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HARMONIC MAPS HAVING TANGENT BUNDLES

WITH g-NATURAL METRICS AS SOURCE OR TARGET

Abstract. We produce new examples of harmonic maps, having as either source or target
manifold the tangent bundleTM on a Riemannian manifold(M,g), equipped with a Rieman-
niang-natural metricG. In particular, we study the harmonicity of the canonical projection
π : (TM,G)→ (M,g), and of the identity map(TM,G)→ (TM,gS) and conversely,gS being
the Sasaki metric onTM. A corresponding study is made for the unit tangent sphere bundle
T1M, equipped with a Riemanniang-natural metricG̃.

1. Introduction

Let (M,g), (M′,g′) be Riemannian manifolds, withM compact, and consider a smooth
map f : (M,g)→ (M′,g′). Theenergyof f is defined as the integral

E ( f ) :=
∫

M
e( f )dvg,

wheree( f ) = 1
2‖ f∗‖2 = 1

2trg f ∗g′ is the so-calledenergy densityof f . With respect to a
local orthonormal basis of vector fields{e1, . . . ,en} onM, one has

e( f ) = 1
2

n

∑
i=1

g′( f∗ei , f∗ei).

Critical points of the energy functionalE onC∞(M,M′) are known asharmonic maps.
They have been characterized in [10] as maps for which thetension fieldτ( f ) = tr∇d f
vanishes. WhenM is not compact, a mapf : (M,g)→ (M′,g′) is said to be harmonic if
τ( f ) = 0. We refer the reader to [9, 18] for further details and results about the energy
functional.

It is particularly interesting to investigate the harmonicity of maps between Rie-
mannian manifolds that are naturally constructed from one another. A classical ex-
ample is the tangent bundleTM on a Riemannian manifold(M,g), equipped with the
Sasaki metric gS. Nouhaud [15] proved that the only vector fieldsV defining har-
monic maps from a compact Riemannian manifold(M,g) to (TM,gS) are the paral-
lel vector fields. The same result was obtained independently by Ishihara [12], who
also gave an explicit expression of the tension field associated to a vector field. It is
well known that the canonical projectionπ : (TM,gS) → (M,g) is harmonic (see for
example [16]). Oniciuc [16] proved the same result whenTM is equipped with the
Cheeger–Gromoll metric gCG, and also proved the harmonicity of the canonical pro-
jectionπ1 : (T1M, g̃S)→ (M,g), whereg̃S denotes the Sasaki metric on the unit tangent
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sphere bundleT1M. Han and Yim [11] characterized unit vector fields which define
harmonic maps from(M,g) to (T1M, g̃S), by determining the associated tension field.

The Sasaki metricgS (as well as the Cheeger–Gromoll metric) is only one possi-
ble choice inside a very large family of Riemannian metrics on TM, known asRieman-
nian g-natural metrics. As their name suggests, those metrics are constructed in a very
“natural” way from a Riemannian metricg overM. The introduction ofg-natural met-
rics converts the classification of second order natural transformations of Riemannian
metrics on manifolds to that of metrics on tangent bundles, by work of O. Kowalski
and M. Sekizawa [14]. Other presentations of the basic result from [14] and more de-
tails about the concept of naturality can be found in [13]. The set ofg-natural metrics,
which depend on six smooth functions fromR+ to R, has been completely described
in [7].

In [2], the present authors and D. Perrone studied when a vector field V on a
Riemannian manifold(M,g) defines a harmonic mapV : (M,g)→ (TM,G), whereG
is an arbitrary Riemanniang-natural metric. Equipping the unit tangent sphere bun-
dle T1M with an arbitrary induced Riemanniang-natural metricG̃, the harmonicity of
V : (M,g) → (T1M,G̃) was discussed in [3], while [4] studied the harmonicity of the
geodesic flow̃ξ : (T1M,G̃)→ (TρT1M, ˜̃G).

In this paper, we study the harmonicity of the canonical projectionπ : (TM,G)
→ (M,g), whereG is an arbitrary Riemanniang-natural metric. We also determine
necessary and sufficient conditions for the harmonicity ofG with respect togS, that
is, of the identity map from(TM,G) into (TM,gS), and vice versa. Finally, a corre-
sponding study is made for the canonical projectionπ1 : (T1M,G̃) → (M,g), and for
the identity map from(T1M,G̃) to (T1M, g̃S) and vice versa. In this way, we establish
large classes of examples of harmonic maps, defined either from or to tangent bundles
equipped withg-natural Riemannian metrics and thus possessing a highly nontrivial
geometry.

The paper is organized in the following way. The basic information about Rie-
manniang-natural metrics onTM and T1M is given in Section 2. In Section 3 we
discuss the harmonicity ofπ : (TM,G) → (M,g), while in Section 4 we investigate
when the identity map(TM,G) → (TM,gS) and (TM,gS) → (TM,G) is harmonic.
The corresponding studies for the unit tangent sphere bundle T1M, equipped with a
Riemanniang-natural metricG̃, are given in Sections 5 and 6 respectively.

2. Preliminaries on Riemanniang-natural metrics

Let (M,g) be ann-dimensional Riemannian manifold and∇ its Levi-Civita connection.
At any point(x,u) of its tangent bundle TM, the tangent space ofTM splits into the
horizontal and vertical subspaces with respect to∇:

(TM)(x,u) = H(x,u)⊕V(x,u).

For any vectorX ∈ Mx, there exists a unique vectorXh ∈ H(x,u) (thehorizontal
lift of X to (x,u) ∈ TM), such thatπ∗Xh = X, whereπ : TM → M is the natural projec-
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tion. Thevertical lift of a vectorX ∈ Mx to (x,u) ∈ TM is a vectorXv ∈V(x,u) such that
Xv(d f) = X f , for all functions f on M. Here we consider 1-formsd f on M as func-
tions onTM (i.e.,(d f)(x,u) = u f). The mapX 7→ Xh is an isomorphism between the
vector spacesMx andH(x,u). Similarly, the mapX 7→Xv is an isomorphism betweenMx

andV(x,u). Each tangent vector̃Z ∈ (TM)(x,u) can be written in the form̃Z = Xh+Yv,
whereX,Y ∈ Mx are uniquely determined vectors.

Horizontal and vertical lifts of vector fields onM can be defined in an obvious
way and are vector fields uniquely defined onTM.

We can refer to [7] for the description of the class ofg-natural metrics on the
tangent bundle of a Riemannian manifold(M,g). All g-natural metrics are character-
ized as follows.

PROPOSITION1 ([7]). Let(M,g) be a Riemannian manifold of dimension n and
G be a g-natural metric on TM. Then there are six smooth functionsαi , βi : R+ → R,
i = 1,2,3, such that for every u, X, Y∈ Mx, we have

(1)






G(x,u)(X
h,Yh) = (α1+α3)(r2)gx(X,Y)+ (β1+β3)(r2)gx(X,u)gx(Y,u),

G(x,u)(X
h,Yv) = G(x,u)(X

v,Yh) = α2(r2)gx(X,Y)+β2(r2)gx(X,u)gx(Y,u),

G(x,u)(X
v,Yv) = α1(r2)gx(X,Y)+β1(r2)gx(X,u)gx(Y,u),

where r2 = gx(u,u). For n= 1, the same holds withβi = 0, i = 1,2,3.

Notation.In the sequel, we shall use the following notation. For allt ∈ R+,

• φi(t) = αi(t)+ t βi(t),

• α(t) = α1(t)(α1+α3)(t)−α2
2(t),

• φ(t) = φ1(t)(φ1+φ3)(t)−φ2
2(t).

PROPOSITION2 ([7]). A g-natural metric G on TM is Riemannian if and only
if its defining functionsαi ,βi satisfy the inequalities

(2) α1(t)> 0, φ1(t)> 0, α(t)> 0, φ(t)> 0,

for all t ∈ R+. For n= 1, (2) reduces toα1(t)> 0 andα(t)> 0, for all t ∈ R+.

CONVENTION 1. a) Throughout the paper, when we consider an arbitrary Rie-
manniang-natural metricG on TM, we implicitly suppose that it is defined by the
functionsαi , βi : R+ → R, i = 1,2,3, given in Proposition 1 and satisfying (2).

b) Unless otherwise stated, all real functionsαi , βi , φi , α andφ and their deriva-
tives are evaluated atr2 := gx(u,u).

c) We consider the Riemannian curvatureR of g with the sign convention
R(X,Y) = [∇X ,∇Y] − ∇[X,Y].
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Remark. In literature, there are some well known Riemannian metricson the
tangent bundle, which turn out to be special cases of Riemanniang-natural metrics. In
particular:

• the Sasaki metric gS is obtained forα1(t) = 1 andα2(t) = α3(t) = β1(t) =
β2(t) = β3(t) = 0.

• theCheeger–Gromoll metric gCG (see [8]) is obtained whenα2(t) = β2(t) = 0,
α1(t) = β1(t) =−β3(t) = 1/(1+ t) andα3(t) = t/(1+ t).

Sinceα2 = β2 = 0, by (1) it follows thatgS and gCG are examples of Riemannian
g-natural metrics onTM for which horizontal and vertical distributions are mutually
orthogonal.

The Levi-Civita connection̄∇ of an arbitrary Riemanniang-natural metricG on
TM, can be described as follows:

PROPOSITION3 ([6]). Let (M,g) be a Riemannian manifold of dimension n,∇
its Levi-Civita connection and R its curvature tensor. Let Gbe a Riemannian g-natural
metric on TM. Then the Levi-Civita connection̄∇ of (TM,G) is characterized by

(i) (∇̄XhYh)(x,u) = (∇XY)h
(x,u)+h{A(u;Xx,Yx)}+ v{B(u;Xx,Yx)},

(ii) (∇̄XhYv)(x,u) = (∇XY)v
(x,u)+h{C(u;Xx,Yx)}+ v{D(u;Xx,Yx)},

(iii ) (∇̄XvYh)(x,u) = h{C(u;Yx,Xx)}+ v{D(u;Yx,Xx)},
(iv) (∇̄XvYv)(x,u) = h{E(u;Xx,Yx)}+ v{F(u;Xx,Yx)},

for all vector fields X, Y on M and(x,u) ∈ TM. Here A,B,C,D,E,F are defined, for
all u, X, Y∈ Mx, x∈ M, by:

A(u;X,Y) = A1[R(X,u)Y+R(Y,u)X]+A2[gx(Y,u)X+gx(X,u)Y]

+A3gx(R(X,u)Y,u)u+A4gx(X,Y)u+A5gx(X,u)gx(Y,u)u,

A1 =−α1α2

2α
, A2 =

α2(β1+β3)

2α
, A3 =

α2{α1[φ1(β1+β3)−φ2β2]+α2(β1α2−β2α1)}
αφ

,

A4 =
φ2(α1+α3)

′

φ
, A5 =

αφ2(β1+β3)
′+(β1+β3){α2[φ2β2−φ1(β1+β3)]+(α1+α3)(α1β2−α2β1)}

αφ
;

next:

B(u;X,Y) = B1R(X,u)Y+B2R(X,Y)u+B3[gx(Y,u)X+gx(X,u)Y]

+B4gx(R(X,u)Y,u)u+B5gx(X,Y)u+B6gx(X,u)gx(Y,u)u,

B1 =
α2

2
α
, B2 =−α1(α1+α3)

2α
, B3 =− (α1+α3)(β1+β3)

2α
,

B4 =
α2{α2[φ2β2−φ1(β1+β3)]+(α1+α3)(β2α1−β1α2)}

αφ
, B5 =− (φ1+φ3)(α1+α3)

′

φ
,

B6 =
−α(φ1+φ3)(β1+β3)

′+(β1+β3){(α1+α3)[(φ1+φ3)β1−φ2β2]+α2[α2(β1+β3)−(α1+α3)β2]}
αφ

;



Harmonic maps andg-natural metrics 41

next:

C(u;X,Y) =C1R(Y,u)X+C2gx(X,u)Y+C3gx(Y,u)X+C4gx(R(X,u)Y,u)u

+C5gx(X,Y)u+C6gx(X,u)gx(Y,u)u,

C1 =−α2
1

2α
, C2 =

α1(β1+β3)

2α
, C3 =

α1(α1+α3)
′−α2(α′

2−
β2
2 )

α
,

C4 =
α1{α2(α2β1−α1β2)+α1[φ1(β1+β3)−φ2β2]}

2αφ
, C5 =

φ1(β1+β3)+φ2(2α′
2−β2)

2φ
,

C6 =
αφ1(β1+β3)

′+{α2(α1β2−α2β1)+α1[φ2β2−(β1+β3)φ1]}[(α1+α3)
′+ β1+β3

2 ]

αφ

+
{α2[β1(φ1+φ3)−β2φ2]−α1[β2(α1+α3)−α2(β1+β3)]}

(
α′

2−
β2
2

)

αφ ;

next:

D(u;X,Y) = D1R(Y,u)X+D2gx(X,u)Y+D3gx(Y,u)X+D4gx(R(X,u)Y,u)u

+D5gx(X,Y)u+D6gx(X,u)gx(Y,u)u,

D1 =
α1α2

2α
, D2 =−α2(β1+β3)

2α
, D3 =

−α2(α1+α3)
′+(α1+α3)(α′

2−
β2
2 )

α
,

D4 =
α1{(α1+α3)(α1β2−α2β1)+α2[φ2β2−φ1(β1+β3)]}

2αφ
, D5 =− φ2(β1+β3)+(φ1+φ3)(2α′

2−β2)
2αφ ,

D6 =
−αφ2(β1+β3)

′+{(α1+α3)(α2β1−α1β2)+α2[φ1(β1+β3)−φ2β2]}
[
(α1+α3)

′+ β1+β3
2

]

α phi

+
{(α1+α3)[β2φ2−β1(φ1+φ3)]+α2[β2(α1+α3)−α2(β1+β3)]}

(
α′

2−
β2
2

)

αφ ;

next:

E(u;X,Y) = E1[gx(Y,u)X+gx(X,u)Y]+E2gx(X,Y)u+E3gx(X,u)gx(Y,u)u,

E1 =
α1(α′

2+
β2
2 )−α2α′

1
α

, E2 =
φ1β2−φ2(β1−α′

1)

φ
,

E3 =
α(2φ1β′2−φ2β′1)+2α′

1{α1[α2(β1+β3)−β2(α1+α3)]+α2[β1(φ1+φ3)−β2φ2]}
αφ

+
(2α′

2+β2){α1[φ2β2−φ1(β1+β3)]+α2(α1β2−α2β1)}
αφ ;

and finally:

F(u;X,Y) = F1[gx(Y,u)X+gx(X,u)Y]+F2gx(X,Y)u+F3gx(X,u)gx(Y,u)u,

F1 =
−α2(α′

2+
β2
2 )+(α1+α3)α′

1
α

, F2 =
(φ1+φ3)(β1−α′

1)−φ2β2

φ

F3 =
α[(φ1+φ3)β′1−2φ2β′2]+2α′

1{α2[β2(α1+α3)−α2(β1+β3)]+(α1+α3)[β2φ2−β1(φ1+φ3)]}
αφ

+
(2α′

2+β2){α2[φ1(β1+β3)−φ2β2]+(α1+α3)(α2β1−α1β2)}
αφ .

For n= 1, the same holds withβi = 0, i = 1,2,3.
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Next, we recall that thetangent sphere bundle of radius r> 0 over a Riemannian
manifold(M,g) is the hypersurfaceTrM = {(x,u) ∈ TM | gx(u,u) = r2}. The tangent
space at a point(x,u) ∈ TrM is given by

(TrM)(x,u) =
{

Xh+Yv
∣∣∣ X ∈ Mx, Y ∈ {u}⊥ ⊂ Mx

}
.

Whenr = 1, T1M is calledthe unit tangent (sphere) bundle.

For the restrictions toTrM of Riemanniang-natural metrics, we have

PROPOSITION4 ([5]). Let r > 0 and (M,g) be a Riemannian manifold. For
every Riemannian metric̃G on TrM induced from a Riemannian g-natural metric G
on TM, there exist four constants a, b, c and d, with a> 0, a(a+ c)− b2 > 0 and
a(a+ c+dr2)−b2 > 0, such that





G̃(x,u)(X
h
1 ,X

h
2 ) = (a+ c)gx(X1,X2)+dgx(X1,u)gx(X2,u),

G̃(x,u)(X
h
1 ,Y

v
1 ) = G̃(x,u)(Y

v
1 ,X

h
1 ) = bgx(X1,Y1),

G̃(x,u)(Y
v
1 ,Y

v
2 ) = agx(Y1,Y2),

for all (x,u) ∈ T1M and Xi , Yi ∈ Mx, i = 1,2, with Yi orthogonal to u.

We shall call such a metric aninduced Riemannian g-natural metric on T1M.

Using the Schmidt’s orthonormalization process, a simple calculation shows
that the vector field onTM defined by

NG
(x,u) =

1√
(a+ c+d)φ

[
−buh+(a+ c+d)uv

]
,

for all (x,u) ∈ TM, is normal toT1M and unitary at any point ofT1M.

We now define the “tangential lift”XtG (with respect toG) of a vectorX ∈Mx to
(x,u) ∈ T1M as the tangential projection of the vertical lift ofX to (x,u) (with respect
to NG), that is,

XtG = Xv−G(x,u)(X
v,NG

(x,u)) NG
(x,u) = Xv−

√
φ

a+ c+d
gx(X,u) NG

(x,u).

If X ∈Mx is orthogonal tou, thenXtG = Xv. Note that ifb= 0, thenXtG coincides with
the classical tangential liftXt defined for the case of the Sasaki metric. In the general
case,

(3) XtG = Xt +
b

a+ c+d
g(X,u)uh.

The tangent space(T1M)(x,u) of T1M at (x,u) is spanned by vectors of the form
Xh andYtG, whereX, Y ∈ Mx. Hence,G̃ onT1M is completely determined by

(4)





G̃(x,u)(X
h,Yh) = (a+ c)gx(X,Y)+dgx(X,u)gx(Y,u),

G̃(x,u)(X
h,YtG) = G̃(x,u)(X

tG,Yh) = bgx(X,Y),

G̃(x,u)(X
tG,YtG) = agx(X,Y)− φ

a+c+dgx(X,u)gx(Y,u),
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for all (x,u) ∈ T1M andX, Y ∈ Mx. We now have

PROPOSITION5 ([1]). The Levi-Civita connectioñ∇ of G̃ is given at a point
(x,u) ∈ T1M by

(∇̃XhYh)(x,u) =

{
(∇XY)x−

ab
2α
[
R(Xx,u)Yx+R(Yx,u)Xx

]
+

bd
2α
[
g(Xx,u)Yx+g(Yx,u)Xx

]

+
b

(a+ c+d)α

[
(ad+b2)g(R(Xx,u)Yx,u)− d(a+ c+d)g(Xx,u)g(Yx,u)

]
u

}h

+

{
b2

α
R(Xx,u)Yx −

a(a+ c)
2α

R(Xx,Yx)u−
(a+ c)d

2α
[
g(Yx,u)Xx+g(Xx,u)Yx

]

+
1
α

[
−b2g(R(Xx,u)Yx,u)+ d(a+ c)g(Yx,u)g(Xx,u)

]
u

}tG

,

(∇̃XhYtG)(x,u) =

{
− a2

2α
R(Yx,u)Xx−

ab2

2(a+ c+d)α
g(Yx,u)R(Xx,u)u+

ad
2α

g(Xx,u)Yx

+
db2

2(a+ c+d)α
g(Yx,u)Xx+

1
2(a+ c+d)α

[
a(ad+b2)g(R(Xx,u)Yx,u)

+dαg(Xx,Yx)− ad(2(a+ c)+d)g(Xx,u)g(Yx,u)
]
u

}h

+

{
(∇XY)x+

ab
2α

R(Yx,u)Xx−
b(α−b2)

2(a+ c+d)α
g(Yx,u)R(Xx,u)u−

bd
2α

g(Xx,u)Yx

− (a+ c)bd
2(a+ c+d)α

g(Yx,u)Xx+
b

2(a+ c+d)α

[
−a(a+ c+d)g(R(Xx,u)Yx,u)

+d(2(a+ c)+d)g(Xx,u)g(Yx,u)
]
u

}tG

,

(∇̃XtGYh)(x,u) =

{
− a2

2α
R(Xx,u)Yx+

b
a+ c+d

g(Xx,u)∇uY+
ad
2α

g(Yx,u)Xx

− ab2

2(a+ c+d)α
g(Xx,u)R(Yx,u)u+

db2

2(a+ c+d)α
g(Xx,u)Yx

+
1

2(a+ c+d)α

[
a(ad+b2)g(R(Xx,u)Yx,u)

+dαg(Xx,Yx)−ad(2(a+ c)+d)g(Xx,u)g(Yx,u)
]
u

}h

+

{
ab
2α

R(Xx,u)Yx+
a(a+ c)b

2(a+ c+d)α
g(Xx,u)R(Yx,u)u−

bd
2α

g(Yx,u)Xx
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− (a+ c)bd
2(a+ c+d)α

g(Xx,u)Yx+
b

2(a+ c+d)α
[−a(a+ c+d)g(R(Xx,u)Yx,u)

+d(2(a+ c)+d)g(Xx,u)g(Yx,u)]u

}tG

,

(∇̃XtGYtG)(x,u) =
b

2(a+ c+d)α

{
−a2[g(Xx,u)R(Yx,u)u+g(Yx,u)R(Xx,u)u]

+ad g(Xx,u)Yx+(2α+ad)g(Yx,u)Xx−
2dφ

a+ c+d
g(Xx,u)g(Yx,u)u

}h

+
1

2(a+ c+d)α

{
2bαg(Xx,u)∇uY+ab2[g(Xx,u)R(Yx,u)u

+g(Yx,u)R(Xx,u)u]−b2d g(Xx,u)Yx− (2(a+ c+d)α−b2d)g(Yx,u)Xx

}tG

,

for all (x,u) ∈ T1M and X, Y vector fields on M.

CONVENTION 2. The tangential lift to(x,u) ∈ T1M of the vectoru is given by
utG = b

a+c+d uh and so, it is a horizontal vector. Hence, the tangent space(T1M)(x,u)
coincides with {

Xh+YtG
∣∣ X ∈ Mx, Y ∈ {u}⊥ ⊂ Mx

}
.

For this reason, the operation of tangential lift fromMx to a point(x,u) ∈ T1M will be
always applied only to vectors ofMx which are orthogonal tou.

3. Harmonicity of the canonical projectionπ : (TM,G)→ (M,g)

Let (M,g) be a Riemannian manifold of dimensionn and(TM,G) its tangent bundle,
equipped with an arbitrary Riemanniang-natural metricG. We shall calculate the
tension field of the mapπ : (TM,G)→ (M,g), in order to decide whenπ is harmonic.

If (EI ; I = 1, . . . ,2n) is a local frame (not necessarily orthonormal) on an open
subsetW ⊂ TM, then the tension field onW is defined by

(5) τ(π) ↾W=
2n

∑
I ,J=1

GIJ∇dπ(EI ,EJ),

where (GIJ) is the inverse matrix of the matrix(G(EI ,EJ)). In order to calculate
∇dπ(EI ,EJ), it is convenient to choose the vector fieldsEI onW which areπ-related
with some local vector fields onM, since in this case

∇dπ(EI ,EJ) = ∇π∗EI (π∗EJ)−π∗(∇̄EI EJ).
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Fix (x,u) ∈ TM and consider an orthonormal moving frame(ei ; i = 1, . . . ,n) on
an open subsetU ⊂ M, such thatr (en)x = u, wherer = ‖u‖. Onπ−1(U), we put

(6) Ei = eh
i , En+i = ev

i , i = 1, . . . ,n.

It is easy to see that(EI ; I = 1, . . . ,2n) is a local frame onπ−1(U), such thatEi is
π-related withei andEn+i is π-related with the zero section onU , for all i = 1, . . . ,n.
Thus,

∇dπ(Ei ,E j) = ∇ei ej −π∗(∇̄eh
i
eh

j ), ∇dπ(Ei ,En+ j) =−π∗(∇̄eh
i
ev

j),

∇dπ(En+i ,E j) =−π∗(∇̄ev
i
eh

j ), ∇dπ(En+i,En+ j) =−π∗(∇̄ev
i
ev

j).
(7)

Using Proposition 3, formulas (7) calculated at(x,u) become

∇dπ(x,u)(Ei ,E j) =−A(u;(ei)x,(ei)x), ∇dπ(x,u)(Ei ,En+ j) =−C(u;(ei)x,(ei)x),

∇dπ(x,u)(En+i,E j) =−C(u;(ei)x,(ei)x), ∇dπ(x,u)(En+i ,En+ j) =−E(u;(ei)x,(ei)x).

(8)

We now consider the inverse matrix(GIJ
(x,u)), in order to calculate the tension

field τ(π)(x,u) of π. Since

(G(x,u)(EI ,EJ)) =




(α1+α3)In−1

0
...
0

α2In−1

0
...
0

0 · · · 0 φ1+φ3 0 · · · 0 φ2

α2In−1

0
...
0

α1In−1

0
...
0

0 · · · 0 φ2 0 · · · 0 φ1




,

it is easily seen that

(9) (GIJ
(x,u)) =




α1
α In−1

0
...
0

−α2
α In−1

0
...
0

0 · · · 0 φ1
φ 0 · · · 0 − φ2

φ

−α2
α In−1

0
...
0

α1+α3
α In−1

0
...
0

0 · · · 0 − φ2
φ 0 · · · 0 φ1+φ3

φ




.

Substituting from (8) and (9) into (5), we obtain
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τ(π)(x,u) =
1
α

n

∑
i=1

[−α1A(u;(ei)x,(ei)x))+2α2C(u;(ei)x,(ei)x))

−(α1+α3)E(u;(ei)x,(ei)x))]

+
(α1

α
− φ1

φ

)
A(u;(en)x,(en)x))−2

(α2

α
− φ2

φ

)
C(u;(en)x,(en)x))

+
(α1+α3

α
− φ1+φ3

φ

)
E(u;(en)x,(en)x)).

(10)

We then use the expressions ofA, C andE from Proposition 3 and the fact that
r (en)x = u and (10) becomes

τ(π)(x,u) = 2
α [α1A1−α2C1]Qu+

{
1
α [α1A3−2α2C4]g(Qu,u)

+ 1
φ [−φ1(2A2+A4+ r2A5)+2φ2(C2+C3+C5+ r2C6)

−(φ1+φ3)(2E1+E2+ r2E3)]+
n−1

α [−α1A4+2α2C5− (φ1+φ3)E2]
}
,

whereQ is the Ricci operator associated tog andAi ,Bi ,Ei are evaluated atr2. Next, a
long but routine calculation shows that

α1A1−α2C1 = 0, α1A3−2α2C4 = 0, 2A2+A4+ r2A5 =
φ2
φ (φ1+φ3)

′,

C2+C3+C5+ r2C6 =
φ1
φ (φ1+φ3)

′, 2E1+E2+ r2E3 =
1
φ (2φ1φ′2−φ2φ′1),

−α1A4+2α2C5− (φ1+φ3)E2 =
1
φ

{
−φ2α′+φ1[α2(β1+β3)− (α1+α3)β2]

φ2
[
(α1+α3)β1−α2β2

]}
.

Substituting these equations into the previous expressionfor τ(π)(x,u), we obtain

τ(π)(x,u) =
{ 1

φ2

[
φ2φ′−2φφ′2

]
+

n−1
αφ

{−φ2α′+φ1
[
α2(β1+β3)− (α1+α3)β2

]

+φ2[(α1+α3)β1−α2β2]}
}

u.

In this way, we proved the following

THEOREM 1. Let (M,g) be a Riemannian manifold of dimension n and(TM,
G) its tangent bundle, equipped with an arbitrary Riemannian g-natural metric G. The
canonical projectionπ : (TM,G) → (M,g) is harmonic if and only if the functions
defining the metric G satisfy

(n−1)φ{−φ2α′+φ1[α2(β1+β3)− (α1+α3)β2](11)

+φ2[(α1+α3)β1−α2β2]}+α[φ2φ′−2φφ′2] = 0.
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We explicitly note that for any arbitrary choice of (for example) α1,α2,α3,β1,
β2 definingG, (11) gives a first order linear differential equation whichfixes the re-
maining functionβ3. The standard existence theorem ensures that (11) admits solu-
tions, depending on an arbitrary real parameter. Therefore, Theorem 1 yields

COROLLARY 1. Riemannian g-natural metrics G on the tangent bundle TM,
for whichπ : (TM,G)→ (M,g) is harmonic, form a class depending on five arbitrary
smooth functions (satisfying(2)) and a real parameter.

In the special case whenα2 = β2 = 0, equation (11) is trivially satisfied. So, we
have the following

COROLLARY 2. Let (M,g) be a Riemannian manifold of dimension n, whose
tangent bundle TM is equipped with an arbitrary Riemannian g-natural metric G,
with respect to which horizontal and vertical distributions are orthogonal. Thenπ :
(TM,G)→ (M,g) is harmonic.

Corollary 2 extends to a large family of Riemanniang-natural metrics, depend-
ing on four functions of one variable, the classical result about the harmonicity of
π : (TM,gS) → (M,g), and the result proved in [16] concerning the harmonicity of
π : (TM,gCG)→ (M,g).

Another interesting class of Riemannian metrics onTM to which Corollary 2
applies, is the non-classical family of metrics studied by Oproiu in [17], and described
as follows: for any of such a metric, there exist two smooth functionsv,w : R+ → R,
such that (see also [7])

{
α1(t) = 1

v(t/2) , α2(t) = 0, (α1+α3)(t) = v(t/2),

β1(t) =− w(t/2)
v(t/2)[v(t/2)+tw(t/2)] , β2(t) = 0, (β1+β3)(t) = w(t/2).

As regards explicit examples of Riemanniang-natural metrics onTM, whose
horizontal and vertical distributions are not orthogonal but have a harmonic canonical
projection, one can easily deduce the following from Theorem 1.

THEOREM2. Let(M,g) be a Riemannian manifold of dimension n, TM its tan-
gent bundle and G be a Riemannian g-natural metric whose defining functions satisfy
β1 = β2 = β3 = 0.

a) If n= 2, then the canonical projectionπ : (TM,G)→ (M,g) is harmonic if and
only if α2 is constant;

b) If n> 2, then the canonical projectionπ : (TM,G)→ (M,g) is harmonic if and
only if

• eitherα2 = 0 identically, or

• α2(t) 6= 0 for all t and there exists a real constant K> 0, such thatα =

K|α2|
−2
n−2 .
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In particular, Theorem 2 implies that ifn> 2 andG is a Riemanniang-natural
metric satisfyingβ1 = β2 = β3 = 0 and

(i) eitherα1 = a, α2 = b, α3 = c, for three real constantsa> 0, b 6= 0 andc (satis-
fying a(a+ c)−b2 > 0), or

(ii) α1(t) =
√

1+Ke−2te
n−2
n−1t , α2(t) = e

n−2
n−1 t , α3 = 0, for a real constantK > 0,

thenπ : (TM,G)→ (M,g) is harmonic.

4. Harmonicity of G with respect togS and conversely

In this section, we shall study when an arbitrary Riemanniang-natural metricG onTM
is harmonic with respect to the Sasaki metricgS and conversely, that is, the harmonicity
of the identity maps idgSG : (TM,gS) → (TM,G) and idGgS : (TM,G) → (TM,gS),
calculating their tension fields.

We fix (x,u) ∈ TM and consider an orthonormal moving frame(ei ; i = 1, . . . ,n)
on an open subsetU ⊂ M, such thatr (en)x = u, wherer = ‖u‖. On π−1(U), we
consider the local moving frame(EI ; I = 1, . . . ,2n) given by (6). The tension field of
idgSG at (x,u) is given by

(12) τ(x,u)(idgSG) =
2n

∑
i=1

(∇̄EI EI −∇s
EI

EI )(x,u),

where∇s is the Levi-Civita connection of the Sasaki metric. Using Proposition 3,
equation (12) becomes

τ(x,u)(idgSG) = h
{ n

∑
i=1

[A(u;ei ,ei)−A0(u;ei ,ei)+E(u;ei,ei)−E0(u;ei ,ei)]
}

+ v
{ n

∑
i=1

[B(u;ei ,ei)−B0(u;ei ,ei)+F(u;ei ,ei)−F0(u;ei ,ei)]
}
,

whereA0,B0,E0,F0 are theF-tensor fields associated to the Sasaki metric. Hence,

τ(x,u)(idgSG)

= h
{
−2A1Qu+[−A3g(Qu,u)+2A2+r2A5+nA4]u+[2E1+rE

3 +nE2]u
}

+ v
{

B1Qu+[−B4g(Qu,u)+2B3+r2B6+nB5]u+[2F1+rF
3 +nF2]u

}

and so,τ(x,u)(idgSG) = 0 if and only if

(13)

{
2A1Qu= [−A3g(Qu,u)+2A2+ r2A5+nA4+2E1+ rE

3 +nE2]u,

B1Qu=−[−B4g(Qu,u)+2B3+ r2B6+nB5+2F1+ rF
3 +nF2]u.
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We take the scalar product of both equations in (13) byu. Calculatingg(Qu,u) from
both of them, a routine calculation gives

α2φ1g(Qu,u)

= r2{φ2φ′3+2φ1φ′2+(n−1)[φ1β2−φ2(β1−α′
1− (α1+α3)

′)]}
= r2{(φ1+φ3)φ′3+2φ2φ′2+(n−1)[φ2β2− (φ1+φ3)(β1−α′

1− (α1+α3)
′)]},

and so

(14) φ′3 = (n−1)[β1−α′
1− (α1+α3)

′]

and
−α2g(Qu,u) = r2{2φ′2+(n−1)β2},

which, used into (13), leads to conclude that the tension field of the map idgSG vanishes
identically if and only if (14) holds and

(15) −α2Qu= [2φ′2+(n−1)β2]u.

If α2 = 0, then (15) gives 2φ′2+(n−1)β2 = 0, that is,

(16) (n+1)β2(t)+ tβ′
2(t) = 0, for all t ∈R+.

We now prove thatβ2 vanishes identically onR+. In fact, if β2 6= 0, we can consider
the open setI = {t ∈ R+, β2(t) 6= 0} 6= /0. A connected componentJ of I is an open
interval ofI . If we putt0 = inf J, thenβ2(t0) = 0. Integrating (16), we getβ2 =Kt−(n+1)

onJ, for someK ∈ R. The continuity ofβ2 at t0 then impliesK = 0, which contradicts
β2 6= 0 onJ. Therefore,β2 = 0.

Next, if α2(t1) 6= 0 for somet1 ∈ R+, we consider the open subsetI ′ = {t ∈
R+, α2(t) 6= 0} 6= /0 and a connected componentJ′ ⊂ I ′. By virtue of (15), we have

Qu=
2φ′2+(n−1)β2

α2
u, for all u such that ‖u‖2 ∈ J′.

The linearity ofQ then implies that the function
2φ′2+(n−1)β2

α2
= K is constant onJ′, and

Qu= Ku, for all u such that‖u‖2 ∈ J′. Again the linearity ofQ then yieldsQu= Ku
for all u∈ TM. In this way, we proved the following

THEOREM 3. Let (M,g) be a Riemannian manifold of dimension n and G an
arbitrary Riemannian g-natural metric G on TM. The identitymapidgSG : (TM,gS)→
(TM,G) is harmonic if and only if(14)holds and

• either horizontal and vertical distributions are orthogonal with respect to G, or

• (M,g) is an Einstein manifold, with Qu= Ku for all u, and

(17) 2φ′2+(n−1)β2 = Kα2.
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Note that (14) fixesβ3 in function of some of the remaining defining functions
of G, as a solution of a first order linear differential equation.By Theorem 3, if(M,g)
is a Riemannian manifold which is not Einstein, then idgSG is harmonic if and only if
α2 = β2 = 0 and (14) holds. Hence, in this case, Riemanniang-natural metricsG for
which idgSG is harmonic, form a class depending on three smooth functions and a real
parameter. When(M,g) is Einstein,g-natural metricsG for which idgSG is harmonic,
depend on four smooth functions and a real parameter, since in this case (14) and (17)
must hold. Some explicit examples are given in the following

COROLLARY 3. Let (M,g) be an Einstein manifold, with Qu= 2λu for all u,
λ > 0, and G a Riemannian g-natural metric on TM, whose defining functionsαi ,βi

are given by

α1(t) = Keλt , α2(t) = K′eλt , α3 = 0,

β1(t) = 2λKeλt , β2 = 0, β3 = 0,

for some real numbers K and K′, satisfying K> |K′|. Then, the identity mapidgSG :
(TM,gS)→ (TM,G) is harmonic.

Note that the inequalitiesλ ≥ 0 andK > |K′| are the necessary and sufficient
conditions forG to be Riemannian.

As a special subclass of Riemanniang-natural metrics onTM of Corollary 1,
we can quote the linear combination, with constant factors,of the classical liftsgS and
gh of g, that is,G= agS+bh, wherea> |b|.

The study of the harmonicity of idGgS : (TM,G) → (TM,gS), for an arbitrary
Riemanniang-natural metricG on TM, is significantly more difficult. As before, to
calculate the tension field of idGgS, we fix (x,u) ∈ TM and consider an orthonormal
moving frame(ei ; i = 1, . . . ,n) on an open subsetU ⊂ M, such thatr (en)x = u, where
r = ‖u‖. Onπ−1(U), we consider the local moving frame(EI ; I = 1, . . . ,2n) given by
(6). Using (9), the tension field of idTM : (TM,G) → (TM,gS) at the point(x,u) is
given by

τ(x,u)(idGgS) : =
n−1

∑
i=1

α1

α
(∇s

eh
i
eh

i − ∇̄eh
i
eh

i )(x,u)+
φ1

φ
(∇s

eh
n
eh

n− ∇̄eh
n
eh

n)(x,u)

−
n−1

∑
i=1

α2

α
[(∇s

eh
i
ev

i − ∇̄eh
i
ev

i )+ (∇s
ev
i
eh

i − ∇̄ev
i
eh

i )](x,u)

− φ2

φ
[(∇s

eh
n
ev

n− ∇̄eh
n
ev

n)+ (∇s
ev
n
eh

n− ∇̄ev
n
eh

n)](x,u)

+
n−1

∑
i=1

α1+α3

α
(∇s

ev
i
ev

i − ∇̄ev
i
ev

i )(x,u)+
φ1+φ3

φ
(∇s

ev
n
ev

n− ∇̄ev
n
ev

n)(x,u).

Using Proposition 3, long calculations then give
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τ(x,u)(idGgS) =−
{

1
φ2

[
φ2φ1(φ1+φ3)

′+φ2(φ+φ3)φ′1−2φ1(φ1+φ3)φ′2
]

+
n−1
αφ

[
φ2α′−φ1[α2(β1+β3)− (α1+3)β2]−φ2[(α1+α3)β1−α2β2]

]}
uh

−
{

1
φ2

[
(φ2

2−φ)(φ1+φ3)
′+(φ+φ3)

2φ′1−2φ2(φ1+φ3)φ′2
]
+

n−1
αφ

[
− (φ1+φ3)α′

+φ2[α2(β1+β3)− (α1+3)β2]+ (φ1+φ3)[(α1+α3)β1−α2β2]
]}

uv.

Hence, we have the following

THEOREM 4. Let (M,g) be a Riemannian manifold of dimension n and G an
arbitrary Riemannian g-natural metric on TM. The identity map idGgS : (TM,G) →
(TM,gS) is harmonic if and only if the following conditions are satisfied:

0 =
1
φ
[
φ2φ1(φ1+φ3)

′+φ2(φ+φ3)φ′1−2φ1(φ1+φ3)φ′2
]

(18)

+
n−1

α

[
φ2α′−φ1[α2(β1+β3)− (α1+3)β2]

−φ2[(α1+α3)β1−α2β2]
]
,

0 =
1
φ

[
(φ2

2−φ)(φ1+φ3)
′+(φ1+φ3)

2φ′1−2φ2(φ1+φ3)φ′2
]

(19)

+
n−1

α

[
− (φ1+φ3)α′+φ2[α2(β1+β3)− (α1+α3)β2]

+(φ1+φ3)[(α1+α3)β1−α2β2]
]
.

The class of Riemanniang-natural metricsG satisfying (18)–(19) is very large,
since these equations can be used to determine two of the defining functions ofG by
means of the remaining four defining functions. However, thecomplexity of conditions
(18) and (19) does not permit to give them an easy geometricalinterpretation.

In order to find examples, we shall restrict ourselves to somespecial cases. The
first we investigate is the one where horizontal and verticaldistributions are orthogonal
with respect toG. Then, (18) is automatically satisfied, while (19) reduces to

(φ1+φ3)
′− φ1+φ3

φ1
φ′1 =

n−1
α

[
− (φ1+φ3)α′+ (φ1+φ3)(α1+α3)β1

]
.

Assuming also that this equation does not depend on the dimensionn of M, it gives

(20)

{
φ1(φ1+φ3)

′ = (φ1+φ3)φ′1,
−(φ1+φ3)α′+(φ1+φ3)(α1+α3)β1 = 0.

Sinceα2 = β2 = 0, by (2) we necessarily haveφ1+φ3 > 0 andα1+α3 > 0. Thus, (20)
reduces to
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(21) φ1(φ1+φ3)
′ = (φ1+φ3)φ′1, β1 =

α′

α1+α3
.

Integrating the first equation in (21), we getφ1 =K1(φ1+φ3) for a real constantK1 > 0.
Solvingφ1 = K1(φ1+φ3) with respect toβ3, we then have

(22) β3 =
1−K1

K1t
φ1−

1
t

α3, β1 =
(α(α1+α3))

′

α1+α3
.

Hence, we can state the following

PROPOSITION6. For any Riemannian g-natural metric G such that horizon-
tal and vertical distributions are orthogonal and(22) hold, the identity mapidTM :
(TM,G)→ (TM,gS) is harmonic.

Next, we want to find further examples of Riemanniang-natural metrics to
which Theorem 4 applies, but whose horizontal and vertical distributions are not or-
thogonal. A reasonable assumption is that conditions (18)–(19) do not depend on the
dimensionn of the base manifoldM. In this case, from (18)–(19) we get




φ2φ1(φ1+φ3)
′+φ2(φ+φ3)φ′1−2φ1(φ1+φ3)φ′2 = 0,

φ2α′−φ1[α2(β1+β3)− (α1+3)β2]−φ2[(α1+α3)β1−α2β2] = 0,

(φ2
2−φ)(φ1+φ3)

′+(φ+φ3)
2φ′1−2φ2(φ1+φ3)φ′2 = 0,

−(φ1+φ3)α′+φ2[α2(β1+β3)− (α1+α3)β2]+ (φ1+φ3)[(α1+α3)β1−α2β2] = 0.

There are plenty of examples of Riemanniang-natural metrics onTM satisfying this
set of equations. In particular, it is easy to check that idTM : (TM,G) → (TM,gS) is
harmonic in the following situations:

• G is a linear combination, with constant factors, of the classical lifts gS, gh and
gv of g; that is, there exist three constantsa,b,c, satisfyinga(a+ c)−b2 > 0,
such thatα1 = a, α2 = b, α3 = c, while βi = 0 for all i = 1,2,3.

• G= e
t
2 G0

λ,µ, whereλ,µ are real constants satisfying 1+µ> λ2, andG0
λ,µ is the

Riemanniang-natural metric defined by





G0
λ,µ(X

h,Yh) = g(X,Y)+g(X,u)g(Y,u),

G0
λ,µ(X

h,Yv) = µ(g(X,Y)+g(X,u)g(Y,u)),
G0

λ,µ(X
v,Yv) = λ(g(X,Y)+g(X,u)g(Y,u)).

5. Harmonicity of the canonical projectionπ1 : (T1M,G̃)→ (M,g)

In this section, we study the harmonicity of the canonical projectionπ1 : (T1M,G̃) →
(M,g), whereG̃ is an arbitrary induced Riemanniang-naturalG̃ on T1M. By Propo-
sition 4, there exist four constantsa, b, c andd, with a > 0, a(a+ c)− b2 > 0 and
a(a+ c+d)−b2> 0, such that (4) is satisfied.
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We fix (x,u)∈T1M and consider an orthonormal moving frame(ei ; i = 1, . . . ,n)
on an open subsetU ⊂ M, such that(en)x = u. Notice that we shall use the classical
tangential liftet

i of the local vector fieldsei instead of tangential liftsetG
i , since ifb 6= 0,

thenetG
i does not project onto a vector field. If we consider onπ−1

1 (U) the vector fields

Ẽi = eh
i , Ẽn+ j = et

j ; i = 1, . . . ,n, j = 1, . . . ,n−1,

then(ẼI ; I = 1, . . . ,2n−1) is not a local frame on the wholeπ−1(U). In fact,(e1)x ∈
π−1

1 (U) and (Ẽn+1)(e1)x = 0. However,((ẼI )(x,u); I = 1, . . . ,2n− 1) is a basis of

(T1M)(x,u). So, there exists an open setW ⊂ π−1
1 (U), such that(ẼI ; I = 1, . . . ,2n−1)

is a local frame onW. Hence, sinceπ1 is an open mapping, thenU ′ := π1(W) is an
open set ofU .

Now, it is easy to see that̃Ei ↾W is π1-related withei ↾U ′ and Ẽn+ j ↾W is π1-
related with the zero section onU ′, for all i = 1, . . . ,n and j = 1, . . . ,n−1. We deduce
that, for alli, j = 1, . . . ,n andk, l = 1, . . . ,n−1,

∇dπ1(Ẽi , Ẽ j) = ∇ei ej −π∗(∇̃eh
i
eh

j ), ∇dπ(Ẽi, Ẽn+k) =−π∗(∇̃eh
i
et

k),

∇dπ(Ẽn+k, Ẽi) =−π∗(∇̃et
k
eh

i ), ∇dπ(Ẽn+k, Ẽn+l ) =−π∗(∇̃et
k
et

l ).
(23)

Using Proposition 5, the identity (3) and the facts thatg((ei)x,u) = 0, i = 1, . . . ,n−1,
and(en)x = u, the expression of (23) at(x,u) becomes

∇dπ(x,u)(Ẽi , Ẽ j) =
ab
2α

[R((ei)x,u)(ej)x+R((ej)x,u)(ei)x]

− bd
2α

[g((ei)x,u)(ej)x+g((ej)x,u)(ei)x]

− b
(a+ c+d)α

[(ad+b2)g(R((ei)x,u)(ej)x,u)

−d(a+ c+d)g((ei)x,u)g((ej)x,u)]u,

∇dπ(x,u)(Ẽi , Ẽn+k) =
a2

2α
R((ek)x,u)(ei)x−

ad
2α

g((ei)x,u)(ek)x

− 1
2(a+ c+d)α

[a(ad+b2)g(R((ei)x,u)(ek)x,u)+dαδik]u,

∇dπ(x,u)(Ẽn+k, Ẽi) =
a2

2α
R((ek)x,u)(ei)x−

ad
2α

g((ei)x,u)(ek)x

− 1
2(a+ c+d)α

[a(ad+b2)g(R((ei)x,u)(ek)x,u)+dαδik]u,

∇dπ(x,u)(Ẽn+k, Ẽn+l ) =
b

a+ c+d
δkl u.

(24)

The tension field ofπ1 onW is defined by
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(25) τ(π1) ↾W=
2n−1

∑
I ,J=1

G̃IJ∇dπ1(ẼI , ẼJ);

where(G̃IJ) is the inverse matrix of the matrix(G̃(ẼI , ẼJ)). We shall calculate the
tension field ofπ1 at (x,u). For this, note that the matrix(G̃(x,u)(ẼI , ẼJ)) is expressed
as

(G̃(x,u)(ẼI , ẼJ)) =




(a+ c)In−1

0
...
0

bIn−1

0 · · · 0 a+ c+d 0 · · · 0

bIn−1

0
...
0

aIn−1




and its inverse is given by

(G̃IJ) =




a
α In−1

0
...
0

− b
α In−1

0 · · · 0 1
a+c+d 0 · · · 0

− b
α In−1

0
...
0

a+c
α In−1




.

Substituting from the last matrix expression and the identities (24) into (25), we obtain

τ(π1)(x,u) = (n−1)
b
α

u,

which implies at once the following

THEOREM 5. Let (M,g) be a Riemannian manifold of dimension n> 1 and
(T1M,G̃) its unit tangent bundle, equipped with an arbitrary inducedRiemannian g-
natural metricG̃. The canonical projectionπ1 : (T1M,G̃)→ (M,g) is harmonic if and
only if the horizontal and tangential distributions of T1M are orthogonal with respect
to G̃.

Theorem 5 includes as a very special case the result by Oniciuc [16] concern-
ing the harmonicity ofπ1 : (T1M, g̃S)→ (M,g), and gives yet another interesting geo-
metrical meaning to the orthogonality of the horizontal andtangential distributions of
(T1M,G̃).
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6. Harmonicity of G̃ with respect to g̃S and conversely

In this section, we make use of techniques very similar to theones used in Section 4.
For this reason, we shall omit the details about how the formulas are deduced. The
tension fields of id̃gSG̃ : (T1M, g̃S)→ (T1M,G̃) and idG̃g̃s

: (T1M,G̃)→ (T1M, g̃S) turn
out to be given, respectively, by

τ(x,u)(idg̃SG̃) =
b
α

h
{

aQu− ad+b2

α
g(Qu,u)u}− b2

α
v{Qu−g(Qu,u)u

}
,

τ(x,u)(idG̃g̃s
) = − b

α
h{Qu}.

Therefore, we easily deduce the following results.

THEOREM6. Let(M,g) be a Riemannian manifold and̃G an arbitrary induced
Riemannian g-natural metric on T1M. The identity mapidg̃SG̃

: (TM, g̃S)→ (T1M,G̃) is
harmonic if and only if the horizontal and vertical distributions of T1M are orthogonal
with respect toG̃.

THEOREM7. Let(M,g) be a Riemannian manifold and̃G an arbitrary induced
Riemannian g-natural metric on T1M.

i) If (M,g) is Ricci-flat, then the identity mapidG̃g̃S : (TM,G̃) → (T1M, g̃S) is
always harmonic.

ii) If (M,g) is not Ricci-flat, thenid
G̃g̃S : (TM,G̃) → (T1M, g̃S) is harmonic if

and only if horizontal and tangential distributions of T1M are orthogonal with respect
to G̃.
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