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ON SOME LATTICE COMPUTATIONS

RELATED TO MODULI PROBLEMS

Abstract. The method used in [6] to prove that most moduli spaces of K3 surfaces are of
general type leads to a combinatorial problem about the possible number of roots orthogonal
to a vector of given length inE8. A similar problem arises forE7 in [8]. Both were solved
partly by computer methods. We use an improved computation and find one further case,
omitted from [6]: the moduli spaceF2d of K3 surfaces with polarisation of degree 2d is also
of general type ford= 52. We also apply this method to some related problems. In Appendix
A, V. Gritsenko shows how to arrive at the cased = 52 and some others directly.

Introduction

Many moduli spaces in algebraic geometry can be described aslocally symmetric vari-
eties, i.e. quotients of a Hermitian symmetric domainD by an arithmetic groupΓ. One
method of understanding the birational geometry of such quotients is to use modular
forms for Γ to give information about differential forms onΓ\D. In [6] this method
was used to prove that the moduli spaceF2d of polarised K3 surfaces of degree 2d is
of general type in all but a few cases. The method works if there exists a modular form
of sufficiently low weight with sufficiently large divisor. In [6], and again in [8] where
a similar method was applied to certain moduli of polarised hyperkähler manifolds, the
required modular form is constructed by quasi-pullback of the Borcherds formΦ12.

A suitable quasi-pullback exists if a combinatorial condition is satisfied: there
should exist a vectorl in the root latticeE8 (or E7 in the hyperkähler case) of square
2d, orthogonal to very few roots. This is evidently the case ifd is large, but for smalld
the search for such anl invites the use of a computer. This was done in both [6] and [8]
by a randomised search, relying on the large Weyl group to ensure that in practice no
cases would be missed.

Here we present an exhaustive search carried out by the first author. For the
hyperkähler case the exhaustive search confirmed the results of the earlier randomised
search, but in the K3 case one previously overlooked value ofd with a suitable vector
was found, namelyd = 52. In fact it turned out that the randomised search had indeed
found this value, and the omission of the cased = 52 from [6] happened because the
output had been interpreted incorrectly (by GKS).

Nevertheless the following result is true and has not previously appeared in the
literature.

THEOREM 1. The moduli spaceF2·52 of K3 surfaces with polarisation of de-
gree104is of general type.

289



290 A. Peterson and G.K. Sankaran

combinatorial problem is and how it arises, and give some more general combinatorial
problems of the same nature. In Section 2 we describe the theoretical and computa-
tional methods used to solve it, along with some other results obtained in the same
way. In Appendix A, Valery Gritsenko explains how the cased = 52 could have been
foreseen without the help of a computer. Some of the relevantcomputer code is given
in Appendix B.
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1. Combinatorial problems and moduli

In this section we first give a list of combinatorial questions and then explain the ge-
ometry that originally motivated them. First we fix some terminology. We say thatL
is a lattice of signature(a,b) if L ∼= Za+b and we fix a bilinear form( , ) : L×L → Z
of signature(a,b). If x ∈ L we refer to(x,x) asx2 and call it thelengthof x. If the
length of x is 2 thenx is called aroot. If the roots ofL generateL as an abelian
group thenL is called aroot lattice. A latticeL is unimodularif it is equal to its dual
L∨ = Hom(L,Z)⊇ L. We do not assume thatL is always unimodular but for simplicity
we do assume thatL is even, i.e. thatx2 is always an even integer.

E8 denotes the unique even unimodular positive-definite lattice of rank 8, i.e.
with signature(8,0): this is the sign convention of [3] and is also used in [6]. Ifn∈ 2Z
then〈n〉 is the rank 1 lattice spanned by a vector of lengthn, andU denotes the integral
hyperbolic planeZe+Z f with e2 = f 2 = 0 and(e, f ) = 1. The symbol⊕ denotes
the orthogonal direct sum of lattices. IfΛ is a lattice andn ∈ Z, thenΛ(n) denotes
the same lattice with the quadratic form multiplied byn. In particular,E8(−1) is the
negative-definite even unimodular lattice of rank 8.

1.1. Combinatorial problems

Let Λ be a root lattice (usually it will beE8 or E7) and denote byR(Λ) the set of its
roots, i.e.R(Λ) = {r ∈ Λ | r2 = 2}. The combinatorial questions arising in [6] and [8]
are special cases of the following.

QUESTION 1. Given integersp > q ≥ 0, what are the values ofd for which
every vector of length 2d that is orthogonal to at least 2q roots is orthogonal to at least
2p roots?

More generally we may ask about all possibilities.

QUESTION2. Given an even natural number 2d, what are the possible numbers
of roots orthogonal to a vector of length 2d?
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If l ∈ Λ we denote byR(l⊥) the system of roots ofΛ orthogonal tol . We denote
the answer to Question 2 byP(Λ,d): that is

(1) P(Λ,d) := {m∈ Z | ∃l ∈ Λ l2 = 2d, #R(l⊥) = m}.

ThusP(Λ,d) is a finite set of even non-negative integers. We call this theroot typeof
the non-negative even integer 2d for the latticeΛ

There are some immediate restrictions on what the root type can be: for exam-
ple, if Λ = E8 then the largestm that can occur is 126, whenR(l⊥) ∼= E7; but in that
casel ∈ (E7)

⊥
E8

∼= A1, sod must be a square.

Especially forΛ = E8, the value ofm0(d) = minP(E8,d) is of interest as it
determines the lowest weight of modular form obtained by quasi-pullback (see Equa-
tion (2) below). Ifm0(d) = 0 then this form will not be a cusp form, so the value of
m1(d) = minP(E8,d)∩N is also significant. We should also like to know whether this
form is unique. So we also have the following questions.

QUESTION 3. For givend andΛ, how can we computem0(d)?

QUESTION 4. For givenm, what is the smallest valued(m) of d for which
m1(d)≤ m?

If in Question 4 we replacem1 by m0, then the casem= 0 asks for the length
of shortest vectors in the interior of a Weyl chamber: these are the Weyl vectors, which
are well known.

If m∈ P(Λ,d) there is a further natural refinement.

QUESTION 5. How many Weyl group orbits of vectorsl with l2 = 2d and
#R(l⊥) = mare there?

Some values ofmare of particular interest for geometric reasons: for instance, if
14∈P(E8,d) then quasi-pullback ofΦ12 gives a canonical form onF2d (see Section 1.2
below). This leads us to the following variant of Question 1.

QUESTION 6. For givenm and Λ, what are the values ofd such thatm ∈
P(Λ,2d)?

We can compute the answers to some cases of these questions bythe methods
described in Section 2.

1.2. Moduli

The following construction describes several moduli spaces in algebraic geometry, in-
cluding the moduli of polarised K3 surfaces.

Let L be an even lattice of signature(2,n). The Hermitian symmetric domain
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associated withL isDL, one of the two connected components of

DL ∪DL = {[w] ∈ P(L⊗C) | w2 = 0, (w,w)> 0}.

The group O(L) of isometries ofL acts on this union and we denote by O+(L) the
index 2 subgroup preservingDL. The action is discontinuous, with finite stabilisers, so
if Γ is any finite index subgroup of O+(L) then

FL(Γ) := Γ\DL

is a complex analytic space. In fact it is a quasi-projectivevariety, having a min-
imal projective compactification, the Baily-Borel compactification FL(Γ)∗, obtained
by adding finitely many curves (called 1-dimensional cusps)meeting at finitely many
points (0-dimensional cusps). It is often preferable to work with a toroidal compact-
ificationFL(Γ), which is a modification ofFL(Γ)∗ depending on some combinatorial
choices at the 0-dimensional cusps.

A modular form forΓ of weightk and characterχ : Γ → C∗ is a holomorphic
functionF on the affine coneD•

L ⊂ L⊗C such that

F(tZ) = t−kF(Z) ∀t ∈ C∗ and F(gZ) = χ(g)F(Z) ∀g∈ Γ.

F is a cusp form if it vanishes at every cusp. For the cases we shall consider the only
possible characters are 1 and det(g), and the order of vanishing at a cusp is an integer:
see [7].

The aim of [6] is to show that the moduli spaceF2d of polarised K3 surfaces of
degree 2d is of general type for most values ofd ∈ N. Using the Torelli theorem for
K3 surfaces one can show that

F2d = FL2d(Õ
+
(L2d)),

whereÕ
+
(L) is the finite index subgroup of O+(L) that acts trivially on the discrimi-

nant groupL∨/L and
L2d := 2U ⊕2E8(−1)⊕〈−2d〉.

Modular forms of suitable weight can be interpreted as differential forms on the moduli
space provided that they have sufficiently large divisor. Therefore, to prove that the
moduli space is of general type it is enough to give a sufficient supply of such modular
forms. There are several technical difficulties here, one ofwhich is the presence of
singularities. A sufficient condition, however, was given in [6].

THEOREM 2. Suppose that n≥ 9 and that there exists a nonzero cusp form Fa

of weight a< n and characterχ ≡ 1 or χ(g) = det(g), vanishing along any divisor
H ⊂DL fixed by reflections inΓ. ThenFL(Γ) is of general type.

The formFa is then used to give many forms of high weight with sufficiently
large divisor, of the formF = Fk

a F(n−a)k, and these in turn give pluricanonical forms on

a smooth model ofFL(Γ).
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To apply this in specific cases such asF2d one must therefore constructFa.
The method used in [6] to do this is quasi-pullback of the Borcherds formΦ12. This
construction first appeared in [2]. The Borcherds form itself was constructed in [1] by
means of a product expansion, whereby its divisor is evident. It is a modular form (not
a cusp form) of weight 12 and character det for the group O+(II2,26). The latticeII2,26

of signature(2,26) is 2U ⊕N(−1), whereN is any one of the 24 Niemeier lattices,
positive definite unimodular lattices of rank 24: see [4]. For our purposes the correct
choice ofN is 3E8. A choice of a (not necessarily primitive) vectorl ∈ E8 of length 2d
gives an embedding

L2d = 2U ⊕2E8(−1)⊕〈−2d〉 →֒ II2,26= 2U ⊕3E8(−1)

which in turn gives an embedding

D
•
L2d

→֒D
•
II2,26

.

Denote the images of these embeddings byL2d[l ] andD•[l ] respectively.

If r ∈ L is a root it determines a Heegner divisorH•
r ⊂D•

L, given by the equation
(Z, r) = 0. The Borcherds form vanishes (to order 1) along all the Heegner divisors
for L = II2,26 and in particular its restriction toD•[l ] vanishes, as needed to apply
Theorem 2. However,Φ12|D•[l ] may well be zero, since ifr is a root ofII2,26 orthogonal
to L2d[l ] thenD•[l ]⊂H•

r .

Instead we take the quasi-pullback, simply dividing by the equation of each such
H•

r , noting thatH•
−r =H•

r . We put

Rl = {r ∈ R(II2,26) | (r,L2d[l ]) = 0} ∼= {r ∈ R(E8) | (r, l) = 0}

and define the quasi-pullback to be

(2) F[l ] =
Φ12

∏±r∈Rl
(r,Z)

∣∣∣∣
D•[l ]

.

This is a nonzero modular form, and one can show that it is a cusp form provided
Rl 6= /0. It vanishes along all the Heegner divisors fixed by reflections in O+(L2d).

The weight, however, goes up by 1 every time we divide, so the weight ofF[l ]
is 12+ 1

2#Rl . We can therefore show thatF2d is of general type if we can find anl ∈ E8

of length 2d with 2≤ #Rl < 2(n−12) = 14. Moreover, if we can find a cusp form of
weight preciselyn= 19 then, by a result of Freitag [5],F2d haspg > 0 and in particular
is not uniruled.

This leads us to Question 1, withq= 1 andp= 7 or p= 8, for Λ = E8. In [8],
similar considerations about the moduli of some hyperkähler manifolds with a certain
type of polarisation lead to Question 1 withq= 1 andp= 6 or p= 7, for Λ = E7.

2. Solving the combinatorial problems

The specific combinatorial problems encountered in [6] and [8] can be solved in princi-
ple by first boundingd. It is clear that for sufficiently larged an l will exist orthogonal
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to a number of roots in the required range: indeed, for sufficiently larged we can find
l orthogonal to exactly two roots. An explicit bound, followed by a finite calculation,
will solve the problem. Neither is entirely straightforward, though. In [6] a counting
argument is used to show that anl ∈ E8 with l2 = 2d, orthogonal to at least two and at
most 12 roots, exists (and thereforeF2d is of general type) unless

(3) 28NE6(2d)+63ND6(2d)≥ 4NE7(2d),

whereNL(2d) is the number of ways of representing 2d by the quadratic formL. The
inequality (3) certainly fails for larged, but to obtain an effective bound ond one must
boundNE6(2d) andND6(2d) from above andNE7(2d) from below by explicit functions.
This is a non-trivial problem in analytic number theory but it can be done, and after
some refinements it gives a reasonable bound of aroundd = 150. It would be possible
to resort to direct computation at that point, but there is noneed yet. Some integers in
that range are excluded from the list of possibly non-general type polarisations because
the inequality (3) (or another similar inequality) in fact fails. Others can be excluded
by inspection, actually producing a vectorl by guessing the root systemR(l⊥E8

). The
root systems used in this way in [6] were 4A1, 2A1⊕A2, A3 andA1 ⊕A2. The root
systems 3A1⊕A2 and 2A2 were not tried: see Appendix A.

In [8] a similar procedure was used, although there is an extra difficulty caused
by the opposite parity of the rank: working inE7, one needs to estimateNR(2d) from
above for some odd-rank root systemsR, and this problem is not so well studied as in
the even rank case.

In either case, eventually one is left with a residual list ofvalues ofd for which
the problem has not been settled. In [6] it consists of most integers between 15 and 60
(for very smalld the moduli space is known to be unirational). The residual problem
in the hyperkähler case considered in [8] is much smaller.

Now, if we want to be (reasonably) sure that no cases have beenmissed, we do
need a computer. Moreover, the methods we now use to solve this problem can also be
used to give answers to question such as those posed in Section 1.1.

2.1. Algorithms

We begin by representingE8 in the usual way, as the set of pointsl = (l1, . . . , l8) ∈ R8

such that thel i are either all integers or all strict half-integers (i.e. either l i ∈ Z for all
i or 2l i is an odd integer for alli) and∑ l i ∈ 2Z, with the standard Euclidean quadratic
form onR8.

We need a very rough upper bound onNE8(2d), because we want to know
whetherNE8(2d) is small enough to allow a brute-force search forl ∈ E8 with l2 = 2d
having 2≤ #R(l⊥)≤ 12. We can easily find such a bound by noting that ifl2 = 2d then
each of the 8 componentsl i of l must havel2i ≤ 2d, so−

√
2d ≤ l i ≤

√
2d, and must be

a half-integer: that gives

(4) NE8(2d)≤ (2⌊2
√

2d⌋+1)8

Ford = 52, this bound is about 8·1012.
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If we are a bit more precise, and note that the components ofl are either all
integers, or all proper (i.e. non-integer) half-integers,we save a factor 27, giving a
bound of about 5·1010. This is within reach of a brute-force search, but it is stillhigh,
especially considering that we have to do some substantial work for each candidate
(compute the inner product with 240 different vectors1).

Thus an exhaustive search of all vectors inE8 of length≤ 60 is not computa-
tionally impossible but it would be cumbersome and would notextend to even slightly
larger problems such as other cases of Question 1. The Weyl groupW(E8) has order
214·35 ·52 ·7= 696729600 and should be used to reduce the size of the problem. There
are two approaches to doing this.

(A) Randomised search.This is what was actually done in [6] and [8]. Since the non-
existence of a vectorl gives no information about the moduli space, we are willing to
accept a very small probability of failing to detect such a vector. We therefore choose
a large number of vectors of length less than 2·61 at random and expect that, as the
Weyl group orbits are large, every orbit will be represented.

This approach worked very fast, using only a laptop computerand immediately
available software (Maple). A search of twenty thousand randomly chosen vectors
found all the pairs(d,#R(l⊥)) in the ranges wanted within the first two thousand iter-
ations, in approximately two minutes. That is fairly convincing practical evidence that
there are no more. Unfortunately the output was then mistranscribed, leading to the
omission of the cased = 52 and the erroneous (but not really misleading) statement in
[6] that “an extensive computer search for vectors orthogonal to at least 2 and at most
14 roots for otherd has not found any”.

It is noteworthy that a similar search in the caseΛ = E7 did find some cases
not discovered analytically, and for which a constructive method of findingl is still
not known. In other words, some cases of the main theorem of [8] still have only a
computer proof, although oncel has been found it is easy enough to verify its properties
by hand.

It is not so easy to estimate the probabilitya priori that a Weyl orbit might
be missed. The Weyl group ofR(l⊥), which is a subgroup of the Weyl group ofE8,
obviously stabilisesl and has order no more than 24 if #R(l⊥)≤ 12, but in principle the
stabiliser ofl in W(E8) could be much larger. In that case the Weyl group orbit would
be small and more easily missed. In practice the randomised method seems to find all
the orbits.

(B) Exhaustive search.The first author organised an exhaustive search, exploitingthe
Weyl group by searching a fundamental domain for the subgroupH <W(E8) generated
by permutations of the eight componentsl i and sign changes of an even number of
components. This subgroupH has size 27 ·8!, so index 135 inW(E8): it gives us most
of the symmetries, with very little effort.

1We can be a lot more efficient than that, and skip most of these inner products, but even then we still
have to compute dozens of inner products per candidate vector.
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We say thatl ∈ E8 is in normal formif its components are all nonnegative (ex-
cept possibly the first,l1) and the squares of the components are nondecreasing from
low index to high index. By acting with an element ofH, we can translate anyl ∈ E8

to one in normal form: first permute the components, so their squares are in order; then
make them all (butl1) nonnegative, by changing the sign of every negative component
(exceptl1), and flipping the sign ofl1 once for every such change.

It is straightforward to enumerate the elements of length 2d in E8 that are in
normal form. For brevity, we will describe this only for the ones having integer com-
ponents (one can get the ones with proper half-integer components in a very similar
manner).

Step 1.For every indexi 6= 1, in descending order, we consider all the possible values
of l i : we requirel i to be a non-negative integer such that

• its square, added to the sum of the squares of the coordinatesthat have been
chosen (i.e. thel2j with j > i), does not exceed 2d (otherwisel2 > 2d, for any
further choice of coordinates); and

• (unlessi = 8) it is not greater thanl i+1 (otherwisel would not be in normal form).

In other words, we letl i take any values∈ Z such that

(5) 0≤ s≤ min
{

l i+1,
√

2d−∑ j>i
l2j

}
.

Step 2.See if 2d−∑8
j=2 l2j is a perfect squarem2. If so, let l1 take values−mandm; if

not, discard this choice of coordinates.

Step 3.Check whether thel so obtained are inE8, i.e. whether∑8
j=1 l j ∈ 2Z. Discard

any that are not inE8.

We must then filter these enumeratedl ∈ E8 to find the ones with #R(l⊥) in
the required range (2≤ #R(l⊥) ≤ 12 for the case considered in [6]): this part of the
procedure is exactly the same as for the randomised version.Since the roots come in
pairs±r it is enough to take inner products with a prepared list of positive roots (120
or them), and of course we can stop examiningl as soon as we find a seventh pair of
roots orthogonal to it.

The first author implemented this search in a high-level programming language
(Haskell). Without spending much time optimising, this runs fast enough (a second or
so on commercial hardware, for each of the low values ofd we are interested in, namely
d ≤ 60). The partial use of the symmetries ofE8 is crucial, though: to go through all
the vectors of given length 2d would have taken weeks or months for a single value
of d.

This program discovered the lost cased = 52 and therefore Theorem 1. A
variant of it forE7 reconfirmed the results obtained by the randomised method in[8].
The code used for theE8 case is given in Appendix B.
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2.2. Further results

The exhaustive algorithm (B) from Section 2.1 can be modifiedto compute, in reason-
able time, answers to some of the questions from Section 1.1 for small values of the
parameters. We investigated Question 2 and Question 6 for small mandd with Λ = E7

andΛ = E8. ForΛ =E8 we also investigated Question 5 for the particular casem= 14,
corresponding to canonical forms onF2d.

Specifically, we have so far computed the root typeP(Λ,2d) for Λ = E7 and
Λ = E8 and d ≤ 150, and the first part of the root type (whetherm∈ P(Λ,2d) for
2≤ m≤ 20, say) for largerd, up to about 300 (further for some values ofd). This part
of the computation is fairly fast and only minor changes to the program are needed.

A little more work, and more computer time, is needed for Question 5. We must
work now withW(E8), not with H, and we first compute a transversal forW(E8) : H
(representatives for each of the 135 left cosets ofH) and then reduce each of the 135
translates of eachl to standard form before comparing them.

The outcome counts the number of ways of obtaining a canonical form onF2d

by quasi-pullback ofΦ12. There is no assurance either that the forms so obtained are
linearly independent or that there are not more canonical forms that do not arise this
way. The results are nevertheless intriguingly unpredictable. There are no such vectors
for d < 40. There is such a vector ford = 40, and also ford = 42, 43, 48 (two orbits),
49, 51–54, 55 and 56 (two orbits each), 57 and 59. There is no such vector for d = 60,
but for 61 there are three orbits and thereafter the number oforbits drifts upwards
irregularly. Without further comment, we tabulate below the numberν14 of W(E8)
orbits of length 2d vectors inE8 orthogonal to exactly 14 roots for 61≤ d ≤ 150.

d ν14 d ν14 d ν14 d ν14 d ν14 d ν14

61 3 76 1 91 5 106 2 121 4 136 8

62 1 77 2 92 3 107 6 122 5 137 7

63 2 78 1 93 2 108 3 124 5 138 5

64 2 79 4 94 4 109 6 124 3 139 11

65 0 80 2 95 3 110 0 125 6 140 5

66 2 81 2 96 4 111 6 126 8 141 6

67 1 82 2 97 2 112 6 127 6 142 8

68 2 83 3 98 3 113 5 128 6 143 3

69 2 84 5 99 2 114 3 129 7 144 8

70 1 85 4 100 4 115 7 130 4 145 8

71 2 86 4 101 5 116 6 131 9 146 7

72 2 87 3 102 5 117 2 132 2 147 11

73 1 88 2 103 5 118 6 133 8 148 5

74 3 89 3 104 4 119 9 134 9 149 10

75 3 90 2 105 4 120 8 135 5 150 6
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Appendix A. d = 46, 50, 52, 54, 57, by V. Gritsenko

In this appendix we find a vectorl ∈ E8 of square 2d orthogonal to exactly 12 roots in
E8, whered is as in the title of the appendix. (See [6] and [8] for the general context of
this question.) We use below the combinatorics of the Dynkindiagram ofE8. We take
the Coxeter basis of simple roots inE8 as in [3]:

t

α1
-t

α3
-t

α4

?t

α2

-t

α5
-t

α6
-t

α7
-t

α8

where(e1, . . . ,e8) is a Euclidean basis in the latticeZ8 and

α1 =
1
2
(e1+e8)−

1
2
(e2+e3+e4+e5+e6+e7),

α2 = e1+e2, αk = ek−1−ek−2 (3≤ k≤ 8).

The latticeE8 contains 240 roots. We recall that any root is a sum of simple roots with
integral coefficients of the same sign. The fundamental weightsω j of E8 form the dual
basis inE8 = E∨

8 , so(αi , ω j) = δi j . The formulae for the weights are given in [3, Tabl.
VII]. The Cartan matrix of the dual basis is

(6) ((ωi , ω j)) =




4 5 7 10 8 6 4 2
5 8 10 15 12 9 6 3
7 10 14 20 16 12 8 4
10 15 20 30 24 18 12 6
8 12 16 24 20 15 10 5
6 9 12 18 15 12 8 4
4 6 8 12 10 8 6 3
2 3 4 6 5 4 3 2




.

We consider the two following cases when the orthogonal complement of a vectorl in
E8 contains exactly 12 roots:R(l⊥E8

) = A2⊕3A1 or A2⊕A2. (We note that #R(A1) = 2
and #R(A2) = 6.)

The casesd = 46, 50, 54, 57. There are four possible choices of the subsystemA2⊕3A1

inside the Dynkin diagram ofE8 according to the choices of simple roots ofA2, namely

A(1,3)
2 = 〈α1,α3〉, A(2,4)

2 = 〈α2,α4〉, A(5,6)
2 = 〈α5,α6〉 or A(7,8)

2 = 〈α7,α8〉. If A2 is fixed
then the three pairwise orthogonal copies ofA1 in the Dynkin diagram are defined
automatically.

First, we considerA(5,6)
2 = 〈α5,α6〉. Then 3A(5,6)

1 = 〈α2〉⊕ 〈α3〉⊕ 〈α8〉. More-

over A(5,6)
2 ⊕ 3A(5,6)

1 is the root system of the orthogonal complement of the vector
l5,6 = ω1 +ω4 +ω7 ∈ E8. In fact, if r = ∑8

i=1xiαi is a positive root (xi ≥ 0) then

(r, l5,6) = x1+x4+x7 = 0. Thereforex1 = x4 = x7 = 0 andr belongs toA(5,6)
2 ⊕3A(5,6)

1 .
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Using the Cartan matrix (6) we obtain thatl25,6 = 2·46. Doing similar calculations with
the other three copies ofA2 given above we find

l1,3 = ω4+ω6+ω8, l2,4 = ω3+ω5+ω7, l7,8 = ω1+ω4+ω6

with l21,3 = 2 ·50, l22,4 = 2 ·54 andl27,8 = 2 ·57.

The cased = 52. We consider the sublatticeM = A2⊕A2 = 〈α3,α4〉⊕ 〈α6,α7〉 in E8.
ThenM is the root system of the orthogonal complement of the vectorlM = ω1+ω2+
ω5+ω8 with l2M = 2 ·52.

Appendix B. The computer code

Below is the code used to check the combinatorial problem from [6], and thus to
find Theorem 1. The programs were written in the functional programming language
Haskell (http://www.haskell.org). The web page

http://people.bath.ac.uk/masgks/Rootcounts

contains links to further code and output.

{-# LANGUAGE TypeSynonymInstances,NoImplicitPrelude #-}

module E8 where

import qualified Algebra.Ring

import Control.Applicative ((<$>),(<*>))

import qualified Data.Vector as V

import Data.List (intercalate,nubBy)

import qualified Data.MemoCombinators as Memo

import Data.Ratio

(Ratio,numerator,denominator,(%))

import qualified Data.Set as Set

import Data.Typeable (Typeable)

import Math.Combinatorics.Species

(ksubsets,set,ofSize,enumerate,Set(getSet,Set),Prod(Prod))

import MyPrelude hiding (numerator,denominator,(%))

import qualified Prelude

import System.Environment (getArgs)

import qualified Algebra.Additive

-- Some types and helper functions for dealing with

-- "vectors" (implemented as arrays of rational numbers).

type Coordinate

= Ratio Int
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type Vector

= V.Vector Coordinate

-- Inner product.

inp :: Vector -> Vector -> Coordinate

inp a b = V.sum (V.zipWith (*) a b)

half :: Coordinate

half = 1 % 2

-- Product of scalar with vector.

l :: Coordinate -> Vector -> Vector

l = V.map . (*)

instance Algebra.Additive.C Vector where

(+) = V.zipWith (+)

(-) = V.zipWith (-)

negate = l (-1)

zero = V.fromList [0,0,0,0,0,0,0,0]

-- Some data regarding E_8

delta :: (Eq a,Algebra.Ring.C b) => a -> a -> b

delta i j = if i == j then 1 else 0

-- ’e i’ gives the i’th standard basis vector of R_8.

e :: Int -> Vector

e i = V.fromList $ map (delta i) [1 .. 8]

-- This is the usual integral basis of the lattice E_8.

basis :: [Vector]

basis =

[

l half $ (e 1 + e 8) - (sum $ map e [2 .. 7])

, e 1 + e 2

] ++ map (\ i -> e (i - 1) - e (i - 2)) [3 .. 8]

roots :: [Vector]

roots = d8 ++ x118 where

d8 = concatMap ((\ [a,b] ->

[a + b,a - b,b - a,negate a - b]) . map e . getSet) $

enumerate (ksubsets 2) [1 .. 8]

x118 = map (\ (Prod (Set neg) (Set pos)) ->

l half $ sum (map (negate . e) neg) + sum (map e pos)) $

enumerate ((set ‘ofSize‘ even) * set) [1 .. 8]
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-- ’posRoots’ contains exactly one of every pair

-- (a,-a) of roots.

posRoots :: [Vector]

posRoots = nubBy (\ a b -> a == b || a == negate b) roots

-- Generate elements l of the E_8 lattice with the property

-- that l^2 = 2 d. We need only one element of each orbit

-- under the action of the Weyl group. In particular, we

-- may assume that all coordinates but one (say, the first)

-- are nonnegative, and that the successive coordinates are

-- nondecreasing. We generate exactly one element of each

-- H-orbit, where H is the subgroup of permutations and even

-- sign changes.

gen :: Int -> [Vector]

gen d = genInt d ++ genHalfInt d

genInt :: Int -> [Vector]

genInt d = map (V.fromList . map fromIntegral) $ go [] 0 where

-- Given the length of a partial vector, compute the maximal

-- new coordinate which does not increase the length of the

-- vector beyond 2 d.

maxCoord :: Int -> Int

maxCoord s = floor (sqrt (fromIntegral $ dD - s) :: Double)

dD :: Int

dD = 2 * d

-- We maintain a list of coordinates chosen so far, every

-- one together with the sum of squares of the coordinates

-- up to and including that coordinate.

-- The generated vectors are elements of E_8, because the

-- sum of the squares of their components is even, hence

-- the sum of the components as well.

go :: [(Int,Int)] -> Int -> [[Int]]

-- We have fixed all eight coordinates.

go fixed@((_,sq) : ps) 8

-- The vector has the right length; add the relevant

-- solutions (using ’vary’), and continue searching.

| sq == dD = vary (map fst fixed) ++ lower ps 7

-- The vector has the wrong length, continue searching.

| otherwise = lower ps 7

go fixed n = let

(m,s) = case fixed of



302 A. Peterson and G.K. Sankaran

[] -> (maxCoord 0,0)

(c,s) : _ -> (Prelude.min (maxCoord s) c,s)

in

go ((m,s + m ^ 2) : fixed) (n + 1)

-- Lexicographically decrease the given vector, and continue

-- the generation from there.

lower :: [(Int,Int)] -> Int -> [[Int]]

lower [] _ = []

lower ((x,s) : ps) n

| x == 0 = lower ps (n - 1)

| otherwise = go ((x - 1,s + 1 - 2 * x) : ps) n

vary :: [Int] -> [[Int]]

vary (x : xs) = if x == 0

then [0 : xs]

else [x : xs,negate x : xs]

-- For vectors with all coordinates half-integers, we work

-- with the doubles of the coordinates.

genHalfInt :: Int -> [Vector]

genHalfInt d = map (V.fromList . map (% 2)) $ go [] 0 where

maxCoord :: Int -> Int

maxCoord = Memo.integral m where

m s = f $ floor (sqrt (fromIntegral $ dE - s) :: Double)

f k = if odd k then k else k - 1

dE :: Int

dE = 8 * d

go :: [(Int,Int)] -> Int -> [[Int]]

go fixed@((_,sq) : ps) 8

| sq == dE = filter e8 (vary $ map fst fixed)

++ lower ps 7

| otherwise = lower ps 7

go fixed n = let

(m,s) = case fixed of

[] -> (maxCoord 0,0)

(c,s) : _ -> (Prelude.min (maxCoord s) c,s)

in

go ((m,s + m ^ 2) : fixed) (n + 1)

-- Decides whether a given vector is an element of E_8

e8 :: [Int] -> Bool

e8 = (== 0) . flip rem 4 . sum
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lower :: [(Int,Int)] -> Int -> [[Int]]

lower [] _ = []

lower ((x,s) : ps) n

| x == 1 = lower ps (n - 1)

| otherwise = go ((x - 2,s + 4 - 4 * x) : ps) n

vary :: [Int] -> [[Int]]

vary (x : xs) = [x : xs,negate x : xs]
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