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HARMONIC MAPS HAVING TANGENT BUNDLES
WITH g-NATURAL METRICS AS SOURCE OR TARGET

Abstract. We produce new examples of harmonic maps, having as eithecesor target
manifold the tangent bundEM on a Riemannian manifol@M, g), equipped with a Rieman-
nian g-natural metricG. In particular, we study the harmonicity of the canonicaijection
: (TM,G) — (M, g), and of the identity mapT M,G) — (T M, gS) and converselygS being
the Sasaki metric o M. A corresponding study is made for the unit tangent sphenellbu
T, M, equipped with a Riemanniagnatural metricG.

1. Introduction

Let(M,qg), (M’,d") be Riemannian manifolds, witid compact, and consider a smooth
mapf : (M,g) — (M’,d). Theenergyof f is defined as the integral

£(f) = /Me(f)dvg,

wheree(f) = %|| f.||? = 1tryf*d is the so-calle@nergy densityf f. With respect to a
local orthonormal basis of vector fieldsy, ...,e,} onM, one has

(f) =15 d(fa.ta)

Critical points of the energy function& onC>(M,M’) are known atiarmonic maps
They have been characterized in [10] as maps for whiclethgion fieldr(f) =trOd f
vanishes. WheM is not compact, a map: (M,g) — (M’,d’) is said to be harmonic if
1(f) = 0. We refer the reader to [9, 18] for further details and rissaibout the energy
functional.

Itis particularly interesting to investigate the harmatyiof maps between Rie-
mannian manifolds that are naturally constructed from amstleer. A classical ex-
ample is the tangent bundleM on a Riemannian manifol(M, g), equipped with the
Sasaki metric § Nouhaud [15] proved that the only vector fielsdefining har-
monic maps from a compact Riemannian manifgtl g) to (T M, gS) are the paral-
lel vector fields. The same result was obtained indepengbgtlshihara [12], who
also gave an explicit expression of the tension field assaxtim a vector field. It is
well known that the canonical projection: (TM,gS) — (M, g) is harmonic (see for
example [16]). Oniciuc [16] proved the same result wiewl is equipped with the
Cheeger—Gromoll metric&, and also proved the harmonicity of the canonical pro-
jectionty : (T;M,gS) — (M, g), wheregS denotes the Sasaki metric on the unit tangent
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sphere bundl&;M. Han and Yim [11] characterized unit vector fields which defin
harmonic maps froniM, g) to (T;M, gS), by determining the associated tension field.

The Sasaki metrigS (as well as the Cheeger—Gromoll metric) is only one possi-
ble choice inside a very large family of Riemannian metricg &, known asRieman-
nian g-natural metricsAs their name suggests, those metrics are constructedarya v
“natural” way from a Riemannian metrgcoverM. The introduction ofy-natural met-
rics converts the classification of second order naturakfarmations of Riemannian
metrics on manifolds to that of metrics on tangent bundlgsybrk of O. Kowalski
and M. Sekizawa [14]. Other presentations of the basic ré&suh [14] and more de-
tails about the concept of naturality can be found in [13]e Bkt ofg-natural metrics,
which depend on six smooth functions frdki to R, has been completely described
in [7].

In [2], the present authors and D. Perrone studied when awéetd V on a
Riemannian manifoldM, g) defines a harmonic map: (M,g) — (TM,G), whereG
is an arbitrary Riemanniag-natural metric. Equipping the unit tangent sphere bun-
dle T;M with an arbitrary induced Riemannigpnatural metric3, the harmonicity of
V:(M,g) — (TlM,G) was discussed in [3], while [4] studied the harmonicity & th
geodesic flow : (T;M, &) — (T,T;M,G).

In this paper, we study the harmonicity of the canonicalgetpnr: (TM,G)

— (M, qg), whereG is an arbitrary Riemanniag-natural metric. We also determine
necessary and sufficient conditions for the harmonicitgsofith respect togS, that
is, of the identity map fron{T M, G) into (T M, gS), and vice versa. Finally, a corre-
sponding study is made for the canonical projectign (T,M,G) — (M,g), and for
the identity map from{(T;M, G) to (T;M,gS) and vice versa. In this way, we establish
large classes of examples of harmonic maps, defined eitbrardr to tangent bundles
equipped withg-natural Riemannian metrics and thus possessing a highifrivial
geometry.

The paper is organized in the following way. The basic infation about Rie-
manniang-natural metrics oim M and T;M is given in Section 2. In Section 3 we
discuss the harmonicity af: (TM,G) — (M, g), while in Section 4 we investigate
when the identity magTM,G) — (TM,gS) and (TM,gS) — (TM,G) is harmonic.
The corresponding studies for the unit tangent sphere bundll, equipped with a
Riemanniarg-natural metrid3, are given in Sections 5 and 6 respectively.

2. Preliminaries on Riemanniang-natural metrics

Let (M, g) be am-dimensional Riemannian manifold ahdts Levi-Civita connection.
At any point(x,u) of its tangent bundle T Mthe tangent space @M splits into the
horizontal and vertical subspaces with respecito

(T M)(x,u) = H(x,u) 69V(x,u)-

For any vectoX € My, there exists a unique vectsf e Hixu (thehorizontal
lift of X to (x,u) € TM), such thatt. X" = X, wherer: TM — M is the natural projec-
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tion. Thevertical lift of a vectorX € My to (x,u) € TMis a vectorX” € V(y, such that
X¥(df) = Xf, for all functionsf on M. Here we consider 1-fornsf on M as func-
tions onTM (i.e., (d f)(x,u) = uf). The mapX — X" is an isomorphism between the
vector spacebly andHy ). Similarly, the magX — X" is an isomorphism betwedvy
andVy,). Each tangent vectat € (TM) ) can be written in the forrd = X"+Y",
whereX,Y € My are uniquely determined vectors.

Horizontal and vertical lifts of vector fields dvi can be defined in an obvious
way and are vector fields uniquely definedDhl.

We can refer to [7] for the description of the classgefiatural metrics on the
tangent bundle of a Riemannian maniféM,g). All g-natural metrics are character-
ized as follows.

ProPOSITIONI ([7]). Let(M,g) be a Riemannian manifold of dimension n and
G be a g-natural metric on TM. Then there are six smooth fonsti;, B : RT — R,
i =1,2,3, such that for every u, X, ¥ My, we have

Gixw) (X" Y") = (a1 +03) (r?)gu(X,Y) + (B1+ Ba) (r?)gu(X, u)g(Y, u),

(1) { Gixuy (X" YY) = Gy (XY, Y") = 012(r2)ge(X, Y) + Ba(r?)gu(X, u)gx (Y, u),
Gy (XY, YY) = an(r?)ge(X, Y) + Ba(r?)gu(X, u)g«(Y, u),

where P = gy(u,u). For n= 1, the same holds with; = 0, i = 1,2,3.
Notation.In the sequel, we shall use the following notation. Fot alR ™,
o @(t) =ai(t) +tpi(t),
o a(t) = az(t)(az+as)(t) —az(),

o t) = @u(t)(@1+@)(t) — @(t).

PROPOSITIONZ2 ([7]). A g-natural metric G on TM is Riemannian if and only
if its defining functionst;, 3j satisfy the inequalities

@) ai(t) >0, @(t)>0, a(t)>0, @t >0,
forallt e R*. Forn=1, (2) reduces tax;(t) > 0anda(t) >0, forallt € R™.

CONVENTION 1. a) Throughout the paper, when we consider an arbitrary Rie
manniang-natural metricG on TM, we implicitly suppose that it is defined by the
functionsa;, Bi : RT™ — R, i = 1,2,3, given in Proposition 1 and satisfying (2).

b) Unless otherwise stated, all real functiensf3;, @, a andgand their deriva-
tives are evaluated af := gy(u, u).

c) We consider the Riemannian curvatiReof g with the sign convention
R(X,Y) = [Ox,Oyv] — Oxy)-
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Remark. In literature, there are some well known Riemannian metriitshe
tangent bundle, which turn out to be special cases of Rieraagmatural metrics. In
particular:

e the Sasaki metric g is obtained forai(t) = 1 andaz(t) = az(t) = Bai(t) =

Ba(t) = Bs(t) = 0.

e the Cheeger—Gromoll metric& (see [8]) is obtained whem;(t) = B(t) = 0,
01(t) =Ba(t) = —Bs(t) = 1/(1+t) andaz(t) =t/(1+1).

Sincea, = B2 = 0, by (1) it follows thatgS and gCC are examples of Riemannian
g-natural metrics o M for which horizontal and vertical distributions are mutyal
orthogonal.

The Levi-Civita connectiof of an arbitrary Riemanniagrnatural metrids on
TM, can be described as follows:

PROPOSITION3 ([6]). Let(M,g) be a Riemannian manifold of dimensiorih,
its Levi-Civita connection and R its curvature tensor. Ldi€a Riemannian g-natural
metric on TM. Then the Levi-Civita connectidrof (T M, G) is characterized by

M) O = (Ox) + DAL X %)} +V{B(U: X %)},
(i) (OxnYY)xu) (OxY) i uy + P{CU: X, Y) } + VD (U; X, Ya) }
(iii') (OxYM ) = h{C(U; Yx. %)} +V{D(U; Yo, Xy},
(iv) (Oxv YY) xuy = PEU XY} +V{F (U X, Ye) )5

for all vector fields X, Y on M an¢k,u) € TM. Here AB,C,D,E,F are defined, for
allu, X, Y e My, xe M, by:

A(U; X,Y) = A [R(X,U)Y + R(Y,u)X] + Az[gx(Y, U)X + gx(X, u)Y]
+A39X(R(Xa U)Y7 U)U + A49X(X5Y)u + ASQX(Xv u)gX(Y7 u)“v

A = _G;_:(z, Ay = Gz(le(jﬁs) , Az = 0‘2{0‘1[(91(131+[33)*fpélfszﬂz(Ble*BzGl)}

)

_ @(ag+az) Ae — a2 (B1+B3)'+(B1+B3){a2[@2B2— 1 (B1+B3)]+(a1+a3) (a1B2—a2B1)} .
A4 - (P b 5 - C((p L]

next:
B(u; X,Y) = B1R(X,u)Y 4 B2R(X, Y)u+ Ba[gx(Y, u)X 4 gx(X, u)Y]
+B4gX(R(X7 U)Ya U)U + B5gX(XaY)u + BﬁgX(X7 U)gx(Y, U)U,

Bi=%, B, — _M%G@, By — _%,
B, — 22{02[®2P2—¢u(By+Ps)l+(a1t03) (Bats—P102)} Be — _ (@ut®s)(datag)
4 — ag 5 5 — ® )
B. —0(@1+93) (B1+B3) + (B1+B3) { (a1 -+03)[(@1+@3)B1— B2l +az[0a (Ba+Bs) — (d1+03)Ba] }

ag
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next:
C(u; X,Y) = C1R(Y,u) X 4 Cogx (X, u)Y + Cagx (Y, U)X + Cagx(R(X,u)Y, u)u
+C59x(X,Y)U+CegX(X,U)gx(Y, U)U,

CL— 7(21_2, Co— 0‘1(1321;[33)7 Cs= Gl(GlJer)/;ﬂz(ﬂ’z*BTz),
Cu— ag{ap(aBr—01B2)+01 (@ (Bi+Bz)—@2B2]} Cs— @L(B1+B3)+92(205—B2)
4= 20 ’ o 29 ’
Co— a@1(B1+Ba)'+{az(01Ba—azBy) +a1[gaBo— (Bit+Ba) o)} (aa+ag) + 215
_ -
. {ta[B1(1-+93)~Bo00] ~t1 Bo(s +a)~ta(Br-+3)] } (- B )

ag '
next:

D(u; X,Y) = D1R(Y,u)X 4 D2gx (X, u)Y + D3gx (Y, u)X 4+ Dagx(R(X, u)Y,u)u
+D5gX(XaY)u + D6gX(X7 u)gX(Yv U)U,

D, — 102 D, — _ %2(B1tBs) Ds— —ap(ay+ag)+(ay+0z) @y - 2)
To2a 2= 20 3= a

3

Dy — ag{(agt0z)(a1Ba—02B1)+02 (B2~ 1 (B1+B3)]} De —  @2(B1+B3)+(PL+93)(205—B2)
4= 5=

20 ’ 200
O _ ~0@(ButBs)+{ (1) (2B a) +azleu(B+Ba) —gaPal} | (a-ras)+ |
6~ a phi
. {laar02)Po0s—Pa(ourgu)]+azlPo(er+0a) —calPr+Pa)l} (a7
o !
next:
E(u; X,Y) = Eq[gk(Y, U)X + gx(X,u)Y] + E20x(X, Y)u+ Ezgx (X, u)ax(Y, u)u,
E, = al(a’erB—zz)faza’l’ E, = (Plef(Pz(BrG’l)7
a )
Ey — (20185 —02B1) 201 {0/0(p(By +Bs) —Ba(dta +ta) +olBr (91+05) ool }
ag
(2a+B2) { o1 [@2B2— 1 (B1+Ba)] +02(0aBa—a2By) } .
+ 5 ;
and finally:
F(u;X,Y) = Faf[gx(Y, U)X + gx(X, U)Y] + Fagx (X, Y)u+ Fag (X, u)gx(Y, u)u,
F = *G2(0’2+B—222(+(01+G3)G/17 R = ((Pl+(93)(ﬁl(;a&)*(P2B2

Fa— of(@1+3) By —202B5)+20 {a1p[Ba (a1 +03) —0x(B1+B3) |+ (011 +013) [Bo@o—Ba (91 +93) 1}

ae
(205+B2){02[@1 (B1+B3) —@2B2]+ (a1 +03) (2B —01B2) }
a :

+
For n=1, the same holds withi =0,i =1,2,3.

41
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Next, we recall that theangent sphere bundle of radius-tO over a Riemannian
manifold (M, g) is the hypersurfac&M = {(x,u) € TM | gx(u,u) = r?}. The tangent
space at a poir(ix,u) € T,M is given by

(TrM)(x,u) = {Xh +YY

XEMX,Ye{u}icMX}.

Whenr = 1, T;M is calledthe unit tangent (sphere) bundle
For the restrictions td,M of Riemanniarg-natural metrics, we have

PrRoOPOSITION4 ([5]). Let r > 0 and (M, g) be a Riemannian manifold. For
every Riemannian metri& on TM induced from a Riemannian g-natural metric G
on TM, there exist four constants a, b, ¢ and d, with 8, a(a+c) —b? > 0 and
a(a+c+dr?) —b? > 0, such that

Gy (X1, XD) = (a+€)gu(X1, X2) + dg(X1, U)Ox (X2, ),
Gy (XL YY) = Gy (Y, XT) = by (Xe, Y1),
Glew (W, Y3) = ag(¥1, Ya),

forall (x,u) € T;M and X, Y; € My, i = 1,2, with ¥ orthogonal to u.

We shall call such a metric anduced Riemannian g-natural metric oM.

Using the Schmidt’s orthonormalization process, a simpleuation shows
that the vector field off M defined by

NS bu'+ (a+c+d)u
X = m{ W,
for all (x,u) € TM, is normal toT;M and unitary at any point of; M.

We now define the “tangential liftX'c (with respect taG) of a vectorX € My to
(x,u) € T{M as the tangential projection of the vertical lift ¥fto (x,u) (with respect
to N©), that is,

¢ G NG ¢ G
D Gxu) (XY, N(x,u)) N(X~,U) =X'- a+c+ dgx(x’ ) N(X’u).

If X € My is orthogonal tai, thenX'e = X", Note that ifo = 0, thenX'c coincides with
the classical tangential lif' defined for the case of the Sasaki metric. In the general
case,

(3) Xle = X'+

h
atcrgiud

The tangent spadd; M)y of T;M at (x,u) is spanned by vectors of the form
XN andY'e, whereX, Y € My. HenceG on T,M is completely determined by
CE‘( o (XN YM) = (a+c)gu(X,Y) + dagk(X, u)gx (Y, u),
(4) G(x,u) (XhaYtG) - G(x,u) (XtGaYh) - ng(X,Y),
Gk (X'e,Y'6) = agu(X,Y) — zrerg (X, u)g«(Y, u),
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forall (x,u) € T;M andX,Y € Myx. We now have

PrROPOSITIONS ([1]). The Levi-Civita connectiof of G is given at a point
(x,u) € T;M by

~ ab bd
(OxnY") ) = {(DXY)X ~ 5 [R(%x, U) Y+ R(Yoe, U)Xy | + > [9(%, U)ot g (Y, U)X |

h
ad+b?) (RO, U)¥, U) — d(a-+c+d) g% u)g (% u)| u}

a@+o) R(Xx, Yx)u — (a;LTC)d [9(Yx, U) Xx + (X, U) Yy
te

+% [— b?g(R(Xx, U)¥x, U) + d(a+c)g(Ys, U)g(XmU)}U} )

~ 2 b2

o _J @  a

(ExnY®) e { 20 R0k WX 2(a+c+d)a
di? 1

Paaroraud et

ad
9(Yy, U)R(Xx, u)u+ oM 9(Xx, U) Yy
S 2
T g e PR

h
+dag(Xx, Yx) — ad(2(a+c) +d) g(Xx, u)g( Yy, u)} u}

ab b(a —b?) bd
+ {(DXY)x+ 2a R(Yx, U)Xy — mg(Yx, U)R(Xx, u)u— > g(Xx, u) Yy
__(atopd_ b
Satc+djad Wt S dye L @ e dIRK U U)

i

+d(2(a+0) +d) g% u)g(Y, )| u} ,

2
~ h a
(OxicY )(x,u) = {—ZR(XX,U)YX—F mg

ab? dh?

72(a+C+d)ug(XXau)R(YX;u)u+ 2(a+C+d)u

1 2
T oarordya 2@ PIIRG W)

ad
(Xx,u) OyY + % g(Yx, u) Xx

9(Xx, u) Yx

h
+dag(Xx, Yx) —ad(2(a+ c¢) + d) g(Xx, u)g(Yx, u)} u}

a(a+c)b

bd
Zat ot @ WRMWU— 27 g% U)X

ab
+ { o R(Xx, U)Yx +
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bd b
—("’L)dgm,u)m

2(a+c+d) 5 [Fa@+ et d) g(R(% u)¥s, u)

2(a+c+d)
e

Ld(2(at©) + d) g% g%, u)]u} ,

(B ¥ = g oraia |~ X906 URGUU+ G0 UROG WY

2(a+c+d)

2do
a+c+d

h
+ad gXx, u) Yy + (2a 4 ad) g( Yy, u) Xx — g(Xx, U)g(Yx, u)u}

1

er {Zbdg(Xx, U)DUY + abz[g(xx, U)R(Yx, U)U

i

+9(Ye, U)R(Xx, u)u] — b?d g(X, u) Y — (2(a+ c+d)a — bd) g(Yy, U) X« } ,

for all (x,u) € T;M and X, Y vector fields on M.

CONVENTION 2. The tangential lift tqx,u) € T;M of the vectow is given by
u'c = a+2+d u" and so, it is a horizontal vector. Hence, the tangent spaad ) x u)

coincides with

{X"+Yle | X €My, Y € {u}t c M.

For this reason, the operation of tangential lift frdvip to a point(x,u) € T;M will be
always applied only to vectors &y which are orthogonal ta.

3. Harmonicity of the canonical projectiontt: (TM,G) — (M, g)

Let (M,g) be a Riemannian manifold of dimensiorand(T M, G) its tangent bundle,
equipped with an arbitrary Riemannigpnatural metricG. We shall calculate the
tension field of the map: (TM,G) — (M,g), in order to decide whertis harmonic.

If (Bj;1=1,...,2n)is a local frame (not necessarily orthonormal) on an open
subsetV C T M, then the tension field oW is defined by

(5) (1) fw= ? GV 0dn(E, Ey),
1521

where (GV) is the inverse matrix of the matri¢G(E;,E;)). In order to calculate
Odn(E, Ey), it is convenient to choose the vector fieBson W which arererelated
with some local vector fields oM, since in this case

Odm(Er, Ey) = Or, (T6Ey) — (05 Ey).
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Fix (x,u) € TM and consider an orthonormal moving frafeg i = 1,...,n) on
an open subsé&t C M, such that (en)x = u, wherer = ||u|. OnTr1(U), we put

(6) Ei:éﬂla En+i:QVa i:]-a"'7n'

It is easy to see thaE; | = 1,...,2n) is a local frame ont%(U), such thatg; is
T-related withe andE, . is Terelated with the zero section @h, foralli =1,...,n.
Thus,

7y DOMEE) = Oae - m(Og€)),  Odm(E;,Enj) = —Te(Oge)),
Odm(Enyi, Ej) = _T[*(Eq"e?)a OdT(Enyi, Ensj) = _T[*(Eq"e\j/)-

Using Proposition 3, formulas (7) calculated stu) become

(8)

OdTty ) (Bi Ej) = —A(U; (8)x, (6)x),  OdTxy) (Bi, Ensj) = —C(u; (&)x, (€)x),
OdTy ) (Entis Ej) = —C(U; (8)x, (@)x),  BdTx ) (Enti, Entj) = —E(U; (&), (&)x)-

We now consider the inverse matnﬂ@'& u)), in order to calculate the tension
field T(17)(x ) of T Since

0 0
(a4 03)ln-1 : azln-1
0 0
0---0 + 0---0
(G (Er, E9)) = " Tl
0 0
Ooln_1 O1ln—1
0 0
0---0 () 0---0 @
it is easily seen that
0 0
Wl =
0 0
0---0 % 0---0 —%
13\ _ 9 4
(9) (G(x,u)>* 0 0
LU e LS
0 0
_® (ikaalt<}
0---0 ¢ 0---0 o

Substituting from (8) and (9) into (5), we obtain
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S

[—01A(U; (&)x, (8)x)) +202C(U; (&), (8)x))

—(01+03)E(U; (&)x, (&8)x))]

n (% _ %)A(u; (&n)x, (En)x)) — 2(% - %)C(u; (8nhx (&n)x))

N (01203 _ (P.L:[‘)(PB»)E(U; (en)x: (&n)x))-

—
=
=)
x
=
\
Q|

(10)

We then use the expressionsAfC andE from Proposition 3 and the fact that
r (en)x = uand (10) becomes

My = 2 [a1A1—a2C] Qu+ {%[C(lAg —20,C4)9(Qu, u)
+ 5[ @1(2A2 + Aq + T2Ag) + 295(C2 + C3 + Cs + 1°Cy)
— (@1 + @3)(2E1 + B2 + r2E3)] + 22 [—a1A4 + 202C5 — (1 + 93) E2)] }7

whereQ is the Ricci operator associatedg@andA;,B;,E; are evaluated af. Next, a
long but routine calculation shows that

1A —0C1 =0, a1A3—20,Cs =0, 2Ax+As+T1%As= %((Pl +@3)’,
Co+C3+Cs+1°Co= L (1 + @), 2E1+Ex+r’Es= (2016 — ©@)),
1A+ 202C5 — (@1 0)E2 = §{ — @20’ + uforz(Ba+Ba) — (a1 -+ 03) ol
@2[ (01 + az)B1 — o2Bz] }
Substituting these equations into the previous expredsior{y) y ), we obtain

(1) (xu) :{é [P@ — 20@,] + na;(pl{*(l’zal + @1 [az2(B1+ Bs) — (a1 +a3)pB2]

+@2l(@1+ a3)Br — azBal} f u
In this way, we proved the following

THEOREM 1. Let (M, g) be a Riemannian manifold of dimension n gfiaVi,
G) its tangent bundle, equipped with an arbitrary Riemanniamegural metric G. The
canonical projectionmt: (TM,G) — (M,g) is harmonic if and only if the functions
defining the metric G satisfy

(11) (n—1)@{ @0’ + @u[a2(B1+Ba) — (a1 +03)B2]
+@(a1+ as)B1 — azB2]} +al@@ — 2¢p,] = 0.
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We explicitly note that for any arbitrary choice of (for exgl®) a1, a2, a3, B1,
B2 definingG, (11) gives a first order linear differential equation whiotes the re-
maining functionfs. The standard existence theorem ensures that (11) adrhits so
tions, depending on an arbitrary real parameter. Thergldreorem 1 yields

COROLLARY 1. Riemannian g-natural metrics G on the tangent bundle TM,
for whichtt: (TM,G) — (M, g) is harmonic, form a class depending on five arbitrary
smooth functions (satisfyin@)) and a real parameter.

In the special case wheny = 2 = 0, equation (11) is trivially satisfied. So, we
have the following

COROLLARY 2. Let (M,g) be a Riemannian manifold of dimension n, whose
tangent bundle TM is equipped with an arbitrary Riemannianagural metric G,
with respect to which horizontal and vertical distributare orthogonal. Them :
(TM,G) — (M, g) is harmonic.

Corollary 2 extends to a large family of Riemanngnatural metrics, depend-
ing on four functions of one variable, the classical resblbt the harmonicity of
m: (TM,gS) — (M, g), and the result proved in [16] concerning the harmonicity of
1 (TM,gCcC¢) — (M, ).

Another interesting class of Riemannian metricsTavi to which Corollary 2
applies, is the non-classical family of metrics studied Ipydiu in [17], and described
as follows: for any of such a metric, there exist two smoottcfionsv,w: RT — R,
such that (see also [7])

aw(t) = gz az(t) =0, (a1+as)(t) =v(t/2),
Bit) = — samagamrzy Be(1) =0, (Bi+Bs)(t) =w(t/2).

As regards explicit examples of Riemannigimatural metrics o M, whose
horizontal and vertical distributions are not orthogonaliiave a harmonic canonical
projection, one can easily deduce the following from Theoie

THEOREMZ2. Let(M,g) be a Riemannian manifold of dimension n, TM its tan-
gent bundle and G be a Riemannian g-natural metric whoseidgffanctions satisfy

B1=P2=PB3=0.

a) If n= 2, then the canonical projection: (TM,G) — (M, g) is harmonic if and
only if a, is constant;

b) If n> 2, then the canonical projection: (TM,G) — (M, g) is harmonic if and
only if
e eitheray = Oidentically, or
e ap(t) # 0 for all t and there exists a real constant K 0, such thata =
-2
K|C(2|”T2.



48 M.T.K. Abbassi and G. Calvaruso

In particular, Theorem 2 implies thatrif> 2 andG is a Riemanniag-natural
metric satisfying3; = B2 =3 =0 and

(i) eithera; = a, a2 =b, az = ¢, for three real constants> 0, b = 0 andc (satis-
fying a(a+c) — b? > 0), or

(i) ax(t) = I+ Ke Zen it oy(t) = en i, az =0, for a real constari > 0,

thentt: (TM,G) — (M, g) is harmonic.

4. Harmonicity of G with respect togS and conversely

In this section, we shall study when an arbitrary Riemangtaatural metricG on T M

is harmonic with respect to the Sasaki meggand conversely, that is, the harmonicity
of the identity maps igsg : (TM,g%) — (TM,G) and ids¢s : (TM,G) — (TM,g%),
calculating their tension fields.

We fix (x,u) € TM and consider an orthonormal moving frafeg i = 1,...,n)
on an open subsél C M, such thatr (e,)x = u, wherer = |jul|. On T (U), we
consider the local moving fram&;; | = 1,...,2n) given by (6). The tension field of
idgsg at(x,u) is given by

n
(12) Tixu (idgsg) = .Z(DE' B — 08 B x>

where S is the Levi-Civita connection of the Sasaki metric. Using@gsition 3,
equation (12) becomes

T (idgsg) = h{él[A(u;a,a) ~Au;e,8)+E(ue,6)— E°(u;a,a)]}

n
+ v{_z B(u;e,8)—B(ue,e)+F(ue,e)— F°(u;a,a)]},
=
whereA? BY EC, FO are theF -tensor fields associated to the Sasaki metric. Hence,
T(xu) (ingG)
= h{— 2A1QU+ [—Agg(QU, U)+2A0+1?As+NAg]u+ [2E1+r§+nEz]U}
+ V{BlQU+ [~Bag(Qu,u)+2B3-+?Bg+nBsu+ [2F1+r§+an]U}

and sofx ) (idgsg) = 0 if and only if

(13) 2A1Qu = [~Agg(Qu,U) + 2A2 + r2As + nAy+ 2E1 + 15 + nEyJu,
B1Qu= —[—B4g(Qu,u) + 2B3+ ’Bg + NBs + 2F1 + r§ + nRJu.
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We take the scalar product of both equations in (13ubgalculatingg(Qu, u) from
both of them, a routine calculation gives

UZ(Plg(QUa U)
— r2{Qugh + 2016% + (n— 1)[@1B2 — @2(B1 — oy — (01 +013) )]}
= r2{(@1+ @2) @ + 202¢h + (N — 1) [@2B2 — (@1 + @3) (B — 0} — (a1 +013)' )]},
and so
(14) &%= (n—1)[B1—0a}— (ar+0a3)]

and
*GZQ(Qua U) = r2{2qf2+ (n - 1)BZ}a

which, used into (13), leads to conclude that the tensiod @itthe map igs vanishes
identically if and only if (14) holds and

(15) —a2Qu= [2¢, + (n— 1)B,]u.
If az =0, then (15) gives @ + (n— 1)B2 = 0, that is,
(16) (N+1)Ba(t) +1tR5(t) =0, forall teR™.

We now prove thaB, vanishes identically of®™. In fact, if B, # 0, we can consider
the open set = {t € R™, B,(t) # 0} # 0. A connected componedtof | is an open
interval ofl. If we putty = infJ, thenB(to) = 0. Integrating (16), we g, = Kt ~("+1)
onJ, for someK € R. The continuity of3, atty then impliesKk = 0, which contradicts
B2 # 0 onJ. Thereforef, =0

Next, if az(t1) # O for somet; € R, we consider the open subdét= {t €
R*, az(t) # 0} # 0 and a connected componehtC I'. By virtue of (15), we have

2 n-1
Qu= wu, forall u suchthat |u?ecJ.
2
The linearity ofQ then implies that the funcan‘L K is constant od’, and

Qu = Ku, for all u such that|u||? € J'. Again the Imearlty 0fQ then yieldsQu = Ku
for all u € TM. In this way, we proved the following

THEOREM 3. Let (M, g) be a Riemannian manifold of dimension n and G an
arbitrary Riemannian g-natural metric G on TM. The identitppidgsg : (TM,gS) —
(TM,G) is harmonic if and only if14) holds and

e either horizontal and vertical distributions are orthogawith respect to G, or

e (M, Q) is an Einstein manifold, with Q& Ku for all u, and

a7 Z[fz—i-(n—l)[?)z: Kay.
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Note that (14) fixe$3 in function of some of the remaining defining functions
of G, as a solution of a first order linear differential equatiBy. Theorem 3, if(M, g)
is a Riemannian manifold which is not Einstein, thegsjglis harmonic if and only if
02 = B2 = 0 and (14) holds. Hence, in this case, Riemanigiaratural metricss for
which idgs is harmonic, form a class depending on three smooth fureaod a real
parameter. Whe(M,g) is Einstein g-natural metricss for which idysg is harmonic,
depend on four smooth functions and a real parameter, girtbésicase (14) and (17)
must hold. Some explicit examples are given in the following

COROLLARY 3. Let (M, g) be an Einstein manifold, with Qg 2Au for all u,
A > 0, and G a Riemannian g-natural metric on TM, whose definingtfansa;, 3;
are given by
as(t) = KeM, ar(t) =K'eét,  az=0,
Bi(t) =2AKeM, B2 =0, Bs=0,

for some real numbers K and'Ksatisfying K> |[K’|. Then, the identity majlysg :
(TM,g%) — (TM,G) is harmonic.

Note that the inequalities > 0 andK > |K’| are the necessary and sufficient
conditions forG to be Riemannian.

As a special subclass of Riemannigamatural metrics o M of Corollary 1,
we can guote the linear combination, with constant factfrh)e classical liftgyS and
g" of g, that is,G = agS+bh, wherea > |b|.

The study of the harmonicity of igs : (TM,G) — (TM,gS), for an arbitrary
Riemanniarg-natural metricG on T M, is significantly more difficult. As before, to
calculate the tension field of ids, we fix (x,u) € TM and consider an orthonormal
moving frame(a i=1,...,n) on an open subsé&t C M, such that (e,)x = u, where
r=ul. OnTrX(U), we con5|der the local moving franfg;; | = 1,...,2n) given by
(6). Using (9), the tension field of iy : (TM,G) — (TM,gS) at the point(x,u) is
given by

n—-1

T (doge) = 3 (Ol Ogelio + -0 T8k~ Oy
- Z 36— D) + (O3’ — Dareixu

7%[@;(5; Depel) + (O — Daxel)] ixu

3

Using Proposition 3, long calculations then give

al+a3 (p-L+(p3’(|:|S =

® e

Q DQ"Q) (x,u)
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Tixu (idggs) = — {% (@201 (01 + @3)" + P2(O+ @)@ — 201 (@1 + )|
n-1
+ G—(p

| 920’ @ulaz(Ba+ Ba) — (c1-+3)B2] — @el(as + )Py — afe] | puf

- {é (B 0)(0n+0a) + (@+ 05)°G1 — 202(01 + )% + na—(p [~ (@ +go)c

+@2[02(B1+ B3) — (01+3)B2] + (1 + @3)[(011 +a3)B1 — GZBZ]} } u.
Hence, we have the following

THEOREM4. Let (M,g) be a Riemannian manifold of dimension n and G an
arbitrary Riemannian g-natural metric on TM. The identitppridg s : (TM,G) —
(TM,gS) is harmonic if and only if the following conditions are séigs:

1

(18) 0=

(@201 (1 + P3) + Q2@+ P3) ) — 201 (P1 + P3) @

+12 [ — ulaz(Bu+ Bo) — (au+o)Pe

—@[(01+03)B1 — 0(282]} 7
(19 0= é[(cpﬁffp)mﬂps)%(%+%)2%f2@(%+%>@}

+n%l [_ (@1 + @)’ + @faz(B1+ Bs) — (a1 +03) B2

(00 + @a)[(0 + az)Br - a2l .

The class of Riemanniagnatural metricss satisfying (18)—(19) is very large,
since these equations can be used to determine two of theéngdefiimctions ofG by
means of the remaining four defining functions. Howevercthraplexity of conditions
(18) and (19) does not permit to give them an easy geometnigapretation.

In order to find examples, we shall restrict ourselves to sspeeial cases. The
first we investigate is the one where horizontal and vertsdtibutions are orthogonal
with respect taG. Then, (18) is automatically satisfied, while (19) reduces t

+ n—1
(@) B = T [ (@t @)+ (@0 (0 )y
Assuming also that this equation does not depend on the dioremof M, it gives
(20) Pu(@+93) = (@ + @a) @,
—(@1+@3)a" + (@1 + @3) (a1 +a3)B1 = 0.

Sinceaz = 32 =0, by (2) we necessarily hagg + ¢z > 0 anda; + o3 > 0. Thus, (20)
reduces to
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a/

S aptag’

(21) o(+@) =(@+@)e, B

Integrating the first equation in (21), we ggt= K1 (@1 + @3) for a real constar; > 0.
Solving@ = Kz (@1 + @3) with respect t3s, we then have

(22) =g _1g, g (001

Kat t ai+03
Hence, we can state the following

PROPOSITIONG. For any Riemannian g-natural metric G such that horizon-
tal and vertical distributions are orthogonal an@2) hold, the identity mapdty :
(TM,G) — (TM,gS) is harmonic.

Next, we want to find further examples of Riemannignatural metrics to
which Theorem 4 applies, but whose horizontal and vertigstidutions are not or-
thogonal. A reasonable assumption is that conditions (18)-do not depend on the
dimensiom of the base manifol. In this case, from (18)—(19) we get

@01(1+ @)+ Q2@+ 93) ¢ — 201(PL + @3) @ = O,

20" — @ufaz(Br + B3) — (01+3)B2] — @2[(01 + a3)B1 — a12P2] =0,

(@ — Q) (@L+93)' + (O+¢3)°@, — 202(1+ @3)¢h = 0,

— (@1 +@3)a" + @o[02(B1+P3) — (a1+03)B2] + (Qr+@3)[(a1+03)B1 — 02P2] = O.
There are plenty of examples of Riemanngnatural metrics o M satisfying this

set of equations. In particular, it is easy to check thatid (TM,G) — (TM,gS) is
harmonic in the following situations:

e Gis a linear combination, with constant factors, of the dtaddifts gS, g" and
g' of g; that is, there exist three constaatd, ¢, satisfyinga(a+c) —b? > 0,
such thati; =a, a0, =b, a3 =c, whilej =0foralli=1,2,3.

°G= ez Gg_,u' where), pare real constants satisfyingu > A2, andG%u is the
Riemanniarg-natural metric defined by

Gg,p(xh’Yh) = g(X,Y)+g(X,u)g(Y,u),
Gg,“(xh,yv) = H(Q(XaY) +9(X, U)g(Y, u)),
Gy (X, YY) = A(G(X,Y)+g(X,wg(Y,u)).

5. Harmonicity of the canonical projectionm : (T;M,G) — (M, g)

In this section, we study the harmonicity of the canonicaigutionTy : (TlM,G) —
(M, 9), whereG is an arbitrary induced Riemanni@maturalé on T;M. By Propo-
sition 4, there exist four constangs b, ¢ andd, with a > 0, a(a+ c) — b?® > 0 and
a(a+c+d) —b? > 0, such that (4) is satisfied.
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We fix (x,u) € T;M and consider an orthonormal moving frafeg i =1,...,n)
on an open subsét C M, such that(e,)x = u. Notice that we shall use the classical
tangential lifte} of the local vector fields; instead of tangential Iiftth, since ifb £ 0,
thengtG does not project onto a vector field. If we considermgr(U) the vector fields

E=e, Enj=¢; i=1..n j=1..n-1
then(E; | = 1,...,2n—1) is not a local frame on the whote 1(U). In fact, (e1)x €
T (V) and (Ent1)(e)x = 0. However,((Ei)xu; | =1,...,2n—1) is a basis of

(TiM)(xu)- So, there exists an open $&tC m 1(U), such tha(E; | =1,...,2n— 1)
is a local frame oW. Hence, sincet is an open mapping, thead’ := (W) is an
open set olJ.

Now, it is easy to see thd |w is Ty-related withe [y andEnyj [w is Tu-
related with the zero section &, foralli=1,...,nandj =1,...,n—1. We deduce
that, foralli,j=1,....,nandk,l =1,...,n—1,

Odm (B, E) = Og e fm(ﬁqhe';), Odm(E;, Enyx) = fn:*(ﬁéqéK),

(23) . . . . .
Odm(Ens, B) = —Tu(Og ), OdT(En ik, Eny) = —TL(Og ).
Using Proposition 5, the identity (3) and the facts thde )x,u) =0,i=1,...,n—1,
and(en)x = u, the expression of (23) &k, u) becomes

(24)
ab
20

Odm) (B, Ej) = 5~ [R((8)x, u) (€))x+ R((&))x, u) (&)x]

- % [9((&)x: u)(e))x+9((e))x, u)(&)x]
b

“latctda [(ad+b?) g(R((&)x, U) (&) )x, U)

—d(a+c+d)g((&)xu)gl(e)x u)u,

2
070 (B Envi) = o RU(800U)(@ )~ o 0((@)100) (80
1

- m [a(adJr bz) Q(R((Q )x, U) (er()X; U) + dd5ik]u,

2
0T (Enek B0) = o R85 0) (@) o 9((@)500) (80
1

T 2fatctd [a(ad+b%) g(R((& )x, U) (&)x, U) + dadi]u,

Hdyyy) (En+k7 En+|) = O U.

a+c+d

The tension field ofy, onW is defined by
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2n—-1
(25) (M) lw= Z GYodm(E,E));
=

where (G"Y) is the inverse matrix of the matriéé(E,EJ)N). We shall calculate the
tension field ofry at (x,u). For this, note that the matrifGy ) (i, Ey)) is expressed
as

0
(a+c)|nfl bln,]_
~ L 0
(Gxu)(Er,Eg)) = 0---0 a+c+d 0---0
0
blnfl aln,]_
0
and its inverse is given by
0
gln 1 : _Q|n 1
a . a =
. 0
GY)=] 00 g 0.0
0
7§|nfl . aai:ln,l
0

Substituting from the last matrix expression and the idest(24) into (25), we obtain

b
(M) () = (N— 1)5 u,

which implies at once the following

THEOREM 5. Let (M,g) be a Riemannian manifold of dimension-nl and
(TlM,G) its unit tangent bundle, equipped with an arbitrary indud®émannian g-
natural metricG. The canonical projection; : (T;M,G) — (M, g) is harmonic if and
only if the horizontal and tangential distributions of Ml are orthogonal with respect
to G.

Theorem 5 includes as a very special case the result by @r{it@} concern-
ing the harmonicity ofy : (T;M,gS) — (M, g), and gives yet another interesting geo-
metrical meaning to the orthogonality of the horizontal &gmgential distributions of
(TlM ) G)
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6. Harmonicity of G with respect to §S and conversely

In this section, we make use of techniques very similar toothes used in Section 4.
For this reason, we shall omit the details about how the fétamare deduced. The
tension fields of igs s : (T;M,gS) — (TiM.G) and idsg : (T;M, G) — (T;M, g8) turn
out to be given, respectively, by

ad+ b?
a

: b b2
T (idg) = Zh{aQu-"—"-g(Qu.u)u} - —WQu-g(Qu.uyu}.

. b
Tixu (idgg) = *ah{QU}-

Therefore, we easily deduce the following results.

THEOREM®G. Let(M,g) be a Riemannian manifold artélan arbitrary induced
Riemannian g-natural metric onW. The identity mailjggé (TM,gS) = (TiM,G) is
harmonic if and only if the horizontal and vertical distrifions of TM are orthogonal
with respect tds.

THEOREM7Y. Let(M,g) be a Riemannian manifold art@lan arbitrary induced
Riemannian g-natural metric onyM.

i) If (M,qg) is Ricci-flat, then the identity mai[iédS :(TM,G) — (T,M,g8) is
always harmonic.

ii) If (M, Q) is not Ricci-flat, '[heridég~S (T M,G) — (TlM,(j]vS) is harmonic if
and only if horizontal and tangential distributions ofM are orthogonal with respect
to G.
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