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ON THE DYNAMICS OF A PERTURBED
HOLOMORPHIC DYNAMICAL SYSTEM

Abstract. The purpose of this work is to study the dynamics of a discbédénensional
dynamical system which depends on a real parameter. Thisys obtained by a perturba-
tion of a holomorphic polynomial whose Julia set is well kmow he attractors of the initial
system, as well as their attractive basins, are determiDéfirent types of bifurcations are
identified.

1. Introduction

The holomorphic dynamical systems generated by ratiorradtfons have been
intensively studied ever since the pioneering works of GaJf] and P. Fatou [7].
In another context, the discrete bidimensional dynamigstiesns are modelled
by noninvertible (piecewise continuous, continuous ofedéntiable) map3. Such a
mapT is defined by

T: R2DS — S
- (f1

(x.y) (xy), f2(xY))-
The dynamical systeniSN, T) is holomorphic ifT is differentiable and if its two
component$f;, i = 1,2) satisfy theCauchy—Riemanconditions.

In the light of recent developments of the theory (see [131Q,8, 3, 11]),
we present a study on the dynamics of a system generated by & rteat depends
continuously on a real parameter. The choicd a§ motivated by the fact that when
the parameter is equal to zero, the nfagan be viewed as an holomorphic one. In
addition to a comparison with the last system, the dynarstedjlity and attractors of
the initial one will be presented for some range of the pataméVe will show that
the attractors of this system are of different types (fixeth{so periodic points, closed
invariant curves, chaotic attractors). Local and glob&ldoations are encountered
when varying the parameter.

The plan is as follows. In Section 2, we present the two-dsr@ral recurrence
T and its particularities. Section 3 is devoted to the deteation of the critical curve
of the present case. In Section 4, we calculate the fixed anddpe points depend-
ing on the parameter of the system. When this parameter isfiesbéh the range of
interest, we treat successively the appearance/disappseof closed invariant curves
and cycles (Section 5) and the birth of a chaotic attractect{8n 6), with presenta-
tion of the associated figures. The last section containgialesion and a proposed
generalization of this study.
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2. The model

The bidimensional transformation considered in this werk i

Taba: R — R?

(1) xy) ~ (C—y?+a+ay, 2xy+b+ax)

with (a,b) € R? anda € R*. In the sequel, we shall sometimes write eitfien place
of Tapa as the dependence ofon the parametes b, o is understood.

The expression of can evidently be written in the more explicit form

x\ [ ¥-y’+a y
T(3) = (afin® ) ()
so if a = 0, we can simply write

Tabo(X%,y) = Te(z=x+iy) = Z +c,

with ¢ = a+ib € C. In other words, the initial dynamical system (1) becomesla-ho
morphic one; the properties of this particular case (fixed geriodic points, Julia set,
etc.) are explained in detail in the literature (see fordnse [5, 4, 6]).

If o # 0, the transformatio can also be writtefic o(z) = Z+c+iozie T
is now a nonholomorphic map. Interesting studies on a spiecia of these types of
systems have been proposed by K. Uchimura [18, 17, 16].

3. The critical curve of a noninvertible map

3.1. Some considerations on the degree of a mapping

In this subsection, we will consider only proper smooth map®&" — R". (In this
setting, “proper” mean§f (x)|| — c when||x|| — «.) A regular point of a differen-
tiable mapf is a point at which the Jacobian determindi(ix) # 0. The setR; of all
regular points off is open. Its complement is the <&t of critical pointsof the map
f. A regular value of an fmap is a point of the range whose pre-images consist of
regular points, otherwise the point icatical value Since the set of critical points is
closed and since proper maps send closed sets into closgdt $ellows that the set
of critical valuesLC = f(Cys) is closed and hence, the set of regular values of a proper
differentiable map is open. Moreover it is dense by Sardetam.

Given a proper differentiable map: R" — R", the mapping degredalso
calledBrouwer degregof f is the integer

degf) = sgr(Js (x))
xele(y) f

wherey is any regular value of. This number is independent of the choice of the
regular valuegy. (Further details can be found in [12].)
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Let us define thenultiplicity m(f) e NU{} by
m(f) = sup{cardinality f ~1(y)) : y € R"}.

If n=2 andf is holomorphic then ddd) = m(f), since sgiiJs(x)) equals 1 every-
where. However, for the mag(x,y) = (x?, y) we have defg) = 0 butm(g) = 2.

For holomorphic maps, the locl€C = f(Cs) coincides with the set of points
which have at least two merging predecessors ()= Z°). However one cannot say
this of the magh(x,y) = (x3, y), which is a homeomorphism.

3.2. On the critical curve of a two-dimensional noninvertide map

The existence of the critical curve (abbreviategi for “Ligne Critique” in French) is
one of the distinguishing features of any noninvertible-timensional mags (not just
the mapr given by (1)). It was introduced by C. Mira in 1964 (see [13}iaaferences
therein). The phase space can be divided into open redfygr in which points
havek rank-one preimages under the m@pand these regions are separated_By
The latter curve plays a fundamental role in determiningptitogperties and the global
bifurcations of basins [10, 8]. When the m@ps continuously differentiable, we have
LC = G(LC_1) whereLC_ is identical to the seCs above, and the maximum value
of the integekk is given by the multiplicitym(G).

3.3. The critical curve of our model

In the present case, the transformafionf (1) is differentiable, s&.C is the image of
the locusLC_ of points where the determinant of the Jacobian matriX @anishes.
At a point(x,y), this matrix takes the form

@ i) = (o F, 52 ).

andLC_; is the curve whose points, y) verify detJ(x,y; a)) = 0. Such points satisfy
the equation

40 +y?) —a?=0.
Therefore

LC ;= {(x,y) eR?: X4y = (%)2}

is the circle centered &0, 0) with radiusa /2, and the critical curve can be parametrized
as follows:
LC= Ta,b,Cl(LC*l) = {(U(t),V(t)), te [Oa 2.’-[]}5

with
(12 GZ
ut) = —cos2+ —sint+a
4 2

o a?
v(t) = ZsttJricoster.



24 N. Akroune

As Y varies inR?\LC, we can show that the equatid{X) =Y admits only
two or four solutions (i.em(T) = 4); the mapT is of the type(Z, — Z4) according to
the nomenclature established by Mira [13]. The phase spatde separated in two
distinct connected (or multiply-connected) zorigs andZ,) in which each point has
two or four preimages unddr, that is(R? = Z,UZy). Note that the curve has three
cusp points whose coordinates are%az, 0) and(gaz, i%‘/éa ); at these pointsT
has three coincident preimages. An example of such curdeoisrsin Figure 1; it is
formed by the points which have at least two coincident pagjes and is similar to
Steiner’s hypocycloid [18].

080

Figure 1: The critical curvéC for a= b = 0 anda = 1. The three cusp points are
plotted with big dots; each point ity admits four distinct preimages under the map T

4. Fixed points and periodic points

When(a,b) € R? anda € R*, the fixed pointsK* = (x*,y*) of the system are given by

ax*+b
) T

wherex* verifies the polynomial equation
(4) -8+ (5+4a—30®)x% + (0 — dab—4a— 1)x+ (a+ab—b%) =0

of degree 4 (4 being the degree of the nigp

To study their stability, we must consider the modulus ofdlggenvalues of the
Jacobian matrix (see (2)). Its characteristic polynonsial i

(5) Un(X,Y) =N — &\ + [4(¢ +y?) — ).

We remark that, (x,y) = U, (x, —Y); let us note that this property will be used in the
next subsection.
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4.1. The particular casea=b=0

In this study, we restrict investigation to the particulasea = b = 0. Indeed:

i) The Jacobian matrix (2), and consequently the charatiepolynomial (5),
does not depenexplicitlyona or b.

if) The determination of the fixed points @fis less difficult (see (3) and (4)).

iii) The trivial case(a = b = o = 0) transforms the maf into the quadratic
complex polynomiall (z= x+iy) = H(z) = Z.

We recall that thelulia set(see [9, 6]) ofH is simply the unit circle: this invariant set
separates the immediate attracting basins of the origirttengoint at infinity. In the
next subsection, we shall see the form of the first basin whisrclose tazera

With these changes (i.e.= b = 0 anda # 0), the expression of becomes
Ta(xy) = (faloy) =@ —y?+ay, galxy) = 2y+ax).

Itis easy to see that for alk,y) € R? and for alla € R*, we have

(6) fa(xy) = fax-y)

) Gu(xy) = —g-alX-Y)

In complex notation, these two equalities give us the ingumproperty
(8) Ta(2 =T-(2

wherez = x+1y.

PropPosITIONL. If (v,w) is a fixed point of  then(v,—w) is a fixed point of
T_4 and these both points have the same multipliers.

Proof. The first statement comes directly from (6)—(8), and the r&kmédaich follows
(5) proves the second part. O

This last proposition can be generalized as follows:

PrRoOPOSITION2. If (v,w) is a k-periodic point of  (with k> 2) then(v, —w)
is also a k-periodic point of Ty and both points have the same multipliers.

Proof. For example, wittk = 2, we obtain the following equalities
a(V, —w))

a(V,=W), g-a(V,—W))
a(V;W), —ga(V,W))
2 Talfa(ww), ga(vw))

= TEvw).

T2 a (V7 _W) = (
- Ta(f

(6);(7) olf

fo
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The last part of the assertion follows from (5) and the chale of differentials. [
From these two propositions, it follows

COROLLARY 1. In terms of the real parameter, the study of the behavior
of the dynamical systeifiR?, N, T) can be reduced to the intervi0, 4. In other
words, the dynamics of the mapsdnd T_q are essentially the same (s€3)).

4.2. The fixed points ofTy with a >0

The originO = (0, 0) is obviously a fixed point ofly, and its multiplieryseeeq 5)
are deduced from the expressionff(0, 0) = A2 — a?. Therefore, ifa < 1 the origin
is an attractive node, and is, in particular, a hyperboliedipoint.

As regards other fixed pointg*, y*): (3) and (4) become respectively
ax*

1—2x*

43— 8x° + (5—3a?)x+ (a2 — 1) = 0,

Yyt =

so thatx* now verifies a polynomial equatidr{x) = 0 of degree 3. We stress here that

x=1/2 cannot be a root df, otherwise the parameterwould equal 0
This cubic equation admits at least one real 6Qdts expression is given by
o o 2 K 1/6+30%/2
X=Xo)==+—=+—"——""—
(@)=3+% T

where

Wik

K=K(a)= (1+ 27a2+3m/3+54a2—81a4) .

ReEMARK 1. If a — 0 thenK(a) — 1 and this leads t¢x(a), y(a)) — (1, 0)
which is the repulsive fixed point ¢1(z) = 2.

Letd be the unique positive root of the argument insid@+ 5402 — 8104, the
square root that appears in the above expressit#h tfat is

1
a== 2 ~ 0.84748 ..
a 3\/3+ V3 ~ 0.84748

Numerical calculations allow us to establish that the figpossesses, in addition to
the originO, one (resp. two, resp. three) real fixed point(s) whena (resp.a =@,
resp.a > d). Whena crosses the valug, one of the both fixed points admits= 1 as

a multiplier: this indicates a fold-bifurcation.

Figure 2(a) shows the attractive basin of the origin(foe= 0.1), the point

- axX
(X, y= 1_2?) —(1.0190..., —0.0981..)

belongs to the basin boundary. In the following paragraphdiscuss the properties of
the mapsly andH near to the origin.
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On the existence of a local topological conjugacy betweeantl H. Consider the map
Ta as a 2-dimensional real map, we denoteByTy)(X,y) = (ay, ax) the linear part
of Ty.

Fora > 0 small, the mapping?(Ty) is clearly invertible and attracting in the
neighborhood of the origin, so one can apply the Grobmartatéar theorem (for
maps, see [15]) to infer that the magpis locally topologically conjugated to its linear
part, not to its quadratic part. Furthermore, being locailsertible because the linear
part is, the maf, cannot be topologically conjugated to the quadratic tHép = 22
(also viewed as a 2-dimensional real map), which is not lpdavertible near the
origin (detJ4 (0,0)) = 0).

Although the two systems are not locally topologically aargted, the basin of
attraction of the hyperbolic fixed poif is quite similar to the unit disk (the Julia set
of H), this fact is illustrated in Figure 2 for different parametalues.

Figure 2: Phase portraits @ for (a)a = 0.1, (b)a =0.3, (c)a = 0.5, (d)a = 0.8.
In each case, the grey region represents the attractive bBSi(located at the center
of the square), and all the iterates (in the black area) gog@oint at infinity

4.3. Saddle and cycle of order 2

Beyond the valuéi, all the stationary points of are real. Analyzing their stability,
we observe that, fofi < a < = 0.95280..., the dynamical system has, in addition
to the origin, a stable focus and two other repelling fixedhfm{a saddle and an insta-
ble focus). In parallel to these four fixed points, we remdmk solving the equation
T2(x,y) = (x,y) whena €]a, B[, the appearance of an attracting cycle of order 2. An
example of this behavior is depicted in Figure 3 o 0.9, the related numerical
values (of the fixed and periodic points) are summarizedertable below :
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Point Type Stability
0=(0,0) Fixed point| Attracting node
(1.6219..., —0.6505 Fixed point| Instable focus
(0.1087...,0.1250...) Fixed point Saddle
(0.2693...,0.5254...) Fixed point|  Stable focus

[ (0.3204...,-0.4960...) | 2-periodic || Attracting cycle]|
[ (—0.5897..., —0.0294...) || 2-periodic || Attracting cycle]|

Figure 3: Forn = 0.9, the maprl admits three stable sets at finite distance:
the origin, a focus and a 2-attracting cycle. Their respediasins are
represented by distinct shading: light grey, grey and degk g

REMARK 2. Note that Figures 2—6 and Figure 9 are included in the squar
[-2.5,2.5] x [-2.5,2.5].

5. Closed invariant curves and cycles

5.1. Closed invariant curves

The previous attracting 2-cycle loses its stability at atziétion valugp = 0.95280...),
and then the system generates three smooth (i.e. with nensmiections points)
C.I.C. (Closed Invariant Curves, see [1]): the system uyaoles the so-called Neimark—
Sacker bifurcation. This new behavior is observed in theriratl |3, y = 1.0153...].
Two of these curves have the same attracting basin, whil¢hirek has its own one.
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However, we recall that the origin is stable (resp. unsjableena < 1 (resp.a > 1),
and therefore the system possesses three (resp. two) stabkt finite distance.

As an illustration for the (critical) value = 1, the precedent stable focus (see
the above table) becomes instable and is surrounded byla stake. The other curves
form an attracting set and the system evolves alternatetiiem (see Figure 4).

Figure 4: The dynamics df for a = 1: three smooth C.I.C.'s and their two respective
attracting basins (in light and dark grey). The basin of ifiis in black. Note that
the origin is unstable and belongs to the basin boundaryeofap curve

5.2. Other periodic points

Another bifurcation occurs when the parameteis increased very slightly, starting
fromy. The previous set of three curves disappears completelysarpiaced by pe-

riodic points of high ordet (I > 9). In fact, two distinct stable cycles of different
order coexist and divide the phase portrait into two atingdbasins (see Figure 5); this
situation is observed in the intervgl p= 1.02673..[. It should be noted that the
bifurcations value$p, y andy) are close to each other.
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Figure 5: Fora = 1.02, the mapl admits two stable cycles of order 19 and 38

Figure 6: Loss of smoothness of each C.I.C.; the system mpieaechaotic behavior
on them. Two curves have the same basin (in dark grey). Agguargis, the black
region is the basin of infinity. The parameter value is sett91.031
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6. Transition to chaos

There exist many ways in which a dynamical system can presehtotic behavior.

Among them, the period-doubling route to chaos is the wetivikn. Another scenario,

encountered in our study, is the progressive destructi@natdsed invariant curve and
its transformation into a chaotic attractor [1].

As the parametex is varied in the intervalu = 1.02673 .., w=1.03777...],
the three C.1.C. (identified in the present model, see théique section) reappear once
again, but with the loss of their smoothness. By a mechanigtaimed in detail in
[3, 11], one sees progressively the appearance of cuspspmirgach curve, followed
by the generation of loops (or self-intersections) (seeifei). The critical curves
(LC) (see Section 3), play an important role in these transfaomssee [1, 11]).

It is worth noting that, as reported in the end of the abovéiecall these
changes take place for very small parameter ranges.

Beyond the valueo = 1.03777..., we note the birth of a chaotic attractor (see
Figure 7). This invariant set is formed by the connectionhaf previous nonsmooth
C.I.C. It presents clearly a fractal structure (see FigyreB@sides, its capacity (resp.
information) dimension, which is estimated far= 1.04 by a variant of the box-
counting algorithm (proposed in [2]), has the valltgap ~ 1.46 (respDins = 1.40).

The previous chaotic attractor subsists in the intetwald = 1.066...[, and
then a contact bifurcation occurs (see [1]). This bifumatiakes place in the contact
between the chaotic set and its basin boundary (see FigurB&)ond the valué,
the chaotic attractor is destroyed and all the trajectatiesrge for almost any initial
condition(xo, o) € R?.

RemARK 3. The detection of each of the valugsy, i1, w, ) of the parametex,
on which particular types of phase portraits arise, was dsirg aFortran 90program.
By scanning the intervat > 0, several (numerical and graphical) experiments were
performed. In addition, the softwaf@ynamics—Smalldyfil4] was very helpful in the
development of the graphical representations.
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Figure 7:a = 1.04. A typical chaotic attractor of (80,000 points are plotted)
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Figure 9:a ~ 1.0655: just before the contact bifurcation
of the chaaotic attractor with its basin boundary

Conclusion

Our aim was to study the dynamics of a perturbed holomorplap mhich depends
continuously on a real parameter. In this context, we fodusethe attractive basins
and their boundaries. When the parameter is close to zexanép T has some prop-
erties similar to those of the associated holomorphic dyoalnsystem, even if these
two systems are not topologically conjugate.

Although the initial system has only one parameter, we edtihat it presents
a great complexity in its behavior: the attractors are rag(équilibria, stable cycles,
closed invariant curves) or chaotic. In particular, thegess of the appearance or
disappearance of the closed invariant curves is clarifiegrghical representations.

We can consider another form of (1), that is:
Tabap(%y) = 0¢ —y*+a+ay, 2xy+b+px),

with (a,b) € R? and (a,B) € (R*)2. If a = B =0, one also find the well studied
quadratic mafapo0(X,Y) = T(2) = 22+ ¢ (with z= x+iy andc=a+ib € C). For

a fixed pair(a,b), it may be possible to build the bifurcation diagram in thegpaeter
(a,B)-plane, in parallel with the representative phase postrait
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