1.750. . .
3 11/7 = 1.571. . .
4 18/11 = 1.6363. . .
7 76/47 = 1.6170. . .
10 322/199 = 1.61809. . .
14 2207/1364 = 1.618035. . .

We see that these ratios converge to the famousgolden section(sectio aurea)
(1+

√
5)/2 = 1.618033988. . . This golden section is also called theDivine Propor-

tione, and is the title of the famous book by Luca Pacioli (Borgo SanSepolcro, Umbria,
1445 – Roma, 1517) published in 1509. He wrote (Chap. VII):

When a segment is divided according to the proportion with a mean point
and two extremal ones, if we add to its longest part(a) the half of the total
length(a+b), the square of their sum will always be 5 times the square of
the half of this total length.

Translating this sentence into mathematical formulae gives

(
a+

a+b
2

)2

= 5

(
a+b

2

)2

,
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that is

a2−ab−b2 = 0.

Setting

p=
a
b
,

this relation becomes

p2− p−1= 0,

an equation whose positive zero is

1+
√

5
2

.

A sequence of ratios with the same limit would have been obtained starting from
other values ofu0 andu1.

This number was the subject of an enormous literature. Aesthetical qualities in
art (architecture, painting, music) were attributed to it.Some mystical interpretations
were also given, and it is found in many mathematical problems as well. It fascinated,
and is still fascinating.

Fibonacci numbers satisfyu2 = u1+u0. Dividing both sides byu1, we get

u2

u1
= 1+

u0

u1
= 1+

1
u1/u0

.

Similarly, we haveu3 = u2+u1 and, dividing byu2, we obtain

u3

u2
= 1+

u1

u2
= 1+

1
u2/u1

= 1+
1

1+
1

u1/u0

after replacingu2/u1 by the expression above. If we go on, we get

u4

u3
= 1+

1
u3/u2

= 1+
1

1+
1

1+
1

u1/u0

and then
u5

u4
= 1+

1

1+
1

1+
1

1+
1

u1/u0
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and so on. Continuing indefinitely fromu0 = u1 = 1, we obtain the continued fraction

1+
1

1+
1

1+
1

1+
1

1+
1

1+
1

1+ . . .

which converges to(1+
√

5)/2.

It was Robert Simson (West Kilbrich, Scotland, 14 September1687 – Glasgow,
1st October 1768) who proved, in 1753, that the sequence 1,2,3,5,8,13, . . . studied by
Fibonacci consists in the successive convergents of this continued fraction [41].

Fibonacci’s numbers and related questions form a research topic which is still
extremely active, and a journal is entirely devoted to it, the Fibonacci Quaterlypub-
lished byThe Fibonacci Association.

3. Ascending continued fractions

Ascending continued fractions came to Europe during the Middle Ages. Leonardo
Fibonacci introduced this kind of fractions inPars sexta, septimi capituli: De disgre-
gatione partium in singulis partibusof his bookLiber abaci, with the notation

e c a
f d b

=
a+

c+
e
f

d
b

=
a f d+ c f +e

bd f
=

a
b
+

c
d

1
b
+

e
f

1
b

1
d
.

He called themfractiones in gradibus. The process of writing from the right to
the left is probably due to the Arabic influence. He also exhibited 1

5
0
12

0
20 as equal to

1
2

0
6

0
10

0
10, these two ascending continued fractions representing 1/1200. Fibonacci also

gave two other notations, one of them he described as follows:

And if on the line there should be many fractions and the line itself ter-
minated in a circle, then its fractions would denote other than what has
been stated, as in this23

4
5

6
7

8
9O the line of which denotes the fractions

eight-ninths of a unit, and six-sevenths of eight-ninths, and four-fifths of
six-sevenths of eight-ninths, and two-thirds of four-fifths of six-sevenths of
eight-ninths of an integral unit.
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This is

8+
48+

192+
384
3

5
7

9
.

In fact, Fibonacci did not need such a tedious representation, but it was the
tradition to expose the subject in mathematical treatises.He was the first to give an
abstract theory of ascending continued fractions that was not related to any system of
fractional units, and to replace the Egyptian conversion table by a rigorous method. His
method, known outside Italy as thePractica Italiana, was presented in almost all the
famous arithmetical treatises of the 16th century.

This type of ascending continued fraction is related to measurement problems,
and it goes back to the Egyptians and the Rhind papyrus, whichis at the British Mu-
seum in London. This papyrus is not a mathematical book in themodern sense, con-
taining rules for solving various problems, but it does consist of numerical examples
and a table for reducing fractions whose numerator is two into a sum of fractions with
numerators equal to one (unitary fractions). The reason whythe Egyptians only used
unitary fractions (with the exception of 2/3) is because of their notation. Such fractions
were represented by drawing a sort of horizontal bar above the hieroglyphic signs for
representing integers. This method of representing fractions as a sum of unitary frac-
tions was connected with the units of measurement used in theeveryday life. For ex-
ample, the unit of capacity was called thehekat(approximatively 292.24 cubic inches).
It was divided into 1/2,1/4,1/8,1/16,1/32 and 1/64, each of which was represented
by a different hieroglyphic sign. These signs were usually arranged in the celebrated
Horus eye, as it is called.

Now if we consider the problem of dividing 5 hekats (volume units) of wheat
between 12 persons, we begin by dividing each hekat into 3 parts and giving one of
them to each person. Three parts remain. Each of these is divided into 4 parts one
of which is given to each person, that is 1/4 of 1/3 of a hekat. Thus, each person has
received

5
12

=
1
3
+

1
12

of the total amount of wheat. But

5
12

=
1
3
+

1
4

1
3
=

1+
1
4

3
,

which is an ascending continued fraction.

This method of counting goes back to the early ages of humanity, and it is
related to the fractional units of measure which were widelyused in various countries
and for various purposes. For example the ancient Romans used theas, also called the
libra ( = 12 unciæ), theuncia( = 8 dramma), thedrammaor drachma( = 3 scrupuli),
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and thescrupulumas their weights. For example let us convert 6 unciæ, 5 dramma, 1
scrupulum into libræ. We have

6U +5D+1S = 6U +5D+
1
3

D

= 6U +

(
5+

1
3

)
D

= 6U +
5+

1
3

8
U =

(
6+

5+
1
3

8

)
U

=
6+

5+
1
3

8
12

L =

(
6
12

+
5
96

+
1

288

)
L,

which gives 160/288= 5/9 L. A scrupulum was around 1.137 g and, thus, a dramma
was 3.411 g, the uncia 27.288g, and the libra 327.456g.

The universal medieval money system consisted oflibra (= 20 solidi), thesoli-
dus(= 12 denarii) and thedenarius. This system was preserved in the modern British
pounds, shillings and pence. We can also cite the system formed by miles, furlongs,
chains, yards, feet and inches.

4. The square root

A large part of mathematics was developed for the purpose of solving geometrical prob-
lems. It is the case for the computation of the square root of anumber. Following the
theorem of Pythagoras (6th century BC), the square of the hypothenuse of a rectangle
triangle is equal to the sum of the squares of the two other sides. In order to obtain the
length of this hypothenuse, it is necessary to extract the square root of a number.

Denote this number byA. Let us see how this computation leads to continued
fractions (without respecting the historical chronology). Let a be the largest integer
whose squarea2 is smaller thanA. We subtract it fromA. There is a remainderr =
A−a2. But we have

r = A−a2 = (
√

A−a)(
√

A+a).

Thus, dividing both sides by
√

A+a, we get
√

A−a =
r√

A+a
√

A = a+
r√

A+a
.

In the first denominator, replace
√

A by a+ r/(
√

A+a). This gives
√

A= a+
r

2a+
r

a+
√

A

.
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The same replacement process of
√

A by a+ r/(
√

A+a) can be used, again and
again, in each new denominator. Thus, we obtain the continued fraction

√
A= a+

r
2a

+
r

2a
+

r
2a

+ · · ·

The approximation
√

A ≃ a+
r

2a
was universally known and used during the

Antiquity and the Middle Ages. For example, it can also be found in the work of
Paolo Dagomari (Prato, c. 1281 – between 1365 and 1372), who was an Italian math-
ematician, astronomer, astrologer and poet. His most important work is theTrattato
d’abbaco, d’astronomie e di segreti naturali e medicinaliwritten in 1339, where con-
tinued fractions, called “rotti infilzati” are mentioned aswell as the preceding rule for
finding the square root. Of course, the ancients did not proceed in that way. I only
wanted to show how square roots are related to continued fractions.

The discovery of continued fractions ran over a period of 25 years, and it is due
to two scholars from Bologna, the oldest University in the world.

Rafael Bombelli (Bologna, January 1526 – Roma ?, 1572), was an engineer and
architect who studied with Pier Francesco Clementi da Corinaldo, who drained swamps
and was later employed by Pope Paul III in the reclamation of the marshes of Foligno.
Bombelli is the founder of complex numbers. In his bookL’algebra parte maggiore
dell’arimetica divisa in tre libripublished by Giovanni Rossi in Bologna in 1572, but
probably written with the help of his brother Ercole between1560 and 1567, and also
in its second edition published in 1579 under the titleL’algebra opera, he gave an
algorithm for extracting the square root of 13 which is completely equivalent to the
continued fraction

√
13= 3+

4
6

+
4
6

+ · · ·

Bombelli claimed that his work was based on the work of the great muslim
mathematician Al-Khowarizmi (Khiva, c. 830 – ? ), who lived in Bagdad and gave his
name to the word “algorithm”, and also on the work of Luca Pacioli, the author of the
first mathematical encyclopedia of the Renaissance, and on the work of Fibonacci.

The real discoverer of continued fractions is Pietro Antonio Cataldi (Bologna,
15 April 1548 – Bologna, 11 February 1626), professor of mathematics and astronomy
in Firenze, Perugia and Bologna. Cataldi follows the same method as Bombelli for
computing the square root. He wrote a small booklet (140 pages) on this topics with
the titleTrattato del modo brevissimo di trouare la radice quadra delli numeri et regole
da approssimarsi di continuo al vero nelle radici de’ numerinon quadrati, con le cause,
& inuentioni loro, et anco il modo di pigliarne la radice cuba, applicando il tutto alle
operationi militari & altre. It was dedicated to Lodovico Mariscotti (with his portrait),
and was published in Bologna in 1613 by B. Cochi. But, in fact,the book was finished
in 1597 since, at the end of the book, it is writtenFinij questa copia, data alla stampa,
lunedi alli 11 agosto 1597 a‘ hore 21 1/2 nella stanza in s. Petronio vecchio, contrada
di Bologna, essendodo fatta le prima bozza alcuni anni auanti.
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Cataldi applied the method to the computation of
√

18, and gave all the conver-
gents of the continued fraction up to the 15th. He noticed that they are alternately larger
and smaller than the exact value of the square root, and that they approximate it better
and better. He also invented our modern notation for continued fractions. As noticed
by Guglielmo Libri (Firenze, 2 January 1803 – Firenze, 28 Septembre 1869), Newton’s
method for solving the equationx2−A= 0 produces a subsequence of the convergents
(the(2n−1)th, as was proved by A. Moret-Blanc in 1878) of this continuedfraction.
Around the same period, it was proved by Joseph Alfred Serret(Paris, 30 August 1819
– Versailles, 2 March 1885) that the convergentsxn of the continued fraction for

√
A

satisfy

x2n =
1
2

(
xn+

A
xn

)
,

which is exactly Heron’s method for the square root. Relatedresults by Padre Bellino
Carrara S.J. (1889) must also be noted [7]. Let us also mention that, in 1606, Cataldi
defined ascending continued fractions asa quantity written or proposed in the form of
a fraction of a fraction.

For a more complete analysis of the works of Bombelli and Cataldi, we refer
the reader to [5, pp. 61–70].

5. Lagrange

Joseph Louis (Giuseppe Ludovico) Lagrange (Torino, 25 January 1736 – Paris, 10
April 1813) made many contributions to continued fractions, and used them at many
occasions. We will now describe the most important ones. On his life, consult [6].
His complete works have been published [27], and could also be found (and down-
loaded) from the numerical libraryGallica of theBibliothèque Nationale de Franceathttp://mathdo
.emath.fr/
gi-bin/oeto
?id=OE_LAGRANGE__1

In 1769, Lagrange published aMémoire sur la résolution des équations numér-
iqueswhere he gave a method for approximating a real zero of a polynomial by con-
tinued fractions [18]. Unlike the other methods, Lagrange’s method cannot fail, and it
rapidly became a classical one.

In February 1657, Pierre de Fermat (Beaumont-de-Lomagne, near Montauban,
17 August 1601 – Castres, 12 January 1665), claimed that Pell’s equationx2 = Dy2+1
has infinitely many solutions ifD is a positive nonsquare integer. But Fermat was
known for not giving proofs. The first correct proof of the existence of an infinity of
solutions, and their form as well, is due to Lagrange in 1769 [19]. The pair(x1,y1)
solving Pell’s equation and minimizingx is one of the convergents of the continued
fraction for

√
D. It is called thefundamental solution, and it can be obtained by testing

each successive convergent until a solution to Pell’s equation is found. All the other
solutions(xi ,yi) can be computed from the fundamental one by the formula

xi + yi

√
D = (x1+ y1

√
D)i , i = 2,3, . . .
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Developing this formula, we get by induction

(x1+ y1
√

D)i+1 = (x1+ y1
√

D)i(x1+ y1
√

D)

= x1xi +Dy1yi +
√

D(x1yi + y1xi),

and, thus, the other solutions can also be obtained by the recurrence relations

xi+1 = x1xi +Dy1yi ,

yi+1 = x1yi + y1xi .

Any solution(x,y) approximates
√

D, and thus is a special case of a continued fraction
approximation of a quadratic irrational. The relationshipto continued fractions and
their matrix interpretation implies that the solutions of Pell’s equation form a semi-
group which is a subset of the modular group. Therefore, Pell’s equation is closely
related to the theory of algebraic numbers of the formα = a+b

√
D. Such anα is one

of the solutions of the quadratic equationt2−2at+(a2−Db2) = 0. Any quadratic ir-
rational number can be written in the form(p+

√
d)/q, wherep,d, andq are integers,

d > 0 is not a perfect square, andq dividesp2−d.

Major contributions to the theory of continued fractions are due to Leonhard
Euler (Basel, 15 April 1707 – St. Petersburg, 18 September 1783). As early as 1731,
he used them for Riccati’s differential equation. His first arithmetical paper on the
subject was entitledDe fractionihus continuis, and it was published in 1737. Euler
proved that every rational number can be developed into a finite continued fraction,
that an irrational number gives rise to an infinite continuedfraction, and that a periodic
continued fraction is the zero of a quadratic equation. In 1770, Lagrange wrote a
memoir where he proved the converse of this last result of Euler [20]. He wrote

Now I claim that the continued fraction which expresses the value of x
[the real positive irrational zero of a quadratic equation]will always be
necessarily periodic.

In another paper dated 1770, Lagrange extended Huygens’ andSaunderson’s
method to solve the Diophantine equationpy−qx= r [21].

An interesting problem treated by Lagrange in 1772, and again in 1775, is the
solution of linear difference equations with constant coefficients [22, 23]. At this oc-
casion, he made use of what is now known as the generating function of a sequence of
numbers(cn), namely

f (x) = c0+ c1x+ c2x2+ · · ·
If f is a rational function with a numerator of degreek−1 and a denominator of degree
k, then(cn) satisfies a recurrence relation of orderk. Lagrange was also interested in
the inverse problem of searching for hidden periodicities in a sequence, and he proved
that, if (cn) is recurrent, its generating function is a rational function. His proof is based
on continued fractions.
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Lagrange also made use of continued fractions on several other occasions, and
wrote about them in hisLeçons élémentaires sur les mathématiques données à l’École
Normale en 1795[26].

In his memoirEssai d’analyse numérique sur la transformation des fractions,
published in 1798, he gave a method, very similar to that of Leonardo Fibonacci, for
developingB/A into a sum of unitary fractions, thus leading to the simplestand most
rapidly convergent series. He noticed that ascending and descending continued frac-
tions proceed from the same idea [25]. Following Lagrange, these fractions were called
Lambert’s fractions by Giovanni Polvani (Spoleto, Umbria,1892 – Milano, 11 August
1970), while Alfred Kunze used the nameAufsteigende Kettenbrüchewhich exactly
corresponds to the name given by Fibonacci. Alfred Pringsheim (Ohlau, now Olawa,
Lower Silesia, now Poland, 2 September 1850 – Zürich, 25 June1941), the father-in-
law of the writer Thomas Mann (Lübeck, 6 June 1875 – Zürich, 12August 1955) who
was awarded the Nobel Prize in literature in 1929, showed that the connection between
ascending and descending continued fractions as treated byLambert and Lagrange fol-
lows from a formula due to Euler [39].

Let us now discuss Padé approximation. We consider a formal power series

f (x) = c0+ c1x+ c2x2+ c3x3+ · · · ,

and we are looking for a rational fraction with a numerator ofdegreep and a denomi-
nator of degreeq such that the series expansion of this rational fraction coincides with
f as far as possible, that is up to the term of degreep+ q inclusive. Such a rational
fraction is called aPadé approximantof f . Padé approximants are related to continued
fractions, Hankel determinants, orthogonal polynomials,and extrapolation methods as
explained in [3]. On this connection, let us only mention that, in 1862, Nicola Trudi
(Campobasso, 21 July 1811 – Napoli, 3 October 1884) studied the links between Han-
kel determinants and the determinantal expression for orthogonal polynomials (and,
therefore, with Padé approximants).

Padé approximants were not invented by the French mathematician Henri Eu-
gène Padé (Abbeville, 17 December 1863 - Aix-en-Provence, 9July 1953). He merely
studied them in detail in his Thesis, dated 1892, under the supervision of Charles Her-
mite (Dieuze, 24 December 1822 – Paris, 14 January 1901) [33]. Padé approximants
are much older. They can be obtained by a division process of apower series expan-
sion which is quite similar to Euclid’s algorithm for the g.c.d., a procedure analyzed
in [4]. In fact, many mathematicians were using Padé approximants without knowing
their fundamental approximation-through-orderproperty. Their real discovery is due to
two prominent scientists : Johan Heinrich Lambert (Mulhouse, 1728 – Berlin, 1777),
who derived them directly in 1758 by the definition given above [28], and Lagrange
who obtained them by means of continued fractions (the denominators of successive
Padé approximants satisfy recurrence relations similar tothose for the convergents of
a continued fraction, thus the connection between the two topics).

Indeed, in 1775, in a paper published in theNouveaux Mémoires de l’Académie
Royale des Sciences et Belles-Lettres de Berlin, Lagrange gave the solution of certain
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differential equations in the form of continued fractions [24]. He wrote

Since the form of these continued fractions is not easy for algebraic
manipulation, we shall reduce them to ordinary fractions. ..

Then, he adds that these ordinary fractionsare exact up to the power of x that
is the product of the two highest powers of x in the numerator and in the denominator,
which means up to the termxpxq = xp+q inclusive.

This is the birth certificate of Padé approximants.

As he did each year, Lagrange sent the volume containing his paper to Jean
Le Rond d’Alembert (Paris, 16 November 1717 – Paris, 29 October 1783). In his
accompanying letter, on 12 December 1778 (indeed, the publication was late!), he
wrote

As usual, there is something from me, but nothing that meritsyour attention.

This was not a prophetic view!

6. Miscellaneous contributions

Let us now briefly mention some contributions to continued fractions due to Italian
mathematicians.

The first proof of the irrationality of
√

2, based on Proposition 2 of Euclid’s tenth
book, is due to Giovanni Alfonso Borelli (Castelnuova near Napoli, 28 January 1608 –
Roma, 31 December 1679), who inserted it in his bookEuclid restitutuspublished in
1658 in Pisa (second edition, Roma, 1695).

A method for computing zeros of polynomials was given by Paolo Ruffini (Va-
lentano, 22 September 1765 – Modena, 10 May 1822) in his bookTeoria generale
delle equazionipublished in 1799, whose Chapter 20 is entitledDella soluzione per
serie delle equazioni algebraiche col mezzo della frazionicontinue, e riflessioni ulte-
riori intorno alle equazioni riducibili a grado inferiore.

In 1840, Carlo D’Andrea (L’Aquila, 3 September 1802 – Napoli, 1885) proved
the solvability of Pell’s equation by means of continued fractions.

Salvatore Pincherle (Trieste, 11 March 1853 – Bologna, 11 July 1936) pub-
lished numerous contributions on continued fractions, see[37]. His most important
result concerns sufficient conditions for the convergence of continued fractions in 1889
[34]. One of his theorems was extended in 1890 by Dionisio Gambioli (Pergola, 11
September 1853 – Roma, 4 November 1941). Pincherle also studied in depth the mini-
mal solution of three-term recurrence relations as those satisfied by continued fractions
[36].

Using simultaneous approximations to several series usingrational functions,
Charles Hermite was able to prove, in 1873, that the numbere is transcendental. In
1882, Ferdinand Lindemann (Hannover, 12 April 1852 – Munich, 6 March 1939) simi-
larly proved the transcendence ofπ, thus ending in the negative a problem (the quadra-
ture of the circle) that was open for more than 2000 years. Pincherle also made several
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contributions to such approximations which are now called Padé–Hermite approxi-
mants, see [35].

In 1895, Emma Bortolotti (Bologna, 25 December 1867 – ?) proved that a
necessary and sufficient condition that the zero of a quadratic equation with integer
coefficients in the variablex can be developed into a periodic continued fraction is that
the indeterminate equation of the second degreeDu2−v2 = 1 can be solved by integer
polynomials, whereD is the discriminant of the given equation. If the degree ofD is
odd, the second equation is obviously impossible to solve [2]. Emma was the sister of
Ettore Bortolotti (Bologna, 6 March 1866 – Bologna, 17 February 1947), a student of
Pincherle who made numerous contributions to continued fractions and approximations
by rational functions, and who is also remarkable as an historian of mathematics; see,
for example, [1].

Giovanni Frattini (Roma, 8 January 1852 – 21 July 1925) is well known for his
contributions to group theory. The development of the square root into a continued
fraction was the subject of several of his papers. We will mention only three of them.
Let a be the largest integer smaller than

√
D, and set(a+

√
D)n = Pn+Qn

√
D. The

sequence(Pn/Qn) is decreasing and it converges to
√

D. On the other side, consider
the continued fraction expansion

√
D = a1+

1
a2

+
1
a3

+ · · ·

and letpn/qn be its convergents. In [12], Frattini proved thatPn/Qn is closer to
√

D
than pn/qn. He obtained some of his results on group theory via the square root and
continued fractions [13]. In 1904, he proved that ifD is a positive integer or a polyno-
mial with integer coefficients, thenx2 = Dy2+1 is solvable if and only if

√
D−a can

be developed into a simple periodic continued fraction [14].

Continued fractions appear in two other papers by Frattini,one on chaos [15]
and the other one on relativity [11].

7. Conclusion

The history of continued fractions is far from finished. Nowadays it remains quite an
active field of research, with many applications in various branches. To name a few,
let us mention: number theory where continued fractions play an important role in
the transcendental characteristics of numbers; natural sciences, for the approximation
of special functions used in particle physics, quantum chemistry, quantum physics,
quantum electrodynamics, and more generally quantum mechanics; medical sciences
were they have applications in diagnostics through magnetic resonance spectroscopy;
economics for modelling time series data; complex analysiswhere they are used to
derive new convergence and approximation results; numerical analysis, for example,
in the treatment of the Gibbs phenomenon for Fourier and other orthogonal series.

Let us just mention a quite recent result. In his Thesis, defended in 2007, Jeroen
Demeyer related the Chebyshev polynomials of the first kindTk and those of the second
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kind Uk to a form of Pell’s equation, namely

T2
k (x)− (x2−1)U2

k−1(x) = 1.

Thus, these polynomials can be generated by the standard technique for Pell’s equation
of taking powers of the fundamental solution

Tk(x)+Uk−1(x)
√

x2−1= (x+
√

x2−1)k.

It follows that

Tk+1(x)+Uk(x)
√

x2−1 = (x+
√

x2−1)k(x+
√

x2−1)

= (Tk(x)+Uk−1(x)
√

x2−1)(x+
√

x2−1)

= ((x2−1)Uk−1(x)+ xTk(x))+ (Tk(x)+ xUk−1(x))
√

x2−1,

and finally we recover the well-known formulae

Tk+1(x) = (x2−1)Uk−1(x)+ xTk(x)

Uk(x) = Tk(x)+ xUk−1(x),

with T1(x) = x andU0(x) = 1.

Continued fractions have been generalized in several ways,so as to define non-
commutative continued fractions, vector continued fractions, matrix continued frac-
tions, and simultaneous approximations.

Italian mathematicians have been prominent in the foundation and the early
developments of continued fractions. Many important theoretical results are due to
them, and they were also present at the first steps of Padé approximants. All these
topics are of most relevance today.
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