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ON THE DYNAMICS OF A PERTURBED

HOLOMORPHIC DYNAMICAL SYSTEM

Abstract. The purpose of this work is to study the dynamics of a discretebidimensional
dynamical system which depends on a real parameter. This system is obtained by a perturba-
tion of a holomorphic polynomial whose Julia set is well known. The attractors of the initial
system, as well as their attractive basins, are determined.Different types of bifurcations are
identified.

1. Introduction

The holomorphic dynamical systems generated by rational functions have been
intensively studied ever since the pioneering works of G. Julia [9] and P. Fatou [7].

In another context, the discrete bidimensional dynamical systems are modelled
by noninvertible (piecewise continuous, continuous or differentiable) mapsT. Such a
mapT is defined by

T : R2 ⊇ S −→ S

(x,y)  ( f1(x,y), f2(x,y)).

The dynamical system(S,N,T) is holomorphic ifT is differentiable and if its two
components( fi , i = 1,2) satisfy theCauchy–Riemannconditions.

In the light of recent developments of the theory (see [13, 1,10, 8, 3, 11]),
we present a study on the dynamics of a system generated by a map T that depends
continuously on a real parameter. The choice ofT is motivated by the fact that when
the parameter is equal to zero, the mapT can be viewed as an holomorphic one. In
addition to a comparison with the last system, the dynamics,stability and attractors of
the initial one will be presented for some range of the parameter. We will show that
the attractors of this system are of different types (fixed points, periodic points, closed
invariant curves, chaotic attractors). Local and global bifurcations are encountered
when varying the parameter.

The plan is as follows. In Section 2, we present the two-dimensional recurrence
T and its particularities. Section 3 is devoted to the determination of the critical curve
of the present case. In Section 4, we calculate the fixed and periodic points depend-
ing on the parameter of the system. When this parameter is modified in the range of
interest, we treat successively the appearance/disappearance of closed invariant curves
and cycles (Section 5) and the birth of a chaotic attractor (Section 6), with presenta-
tion of the associated figures. The last section contains a conclusion and a proposed
generalization of this study.
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2. The model

The bidimensional transformation considered in this work is :

Ta,b,α : R2 −→ R2

(x,y)  (x2− y2+a+αy, 2xy+b+αx)(1)

with (a,b) ∈ R2 andα ∈ R∗. In the sequel, we shall sometimes write eitherT in place
of Ta,b,α as the dependence ofT on the parametersa,b,α is understood.

The expression ofT can evidently be written in the more explicit form

T

(
x
y

)
=

(
x2− y2+a

2xy+b

)
+α

(
y
x

)
,

so if α = 0, we can simply write

Ta,b,0(x,y) = Tc(z= x+ iy) = z2+ c,

with c= a+ ib ∈ C. In other words, the initial dynamical system (1) becomes a holo-
morphic one; the properties of this particular case (fixed and periodic points, Julia set,
etc.) are explained in detail in the literature (see for instance [5, 4, 6]).

If α 6= 0, the transformationT can also be writtenTc,α(z) = z2+ c+ iαz, i.e. T
is now a nonholomorphic map. Interesting studies on a special form of these types of
systems have been proposed by K. Uchimura [18, 17, 16].

3. The critical curve of a noninvertible map

3.1. Some considerations on the degree of a mapping

In this subsection, we will consider only proper smooth mapsf : Rn −→ Rn. (In this
setting, “proper” means‖ f (x)‖ → ∞ when‖x‖ → ∞.) A regular point of a differen-
tiable mapf is a point at which the Jacobian determinantJf (x) 6= 0. The setRf of all
regular points off is open. Its complement is the setCf of critical pointsof the map
f . A regular value of an f-map is a point of the range whose pre-images consist of
regular points, otherwise the point is acritical value. Since the set of critical points is
closed and since proper maps send closed sets into closed sets, it follows that the set
of critical valuesLC= f (Cf ) is closed and hence, the set of regular values of a proper
differentiable map is open. Moreover it is dense by Sard’s theorem.

Given a proper differentiable mapf : Rn −→ Rn, the mapping degree(also
calledBrouwer degree) of f is the integer

deg( f ) = ∑
x∈ f−1(y)

sgn(Jf (x))

wherey is any regular value off . This number is independent of the choice of the
regular valuey. (Further details can be found in [12].)
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Let us define themultiplicity m( f ) ∈N∪{∞} by

m( f ) = sup{cardinality( f−1(y)) : y∈ Rn}.

If n = 2 and f is holomorphic then deg( f ) = m( f ), since sgn(Jf (x)) equals 1 every-
where. However, for the mapg(x,y) = (x2, y) we have deg(g) = 0 butm(g) = 2.

For holomorphic maps, the locusLC = f (Cf ) coincides with the set of points
which have at least two merging predecessors (e.g.u(z) = z3). However one cannot say
this of the maph(x,y) = (x3, y), which is a homeomorphism.

3.2. On the critical curve of a two-dimensional noninvertible map

The existence of the critical curve (abbreviatedLC for “L igneCritique” in French) is
one of the distinguishing features of any noninvertible two-dimensional mapG (not just
the mapT given by (1)). It was introduced by C. Mira in 1964 (see [13] and references
therein). The phase space can be divided into open regions(Zk)k∈N in which points
havek rank-one preimages under the mapG, and these regions are separated byLC.
The latter curve plays a fundamental role in determining theproperties and the global
bifurcations of basins [10, 8]. When the mapG is continuously differentiable, we have
LC = G(LC−1) whereLC−1 is identical to the setCG above, and the maximum value
of the integerk is given by the multiplicitym(G).

3.3. The critical curve of our model

In the present case, the transformationT of (1) is differentiable, soLC is the image of
the locusLC−1 of points where the determinant of the Jacobian matrix ofT vanishes.
At a point(x,y), this matrix takes the form

(2) J(x,y;α) =
(

2x α−2y
α+2y 2x

)
,

andLC−1 is the curve whose points(x,y) verify det(J(x,y;α)) = 0. Such points satisfy
the equation

4(x2+ y2)−α2 = 0.

Therefore

LC−1 =

{
(x,y) ∈R2 : x2+ y2 =

(α
2

)2
}

is the circle centered at(0,0)with radiusα/2, and the critical curve can be parametrized
as follows:

LC= Ta,b,α(LC−1) = {(u(t),v(t)), t ∈ [0, 2π]},
with 




u(t) =
α2

4
cos2t +

α2

2
sint +a

v(t) =
α2

4
sin2t+

α2

2
cost +b.
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As Y varies inR2\LC, we can show that the equationT(X) = Y admits only
two or four solutions (i.e.m(T) = 4); the mapT is of the type(Z2−Z4) according to
the nomenclature established by Mira [13]. The phase space can be separated in two
distinct connected (or multiply-connected) zones(Z2 andZ4) in which each point has
two or four preimages underT, that is(R2 = Z2∪Z4). Note that the curve has three

cusp points whose coordinates are(− 3
4α2, 0) and(3

8α2,± 3
√

3
8 α2); at these points,T

has three coincident preimages. An example of such curve is shown in Figure 1; it is
formed by the points which have at least two coincident preimages and is similar to
Steiner’s hypocycloid [18].

Figure 1: The critical curveLC for a= b= 0 andα = 1. The three cusp points are
plotted with big dots; each point inZ4 admits four distinct preimages under the map T

4. Fixed points and periodic points

When(a,b) ∈R2 andα ∈R∗, the fixed pointsX∗ = (x∗,y∗) of the system are given by

(3) y∗ =
αx∗+b
1−2x∗

,

wherex∗ verifies the polynomial equation

(4) 4x4−8x3+(5+4a−3α2)x2+(α2−4αb−4a−1)x+(a+αb−b2) = 0

of degree 4 (4 being the degree of the mapT).

To study their stability, we must consider the modulus of theeigenvalues of the
Jacobian matrix (see (2)). Its characteristic polynomial is

(5) Uλ(x,y) = λ2−4xλ+[4(x2+ y2)−α2].

We remark thatUλ(x,y) = Uλ(x,−y); let us note that this property will be used in the
next subsection.
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4.1. The particular casea= b= 0

In this study, we restrict investigation to the particular casea= b= 0. Indeed:

i) The Jacobian matrix (2), and consequently the characteristic polynomial (5),
does not dependexplicitlyona or b.

ii) The determination of the fixed points ofT is less difficult (see (3) and (4)).

iii) The trivial case(a = b = α = 0) transforms the mapT into the quadratic
complex polynomialT(z= x+ iy) = H(z) = z2.

We recall that theJulia set(see [9, 6]) ofH is simply the unit circle: this invariant set
separates the immediate attracting basins of the origin andthe point at infinity. In the
next subsection, we shall see the form of the first basin whenα is close tozero.

With these changes (i.e.a= b= 0 andα 6= 0), the expression ofT becomes

Tα(x,y) =
(

fα(x,y) = x2− y2+αy, gα(x,y) = 2xy+αx
)
.

It is easy to see that for all(x,y) ∈ R2 and for allα ∈ R∗, we have

fα(x,y) = f−α(x,−y)(6)

gα(x,y) = −g−α(x,−y).(7)

In complex notation, these two equalities give us the important property

(8) Tα(z) = T−α(z)

wherez= x+ iy.

PROPOSITION1. If (v,w) is a fixed point of Tα then(v,−w) is a fixed point of
T−α and these both points have the same multipliers.

Proof. The first statement comes directly from (6)–(8), and the remark which follows
(5) proves the second part.

This last proposition can be generalized as follows:

PROPOSITION2. If (v,w) is a k-periodic point of Tα (with k≥ 2) then(v,−w)
is also a k-periodic point of T−α and both points have the same multipliers.

Proof. For example, withk= 2, we obtain the following equalities

T2
−α(v,−w) = T−α(T−α(v,−w))

= T−α( f−α(v,−w), g−α(v,−w))
(6)−(7)
= T−α( fα(v,w), −gα(v,w))
(8)
= Tα( fα(v,w), gα(v,w))

= T2
α (v,w).
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The last part of the assertion follows from (5) and the chain rule of differentials.

From these two propositions, it follows

COROLLARY 1. In terms of the real parameterα, the study of the behavior
of the dynamical system(R2,N,Tα) can be reduced to the interval]0, +∞[. In other
words, the dynamics of the maps Tα and T−α are essentially the same (see(8)).

4.2. The fixed points ofTα with α > 0

The originO = (0, 0) is obviously a fixed point ofTα, and its multipliers(seeeq. 5)
are deduced from the expression ofUλ(0, 0) = λ2−α2. Therefore, ifα < 1 the origin
is an attractive node, and is, in particular, a hyperbolic fixed point.

As regards other fixed points(x∗, y∗): (3) and (4) become respectively

y∗ =
αx∗

1−2x∗
,

4x3−8x2+(5−3α2)x+(α2−1) = 0,

so thatx∗ now verifies a polynomial equationL(x) = 0 of degree 3. We stress here that
x= 1/2 cannot be a root ofL, otherwise the parameterα would equal 0.

This cubic equation admits at least one real rootx̂, its expression is given by

x̂= x̂(α) =
2
3
+

K
6
+

1/6+3α2/2
K

,

where

K = K(α) =
(

1+27α2+3α
√

3+54α2−81α4
) 1

3
.

REMARK 1. If α → 0 thenK(α)→ 1 and this leads to(x̂(α), ŷ(α)) −→ (1, 0)
which is the repulsive fixed point ofH(z) = z2.

Let α̂ be the unique positive root of the argument inside
√

3+54α2−81α4, the
square root that appears in the above expression ofK, that is

α̂ =
1
3

√
3+2

√
3 ≈ 0.84748. . .

Numerical calculations allow us to establish that the mapT possesses, in addition to
the originO, one (resp. two, resp. three) real fixed point(s) whenα < α̂ (resp.α = α̂,
resp.α > α̂). Whenα crosses the valuêα, one of the both fixed points admitsλ = 1 as
a multiplier: this indicates a fold-bifurcation.

Figure 2(a) shows the attractive basin of the origin for(α = 0.1), the point
(

x̂, ŷ=
αx̂

1−2x̂

)
= (1.0190. . . , −0.0981. . .)

belongs to the basin boundary. In the following paragraph, we discuss the properties of
the mapsTα andH near to the origin.
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On the existence of a local topological conjugacy between Tα and H.Consider the map
Tα as a 2-dimensional real map, we denote byL (Tα)(x,y) = (αy, αx) the linear part
of Tα.

For α > 0 small, the mappingL (Tα) is clearly invertible and attracting in the
neighborhood of the origin, so one can apply the Grobman–Hartman theorem (for
maps, see [15]) to infer that the mapTα is locally topologically conjugated to its linear
part, not to its quadratic part. Furthermore, being locallyinvertible because the linear
part is, the mapTα cannot be topologically conjugated to the quadratic mapH(z) = z2

(also viewed as a 2-dimensional real map), which is not locally invertible near the
origin (det(JH(0,0)) = 0).

Although the two systems are not locally topologically conjugated, the basin of
attraction of the hyperbolic fixed pointO is quite similar to the unit disk (the Julia set
of H), this fact is illustrated in Figure 2 for different parameter values.

Figure 2: Phase portraits ofTα for (a) α = 0.1, (b)α = 0.3, (c)α = 0.5, (d)α = 0.8.
In each case, the grey region represents the attractive basin of O (located at the center

of the square), and all the iterates (in the black area) go to the point at infinity

4.3. Saddle and cycle of order 2

Beyond the valuêα, all the stationary points ofT are real. Analyzing their stability,
we observe that, for̂α < α < β = 0.95280. . . , the dynamical system has, in addition
to the origin, a stable focus and two other repelling fixed points (a saddle and an insta-
ble focus). In parallel to these four fixed points, we remark,by solving the equation
T2

α (x,y) = (x,y) whenα ∈]α̂,β[, the appearance of an attracting cycle of order 2. An
example of this behavior is depicted in Figure 3 forα = 0.9, the related numerical
values (of the fixed and periodic points) are summarized in the table below :
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Point Type Stability
O= (0, 0) Fixed point Attracting node

(1.6219. . . , −0.6505) Fixed point Instable focus
(0.1087. . . , 0.1250. . .) Fixed point Saddle
(0.2693. . . , 0.5254. . .) Fixed point Stable focus

(0.3204. . . , −0.4960. . .) 2-periodic Attracting cycle

(−0.5897. . . , −0.0294. . .) 2-periodic Attracting cycle

Figure 3: Forα = 0.9, the mapT admits three stable sets at finite distance:
the origin, a focus and a 2-attracting cycle. Their respective basins are

represented by distinct shading: light grey, grey and dark grey

REMARK 2. Note that Figures 2–6 and Figure 9 are included in the square
[−2.5,2.5]× [−2.5,2.5].

5. Closed invariant curves and cycles

5.1. Closed invariant curves

The previous attracting 2-cycle loses its stability at a bifurcation value(β= 0.95280. . .),
and then the system generates three smooth (i.e. with no self-intersections points)
C.I.C. (Closed Invariant Curves, see [1]): the system undergoes the so-called Neimark–
Sacker bifurcation. This new behavior is observed in the interval ]β, γ = 1.0153. . . [.
Two of these curves have the same attracting basin, while thethird has its own one.
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However, we recall that the origin is stable (resp. unstable) whenα < 1 (resp.α > 1),
and therefore the system possesses three (resp. two) stablesets at finite distance.

As an illustration for the (critical) valueα = 1, the precedent stable focus (see
the above table) becomes instable and is surrounded by a stable curve. The other curves
form an attracting set and the system evolves alternately onthem (see Figure 4).

Figure 4: The dynamics ofT for α = 1: three smooth C.I.C.’s and their two respective
attracting basins (in light and dark grey). The basin of infinity is in black. Note that

the origin is unstable and belongs to the basin boundary of the top curve

5.2. Other periodic points

Another bifurcation occurs when the parameterα is increased very slightly, starting
from γ. The previous set of three curves disappears completely and is replaced by pe-
riodic points of high orderl (l ≥ 9). In fact, two distinct stable cycles of different
order coexist and divide the phase portrait into two attracting basins (see Figure 5); this
situation is observed in the interval]γ, µ = 1.02673. . .[. It should be noted that the
bifurcations values(β, γ andµ) are close to each other.
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Figure 5: Forα = 1.02, the mapT admits two stable cycles of order 19 and 38

Figure 6: Loss of smoothness of each C.I.C.; the system presents a chaotic behavior
on them. Two curves have the same basin (in dark grey). As in Figure 5, the black

region is the basin of infinity. The parameter value is set toα = 1.031
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6. Transition to chaos

There exist many ways in which a dynamical system can presenta chaotic behavior.
Among them, the period-doubling route to chaos is the well-known. Another scenario,
encountered in our study, is the progressive destruction ofa closed invariant curve and
its transformation into a chaotic attractor [1].

As the parameterα is varied in the interval]µ= 1.02673. . . , ω = 1.03777. . . [,
the three C.I.C. (identified in the present model, see the previous section) reappear once
again, but with the loss of their smoothness. By a mechanism explained in detail in
[3, 11], one sees progressively the appearance of cusp points on each curve, followed
by the generation of loops (or self-intersections) (see Figure 6). The critical curves
(LC) (see Section 3), play an important role in these transformations (see [1, 11]).

It is worth noting that, as reported in the end of the above section, all these
changes take place for very small parameter ranges.

Beyond the valueω = 1.03777. . ., we note the birth of a chaotic attractor (see
Figure 7). This invariant set is formed by the connection of the previous nonsmooth
C.I.C. It presents clearly a fractal structure (see Figure 8). Besides, its capacity (resp.
information) dimension, which is estimated forα = 1.04 by a variant of the box-
counting algorithm (proposed in [2]), has the valueDCap≈ 1.46 (resp.DIn f ≈ 1.40).

The previous chaotic attractor subsists in the interval]ω, δ = 1.066. . . [, and
then a contact bifurcation occurs (see [1]). This bifurcation takes place in the contact
between the chaotic set and its basin boundary (see Figure 9). Beyond the valueδ,
the chaotic attractor is destroyed and all the trajectoriesdiverge for almost any initial
condition(x0,y0) ∈ R2.

REMARK 3. The detection of each of the values(β,γ,µ,ω,δ) of the parameterα,
on which particular types of phase portraits arise, was doneusing aFortran 90program.
By scanning the intervalα > 0, several (numerical and graphical) experiments were
performed. In addition, the softwareDynamics–Smalldyn[14] was very helpful in the
development of the graphical representations.
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Figure 7:α = 1.04. A typical chaotic attractor ofT (80,000 points are plotted)

Figure 8: A magnification of a part of the chaotic set (Figure 7),
corresponding to the rectangle[0.05,0.20]× [−0.20,0.00]
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Figure 9:α ≈ 1.0655: just before the contact bifurcation
of the chaotic attractor with its basin boundary

Conclusion

Our aim was to study the dynamics of a perturbed holomorphic map which depends
continuously on a real parameter. In this context, we focused on the attractive basins
and their boundaries. When the parameter is close to zero, the map T has some prop-
erties similar to those of the associated holomorphic dynamical system, even if these
two systems are not topologically conjugate.

Although the initial system has only one parameter, we noticed that it presents
a great complexity in its behavior: the attractors are regular (equilibria, stable cycles,
closed invariant curves) or chaotic. In particular, the process of the appearance or
disappearance of the closed invariant curves is clarified bygraphical representations.

We can consider another form of (1), that is:

Ta,b;α,β(x,y) = (x2− y2+a+αy, 2xy+b+ βx),

with (a,b) ∈ R2 and (α,β) ∈ (R∗)2. If α = β = 0, one also find the well studied
quadratic mapTa,b;0,0(x,y) = T(z) = z2+ c (with z= x+ iy andc = a+ ib ∈ C). For
a fixed pair(a,b), it may be possible to build the bifurcation diagram in the parameter
(α,β)-plane, in parallel with the representative phase portraits.
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