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ON SOME LATTICE COMPUTATIONS
RELATED TO MODULI PROBLEMS

Abstract. The method used in [6] to prove that most moduli spaces of Kfases are of
general type leads to a combinatorial problem about theildessumber of roots orthogonal
to a vector of given length iftg. A similar problem arises foEy in [8]. Both were solved
partly by computer methods. We use an improved computatiohfiad one further case,
omitted from [6]: the moduli spac&,y of K3 surfaces with polarisation of degred B also
of general type fod = 52. We also apply this method to some related problems. IreAgix
A, V. Gritsenko shows how to arrive at the cabe- 52 and some others directly.

Introduction

Many moduli spaces in algebraic geometry can be describledalsy symmetric vari-
eties, i.e. quotients of a Hermitian symmetric domAiby an arithmetic group. One
method of understanding the birational geometry of suchigaots is to use modular
forms forl to give information about differential forms dn\D. In [6] this method
was used to prove that the moduli spatg of polarised K3 surfaces of degred 3
of general type in all but a few cases. The method works ifglesists a modular form
of sufficiently low weight with sufficiently large divisornl[6], and again in [8] where
a similar method was applied to certain moduli of polarisgrkahler manifolds, the
required modular form is constructed by quasi-pullbackefBorcherds forn®;.

A suitable quasi-pullback exists if a combinatorial cortitis satisfied: there
should exist a vectdrin the root latticeEg (or E7 in the hyperkéhler case) of square
2d, orthogonal to very few roots. This is evidently the caskig large, but for smaldi
the search for such drinvites the use of a computer. This was done in both [6] and [8]
by a randomised search, relying on the large Weyl group tarerthat in practice no
cases would be missed.

Here we present an exhaustive search carried out by the ditisbra For the
hyperkahler case the exhaustive search confirmed theseduhe earlier randomised
search, but in the K3 case one previously overlooked valuevath a suitable vector
was found, namelg = 52. In fact it turned out that the randomised search had thdee
found this value, and the omission of the case 52 from [6] happened because the
output had been interpreted incorrectly (by GKS).

Nevertheless the following result is true and has not preshpappeared in the
literature.

THEOREM 1. The moduli spacé.s, of K3 surfaces with polarisation of de-
greel04is of general type.

289



290 A. Peterson and G.K. Sankaran

combinatorial problem is and how it arises, and give someergeneral combinatorial
problems of the same nature. In Section 2 we describe theetiesl and computa-
tional methods used to solve it, along with some other resalitained in the same
way. In Appendix A, Valery Gritsenko explains how the cdse 52 could have been
foreseen without the help of a computer. Some of the relex@miputer code is given
in Appendix B.
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1. Combinatorial problems and moduli

In this section we first give a list of combinatorial questiand then explain the ge-
ometry that originally motivated them. First we fix some terafogy. We say that
is alattice of signature(a,b) if L = Z2+P and we fix a bilinear forn{,): L x L — Z
of signature(a,b). If x € L we refer to(x,x) asx? and call it thelengthof x. If the
length ofx is 2 thenx is called aroot. If the roots ofL generatel as an abelian
group therL is called aroot lattice A lattice L is unimodularif it is equal to its dual
LY =Hom(L,Z) 2 L. We do not assume thhtis always unimodular but for simplicity
we do assume thatis eveni.e. that<? is always an even integer.

Eg denotes the unique even unimodular positive-definiteckattif rank 8, i.e.
with signature8,0): this is the sign convention of [3] and is also used in [6 & 2Z
then(n) is the rank 1 lattice spanned by a vector of lengtandU denotes the integral
hyperbolic planeZe + Zf with € = f2 = 0 and(e, f) = 1. The symbok> denotes
the orthogonal direct sum of lattices. A is a lattice anch € Z, then/A(n) denotes
the same lattice with the quadratic form multiplied tyIn particular,Eg(—1) is the
negative-definite even unimodular lattice of rank 8.

1.1. Combinatorial problems

Let A be a root lattice (usually it will b&g or E7) and denote byR(A) the set of its
roots, i.e.R(A) = {r € A | r? = 2}. The combinatorial questions arising in [6] and [8]
are special cases of the following.

QUESTION 1. Given integergp > q > 0, what are the values af for which
every vector of length@that is orthogonal to at leastj2o0ts is orthogonal to at least
2proots?

More generally we may ask about all possibilities.

QUESTIONZ2. Given an even natural numbaet,2vhat are the possible numbers
of roots orthogonal to a vector of lengtd?2
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If I € A we denote byR(I) the system of roots of orthogonal td. We denote
the answer to Question 2 IB(A, d): that is

(1) P(A,d):={meZ|3 e Al?2=2d, #R(I+) = m}.

ThusP(A,d) is a finite set of even non-negative integers. We call thigdbétypeof
the non-negative even integett for the lattice/

There are some immediate restrictions on what the root tgpebe: for exam-
ple, if A = Eg then the largest that can occur is 126, wheR(l+) = E7; but in that
case € (E7)§8 = A4, sod must be a square.

Especially forA = Eg, the value ofmg(d) = minP(Eg,d) is of interest as it
determines the lowest weight of modular form obtained bysgpallback (see Equa-
tion (2) below). Ifmy(d) = O then this form will not be a cusp form, so the value of
my(d) = minP(Eg,d) NN is also significant. We should also like to know whether this
form is unique. So we also have the following questions.

QuESTION3. For givend andA, how can we computey(d)?

QUESTION 4. For givenm, what is the smallest valué(m) of d for which
my(d) <m?

If in Question 4 we replacen by mg, then the casen = 0 asks for the length
of shortest vectors in the interior of a Weyl chamber: thesdlze Weyl vectors, which
are well known.

If me P(A,d) there is a further natural refinement.

QUESTION 5. How many Weyl group orbits of vectotswith 12 = 2d and
#R(I) = mare there?

Some values ahare of particular interest for geometric reasons: for inctaif
14 P(Eg,d) then quasi-pullback ab;; gives a canonical form ofi,g (See Section 1.2
below). This leads us to the following variant of Question 1.

QUESTION 6. For givenm and A, what are the values al such thatm €
P(A,2d)?

We can compute the answers to some cases of these questitresmgthods
described in Section 2.

1.2. Moduli

The following construction describes several moduli spacealgebraic geometry, in-
cluding the moduli of polarised K3 surfaces.

Let L be an even lattice of signatu(,n). The Hermitian symmetric domain
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associated witl. is D, one of the two connected components of
DLUDL = {[W] e (L& C) |wW? =0, (W,W) > 0}.

The group @L) of isometries ofL acts on this union and we denote by @) the
index 2 subgroup preservirg, . The action is discontinuous, with finite stabilisers, so
if I is any finite index subgroup of QL) then

FLM) :=T\DL

is a complex analytic space. In fact it is a quasi-projectiggety, having a min-
imal projective compactification, the Baily-Borel compécation F (I')*, obtained
by adding finitely many curves (called 1-dimensional cuspegting at finitely many
points (0-dimensional cusps). It is often preferable tokwoith a toroidal compact-
ification F_(I"), which is a modification off (I')* depending on some combinatorial
choices at the 0-dimensional cusps.

A modular form forl” of weightk and charactex: ' — C* is a holomorphic
functionF on the affine con®; C L ® C such that

F(tZ)=t*F(Z) teC* and F(gZ)=xX(g)F(2) Vger.

F is a cusp form if it vanishes at every cusp. For the cases wecgresider the only
possible characters are 1 and(dgtand the order of vanishing at a cusp is an integer:
see [7].

The aim of [6] is to show that the moduli spa€gy of polarised K3 surfaces of
degree @ is of general type for most values dfe N. Using the Torelli theorem for
K3 surfaces one can show that

Fag = Fipg (O (Laa)),

Where6+(L) is the finite index subgroup of QL) that acts trivially on the discrimi-
nant groud-" /L and
Log :=2U @ 2Eg(—1) @ (—2d).

Modular forms of suitable weight can be interpreted as ifféial forms on the moduli
space provided that they have sufficiently large divisorer€fore, to prove that the
moduli space is of general type it is enough to give a suffigepply of such modular
forms. There are several technical difficulties here, oneluith is the presence of
singularities. A sufficient condition, however, was givarj6].

THEOREM 2. Suppose that &> 9 and that there exists a nonzero cusp forgmn F
of weight a< n and charactery = 1 or x(g) = detg), vanishing along any divisor
H c D, fixed by reflections ifi. ThenF () is of general type.

The formF, is then used to give many forms of high weight with sufficigntl
large divisor, of the fornfr = F;‘F(n,a)k, and these in turn give pluricanonical forms on

a smooth model off (I").
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To apply this in specific cases such &g one must therefore construkg.
The method used in [6] to do this is quasi-pullback of the Berds formd;,. This
construction first appeared in [2]. The Borcherds form ftaels constructed in [1] by
means of a product expansion, whereby its divisor is evideigta modular form (not
a cusp form) of weight 12 and character det for the grofnﬁlQﬁze). The latticell; 26
of signature(2,26) is 20 & N(—1), whereN is any one of the 24 Niemeier lattices,
positive definite unimodular lattices of rank 24: see [4]r Bar purposes the correct
choice ofN is 3Eg. A choice of a (not necessarily primitive) vectog Eg of length 21
gives an embedding

Log=2U® 2E8(—1) (&) <—2d> — ”2,26 =2U @3E8(—1)

which in turn gives an embedding

L]
Lag D||2,26'

Denote the images of these embedding& k] andD*[I] respectively.

If r e Lisarootitdetermines a Heegner divi§éf C D}, given by the equation
(Z,r) = 0. The Borcherds form vanishes (to order 1) along all the Heedivisors
for L = ll226 and in particular its restriction t@°*[I] vanishes, as needed to apply
Theorem 2. Howevefp1z| . ) may well be zero, since ifis a root ofl1 5 26 orthogonal
to Log[l] thenDe[l] C 7.

Instead we take the quasi-pullback, simply dividing by theation of each such
I, noting thatH* , = J(;. We put

R ={reR(llz22¢) | (r,L2a[l]) = 0} = {r e R(Eg) | (1.1) =0}
and define the quasi-pullback to be

P2
I_lirER| (r7 Z) DeI]

This is a nonzero modular form, and one can show that it is @ éusn provided
R # 0. It vanishes along all the Heegner divisors fixed by reflexio O™ (Lyg).

The weight, however, goes up by 1 every time we divide, so thiglht of F[l]
is 12+ %#R. We can therefore show th@ibg is of general type if we can find dre Eg
of length 2 with 2 < #R, < 2(n—12) = 14. Moreover, if we can find a cusp form of
weight preciselyr= 19 then, by a result of Freitag [Sf2q haspg > 0 and in particular
is not uniruled.

This leads us to Question 1, with=1 andp=7 orp= 8, for A = Eg. In [8],
similar considerations about the moduli of some hyperké&hknifolds with a certain
type of polarisation lead to Question 1 wij=1 andp=6 orp =7, for A = Ez.

(2) FI]

2. Solving the combinatorial problems

The specific combinatorial problems encountered in [6] 8hddn be solved in princi-
ple by first boundingl. It is clear that for sufficiently largd anl will exist orthogonal
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to a number of roots in the required range: indeed, for sefiity larged we can find

| orthogonal to exactly two roots. An explicit bound, follogvby a finite calculation,
will solve the problem. Neither is entirely straightforwlathough. In [6] a counting
argument is used to show thatlaa Eg with 12 = 2d, orthogonal to at least two and at
most 12 roots, exists (and therefdFg, is of general type) unless

3) 28\1E6(2d) + 63ND6(20|) > 4NE7(2d),

whereN_ (2d) is the number of ways of representind By the quadratic fornk.. The
inequality (3) certainly fails for largd, but to obtain an effective bound @ione must
boundNg, (2d) andNp, (2d) from above and\g, (2d) from below by explicit functions.
This is a non-trivial problem in analytic number theory bucan be done, and after
some refinements it gives a reasonable bound of ardund 50. It would be possible
to resort to direct computation at that point, but there isi@ed yet. Some integers in
that range are excluded from the list of possibly non-gdrpa polarisations because
the inequality (3) (or another similar inequality) in faeil§. Others can be excluded
by inspection, actually producing a vectoby guessing the root systeR(Iés). The
root systems used in this way in [6] werd4 2A; & Az, Az andA; & Az. The root
systems Bq @ Ay and 22, were not tried: see Appendix A.

In [8] a similar procedure was used, although there is araelfficulty caused
by the opposite parity of the rank: working Ey, one needs to estimald(2d) from
above for some odd-rank root systeRysand this problem is not so well studied as in
the even rank case.

In either case, eventually one is left with a residual listalues ofd for which
the problem has not been settled. In [6] it consists of mdsgiers between 15 and 60
(for very smalld the moduli space is known to be unirational). The residuabjgm
in the hyperkahler case considered in [8] is much smaller.

Now, if we want to be (reasonably) sure that no cases haverhessed, we do
need a computer. Moreover, the methods we now use to sots/pribiblem can also be
used to give answers to question such as those posed inrs&ctio

2.1. Algorithms

We begin by representirigs in the usual way, as the set of poifts: (I1,...,lg) € R8
such that thé; are either all integers or all strict half-integers (i.@herl; € Z for all

i or 2j is an odd integer for ail) andy |; € 2Z, with the standard Euclidean quadratic
form onR&.

We need a very rough upper bound big;(2d), because we want to know
whetherNg, (2d) is small enough to allow a brute-force searchlferEg with 12 = 2d
having 2< #R(I) < 12. We can easily find such a bound by noting thit i 2d then
each of the 8 componeriif | must have? < 2d, so—+/2d < l; < v/2d, and must be
a half-integer: that gives

(4) N, (2d) < (2|2v2d] +1)8
Ford = 52, this bound is about-& 02,
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If we are a bit more precise, and note that the componenitsacé either all
integers, or all proper (i.e. non-integer) half-integevs, save a factor 2 giving a
bound of about 510'°. This is within reach of a brute-force search, but it is $tigh,
especially considering that we have to do some substantigf for each candidate
(compute the inner product with 240 different vectyrs

Thus an exhaustive search of all vector&gof length < 60 is not computa-
tionally impossible but it would be cumbersome and wouldexténd to even slightly
larger problems such as other cases of Question 1. The WeypyV(Es) has order
214.3%.52.7 = 696729600 and should be used to reduce the size of the problere
are two approaches to doing this.

(A) Randomised search.This is what was actually done in [6] and [8]. Since the non-
existence of a vectdrgives no information about the moduli space, we are willmg t
accept a very small probability of failing to detect such atee We therefore choose
a large number of vectors of length less thar62 at random and expect that, as the
Weyl group orbits are large, every orbit will be represented

This approach worked very fast, using only a laptop comparidrimmediately
available software (Maple). A search of twenty thousandioanly chosen vectors
found all the pairgd,#R(1")) in the ranges wanted within the first two thousand iter-
ations, in approximately two minutes. That is fairly coruiimg practical evidence that
there are no more. Unfortunately the output was then mistrémed, leading to the
omission of the case = 52 and the erroneous (but not really misleading) statenment i
[6] that “an extensive computer search for vectors orthafjtmat least 2 and at most
14 roots for othed has not found any”.

It is noteworthy that a similar search in the case- E; did find some cases
not discovered analytically, and for which a constructivetimod of findingl is still
not known. In other words, some cases of the main theorem]dtilBhave only a
computer proof, although ontéas been found it is easy enough to verify its properties
by hand.

It is not so easy to estimate the probabilétypriori that a Weyl orbit might
be missed. The Weyl group &), which is a subgroup of the Weyl group B§,
obviously stabilisesand has order no more than 24 R@#") < 12, but in principle the
stabiliser ofl in W(Eg) could be much larger. In that case the Weyl group orbit would
be small and more easily missed. In practice the randomistdad seems to find all
the orbits.

(B) Exhaustive search.The first author organised an exhaustive search, expldtiag
Weyl group by searching a fundamental domain for the submirbxt W(Eg) generated
by permutations of the eight componeht&nd sign changes of an even number of
components. This subgrottphas size 2- 8!, so index 135 iW(Eg): it gives us most

of the symmetries, with very little effort.

1We can be a lot more efficient than that, and skip most of thaser iproducts, but even then we still
have to compute dozens of inner products per candidatervecto
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We say that € Eg is in normal formif its components are all nonnegative (ex-
cept possibly the firsi;) and the squares of the components are nondecreasing from
low index to high index. By acting with an elementldf we can translate anye Eg
to one in normal form: first permute the components, so thygiages are in order; then
make them all (buly) nonnegative, by changing the sign of every negative corapbn
(except1), and flipping the sign offy once for every such change.

It is straightforward to enumerate the elements of lengthr?Eg that are in
normal form. For brevity, we will describe this only for thaees having integer com-
ponents (one can get the ones with proper half-integer cosms in a very similar
manner).

Step 1.For every index # 1, in descending order, we consider all the possible values
of l;: we requird; to be a non-negative integer such that

e its square, added to the sum of the squares of the coorditretebave been
chosen (i.e. thé? with j > i), does not exceedd(otherwisel? > 2d, for any
further choice of coordinates); and

e (unless = 8)itis not greater thah, 1 (otherwisd would not be in normal form).

In other words, we leli take any value € Z such that

(5) 0<s< min{li+1,,/2d—zj>ilj2}.

Step 2.Seeif 4 — z?zzljz is a perfect squane?. If so, letl; take values-mandm; if
not, discard this choice of coordinates.

Step 3.Check whether theso obtained are ifs, i.e. whetherz?:llj € 27Z. Discard
any that are not itks.

We must then filter these enumerated Eg to find the ones with B(I+) in
the required range (2 #R(1+) < 12 for the case considered in [6]): this part of the
procedure is exactly the same as for the randomised verSioce the roots come in
pairs=r it is enough to take inner products with a prepared list oftpasroots (120
or them), and of course we can stop examirlirag soon as we find a seventh pair of
roots orthogonal to it.

The first author implemented this search in a high-level mogning language
(Haskell). Without spending much time optimising, this sdast enough (a second or
so on commercial hardware, for each of the low valuebweé are interested in, namely
d < 60). The partial use of the symmetriesi&f is crucial, though: to go through all
the vectors of given lengthd?would have taken weeks or months for a single value
of d.

This program discovered the lost cade- 52 and therefore Theorem 1. A
variant of it for E; reconfirmed the results obtained by the randomised methf8].in
The code used for thieg case is given in Appendix B.
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2.2. Further results

The exhaustive algorithm (B) from Section 2.1 can be modifletbmpute, in reason-
able time, answers to some of the questions from Sectionot.4nfiall values of the
parameters. We investigated Question 2 and Question 6 fali snandd with A = E7
and/\ = Eg. ForA = Eg we also investigated Question 5 for the particular casel4,
corresponding to canonical forms 65g.

Specifically, we have so far computed the root tyié\, 2d) for A = E; and
A\ = Eg andd < 150, and the first part of the root type (whetmere P(A,2d) for
2 <m< 20, say) for larged, up to about 300 (further for some valuesi®)f This part
of the computation is fairly fast and only minor changes ®phogram are needed.

A little more work, and more computer time, is needed for Goes. We must
work now withW(Eg), not with H, and we first compute a transversal W(Es) : H
(representatives for each of the 135 left cosetklpaind then reduce each of the 135
translates of eadhto standard form before comparing them.

The outcome counts the number of ways of obtaining a canbioica on Fq
by quasi-pullback ofb;,. There is no assurance either that the forms so obtained are
linearly independent or that there are not more canonicai$ahat do not arise this
way. The results are nevertheless intriguingly unpretletarhere are no such vectors
for d < 40. There is such a vector fdr= 40, and also fod = 42, 43, 48 (two orbits),
49, 51-54 55 and 56 (two orbits each), 57 and 59. There is no such vemtdr= 60,
but for 61 there are three orbits and thereafter the numbertdfs drifts upwards
irregularly. Without further comment, we tabulate belove thumbervi4 of W(Eg)
orbits of length @ vectors inEg orthogonal to exactly 14 roots for 61.d < 150.

d {vig || d |via| d [via| d |via| d |[via| d |via
61| 3 76| 1 91 5 106 | 2 121 | 4 136 | 8

62| 1 77| 2 92 3 107 | 6 122 | 5 137 | 7

63| 2 781 1 93 2 108 | 3 124| 5 138

64| 2 79| 4 94 4 109| 6 124 | 3 139 | 11
65| 0 80| 2 95 3 110 O 125| 6 140| 5

66 | 2 81| 2 96 4 111| 6 126 | 8 141| 6

67| 1 82| 2 97 2 112 | 6 127| 6 142 | 8

68| 2 83| 3 98 3 113| 5 128| 6 143 | 3

69| 2 84| 5 99 2 114 | 3 129 | 7 144 | 8

70 1 85| 4 100 | 4 115 7 130 | 4 145| 8

71| 2 86| 4 101| 5 116 | 6 131 9 146 | 7

72| 2 87| 3 102 | 5 117 | 2 132 | 2 147 | 11
73| 1 88| 2 103| 5 118 | 6 133| 8 148 | 5

74| 3 89| 3 104 | 4 119 9 134 9 149 | 10
75| 3 90| 2 105| 4 120 | 8 135| 5 150| 6
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Appendix A. d =46, 50, 52, 54, 57by V. Gritsenko

In this appendix we find a vectbre Eg of square & orthogonal to exactly 12 roots in
Eg, whered is as in the title of the appendix. (See [6] and [8] for the gaheontext of
this question.) We use below the combinatorics of the Dyuidigram ofEg. We take
the Coxeter basis of simple rootshig as in [3]:

az as Oy as Og a7 ag
@ 4 4 4 L 4 4 L
a2

where(ey, ..., eg) is a Euclidean basis in the latti@ and

1

1
ap =5 (e1+es) — 5 (e2+ €3+ e+ €5+ e+ ),

O2=e€1+&, Ok=6c-1—&2 (3<k<8).

The latticeEg contains 240 roots. We recall that any root is a sum of singadésrwith
integral coefficients of the same sign. The fundamental isig; of Eg form the dual
basis inEg = E, so(a, wj) = &j. The formulae for the weights are given in [3, Tabl.
VII]. The Cartan matrix of the dual basis is

4 5 7 10 8 6 4
5 8 10 15 12 9

7 10 14 20 16 12

10 15 20 30 24 18 1
6) (@, w))=1"g" 15 16 24 20 15 1
6 9 12 18 15 12 8
4 6 8 12 10 8 6
2 3 4 6 5 4 3

We consider the two following cases when the orthogonal dement of a vectok in
Eg contains exactly 12 root&(I2,) = A2 @ 3A; or Ay @ Ag. (We note that R(A1) = 2
and {R(A2) =6.)

The casesl =46, 50, 54, 57There are four possible choices of the subsysiem 3A;
inside the Dynkin diagram dig according to the choices of simple roots®ef namely
A<21’3) = (0q,03), A(22’4) = (02,04), A(25’6) = (05, 06) orA<27’8) = (az,ag). If Ay is fixed
then the three pairwise orthogonal copiesfafin the Dynkin diagram are defined

automatically.

First, we consideA(25’6> = (as,06). Then 3\(15’6) = (az) @ (as) ¢ (0g). More-

over A(ZS’G) @ 3A(15’6) is the root system of the orthogonal complement of the vector
Is = w1+ ws + w7 € Eg. In fact, if r = z?zlxicxi is a positive rootX; > 0) then

(r, I56) = X1 +Xa+X7 = 0. Thereforeq = x4 = x7 =0 andr belongs toA<25’6) @ 3A<15’6).
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Using the Cartan matrix (6) we obtain thég = 2-46. Doing similar calculations with
the other three copies @6 given above we find

l13=ws+ W+ W, l2a=w3+ws+ w7, l7g=w1+ws+we
with 12, =2.50,13, = 2-54 andlZ g = 2.57.

The cased = 52 We consider the sublattidd = Ao & Ay = (a3,04) @ (0, 07) in Es.
ThenM is the root system of the orthogonal complement of the vegter o + wp +
ws + wg With 13, = 2-52.

Appendix B. The computer code

Below is the code used to check the combinatorial problermff6], and thus to
find Theorem 1. The programs were written in the functionapgmming language
Haskell ttp://www.haskell.org). The web page

http://people.bath.ac.uk/masgks/Rootcounts

contains links to further code and output.

{-# LANGUAGE TypeSynonymInstances,NoImplicitPrelude #-}
module E8 where

import qualified Algebra.Ring

import Control.Applicative ((<$>), (<%>))
import qualified Data.Vector as V
import Data.List (intercalate,nubBy)
import qualified Data.MemoCombinators as Memo
import Data.Ratio
(Ratio,numerator,denominator, (%))
import qualified Data.Set as Set
import Data.Typeable (Typeable)
import Math.Combinatorics.Species
(ksubsets,set,ofSize,enumerate,Set (getSet,Set) ,Prod(Prod))
import MyPrelude hiding (numerator,denominator, (%))
import qualified Prelude
import System.Environment (getArgs)

import qualified Algebra.Additive

-- Some types and helper functions for dealing with
- "vectors" (implemented as arrays of rational numbers).

type Coordinate
= Ratio Int



300 A. Peterson and G.K. Sankaran

type Vector
= V.Vector Coordinate

-- Inner product.
inp :: Vector -> Vector -> Coordinate
inp a b = V.sum (V.zipWith (*) a b)

half :: Coordinate
half =1 9% 2

-- Product of scalar with vector.
1l :: Coordinate -> Vector -> Vector
1 =V.map . (%)

instance Algebra.Additive.C Vector where
(+) = V.zipWith (+)
(-) = V.zipWith (-)
negate = 1 (-1)
zero = V.fromList [0,0,0,0,0,0,0,0]

-- Some data regarding E_8

delta :: (Eq a,Algebra.Ring.C b) => a ->a -> Db
delta i j = if i == j then 1 else O

-- ’e i’ gives the i’th standard basis vector of R_8.
e :: Int -> Vector
e i = V.fromList $ map (delta i) [1 .. 8]

-- This is the usual integral basis of the lattice E_8.
basis :: [Vector]
basis
L
1 half $ (e 1 +e8) - (sum $ map e [2 .. 7])
,el+e?2
] ++map (\i ->e (i -1) -e (i -2)) [3..8]

roots :: [Vector]
roots = d8 ++ x118 where
d8 = concatMap ((\ [a,b] ->
[a + b,a - b,b - a,negate a - b]) . map e . getSet) $
enumerate (ksubsets 2) [1 .. 8]
x118 = map (\ (Prod (Set neg) (Set pos)) ->
1 half $ sum (map (negate . e) neg) + sum (map e pos)) $
enumerate ((set ‘ofSize‘ even) * set) [1 .. 8]
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-- ’posRoots’ contains exactly one of every pair

-- (a,-a) of roots.

posRoots :: [Vector]

posRoots = nubBy (\ a b -> a == b || a == negate b) roots

-- Generate elements 1 of the E_8 lattice with the property
-- that 172 = 2 d. We need only one element of each orbit
-- under the action of the Weyl group. In particular, we

-- may assume that all coordinates but one (say, the first)
-- are nonnegative, and that the successive coordinates are
-- nondecreasing. We generate exactly one element of each
-- H-orbit, where H is the subgroup of permutations and even
-- sign changes.

gen :: Int -> [Vector]
gen d = genInt d ++ genHalfInt d

genInt :: Int -> [Vector]

genInt d = map (V.fromList . map fromIntegral) $ go [] O where
-- Given the length of a partial vector, compute the maximal
-- new coordinate which does not increase the length of the
-- vector beyond 2 d.
maxCoord :: Int -> Int
maxCoord s = floor (sqrt (fromIntegral $ dD - s) :: Double)

dD :: Int
dD = 2 x d

-- We maintain a list of coordinates chosen so far, every
-- one together with the sum of squares of the coordinates
-- up to and including that coordinate.
-- The generated vectors are elements of E_8, because the
-- sum of the squares of their components is even, hence
-- the sum of the components as well.
go :: [(Int,Int)] -> Int -> [[Int]]
-- We have fixed all eight coordinates.
go fixed@((_,sq) : ps) 8
-- The vector has the right length; add the relevant
-- solutions (using ’vary’), and continue searching.
| sq ==dD = vary (map fst fixed) ++ lower ps 7
-- The vector has the wrong length, continue searching.
| otherwise = lower ps 7
go fixed n = let
(m,s) = case fixed of



302 A. Peterson and G.K. Sankaran

[1 -> (maxCoord 0,0)
(c,s) : _ -> (Prelude.min (maxCoord s) c,s)
in
go ((mys +m ~ 2) : fixed) (n + 1)
-- Lexicographically decrease the given vector, and continue

-- the generation from there.
lower :: [(Int,Int)] -> Int -> [[Int]]

lower [] =10
lower ((x,s) : ps) n
| x == = lower ps (n - 1)

| otherwise = go ((x - 1,s +1 - 2 *x) : ps) n

vary :: [Int] -> [[Int]]
vary (x : xs) = if x ==

then [0 : xs]

else [x : xs,negate x : xs]

-- For vectors with all coordinates half-integers, we work
-- with the doubles of the coordinates.
genHalfInt :: Int -> [Vector]
genHalfInt d = map (V.fromList . map (% 2)) $ go [] O where
maxCoord :: Int -> Int
maxCoord = Memo.integral m where
ms =f $§ floor (sqrt (fromIntegral $ dE - s) :: Double)
f k = if odd k then k else k - 1

dE :: Int
dE = 8 *x d

go :: [(Int,Int)] -> Int -> [[Int]]
go fixed@((_,sq) : ps) 8
| sq == dE = filter e8 (vary $ map fst fixed)
++ lower ps 7
| otherwise = lower ps 7

go fixed n = let
(m,s) = case fixed of
[1 -> (maxCoord 0,0)
(c,s) : _ -> (Prelude.min (maxCoord s) c,s)
in

go ((mys +m ~ 2) : fixed) (n + 1)

-- Decides whether a given vector is an element of E_8
e8 :: [Int] -> Bool
e8 = (== 0) . flip rem 4 . sum
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lower :: [(Int,Int)] -> Int -> [[Int]]

lower [] _ =1
lower ((x,s) : ps) n
| x == = lower ps (n - 1)

| otherwise = go ((x - 2,s +4 - 4 % x) : ps) n

vary :: [Int] -> [[Int]]
vary (x : xs) = [x : xs,negate x : xs]
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