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School on Hodge Theory

C. Schnell

TWO LECTURES ABOUT MUMFORD-TATE GROUPS

Abstract. We define Hodge structures as representations, and inedledViumford—Tate
group MT(H) of a rational Hodge structure. We give a characterizatioM®fH) based on
properties of reductive groups, and study it for ellipticvas and their powers. We define
what it means for a Hodge structure to arise from an abeliaietyafas is the case for K3
surfaces), and then focus on cases in which this is not triee presentation includes a
selection of exercises.
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Introduction

These notes correspond, more or less, to two lectures giwémgdthe school on Hodge
theory that took place at the CIRM in Trento, Italy, from 31gust to 4 September
2009, for which 1 filled the role of a teaching assistant. @a¥oisin and Eduard
Looijenga had both suggested that | review the basic thefoiuonford—Tate groups,
together with one interesting application: Deligne’s growat the cohomology of a
general hypersurface IP® of degree at least cannot be expressed in terms of abelian
varieties.
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The first lecture is mostly based on notes by Ben Moonen [4];sécond on
Deligne’s paper [1]. | have also included a set of exercismsdhd out during the
school, and the solution to the one describing the KugakBatanstruction, because
of its relevance to the second lecture. | am very gratefuigéatrganizers for the chance
to participate.

1. First lecture

The object of this lecture is to introduce the Mumford—Tateugp of a Hodge structure;
this is an algebraic subgroup MH) of GL(H), naturally associated to any rational
Hodge structuréd. Roughly speaking, the knowledge of the Mumford—Tate grofup

H is the same as knowing alD,0)-Hodge classes in any Hodge structure obtained
from H by direct sums, duals, or tensor products. Of course, thensi¢hat finding
the Mumford—-Tate group of an arbitrary Hodge structure ipassible; on the other
hand, if we do know MTH), we have a good chance of saying something nontrivial
about Hodge classes. For example, the Hodge conjecturetitraay powers of an
elliptic curve can be proved in this way.

1.1. Hodge structures as representations

Before defining the Mumford—Tate group, we briefly recalliDeé’s way of viewing
Hodge structures as representations of a certain algaimaipsS. To begin with, we
can embed* into GL, (RR) by the group homomorphism

C* — GL3(R), a+ib»—>s(a,b):<_ab z)

The image is the set of real points of an algebraic subgapGL,. As with any
scheme, we can describe an algebraic group by giving itsfqmiiots over arbitrary
commutative ring®\; in the case at han&,A) consists of those invertible matrices

<‘§ 3) € GLy(A)

that satisfya —d =b+c = 0. ThenS(R) is isomorphic toC* via the map above.
Clearly, S is an algebraic subgroup of GLdefined overQ, and abelian. We have
R* — S(RR), embedded as the subgroup of scalar matrices.
Now let Hg be a finite-dimensionak-vector space. A Hodge structure big
is a decomposition
He =C®rHgr = @Hp’q
P4

with H9P = HP,d. Here complex conjugation is defined Wa h =A®@h for h € Hg
andA € C. The Hodge structure determines a representation

p: S(R) — GL(Hg),



Two lectures about Mumford—Tate groups 201

by lettingz = a+1ib act onHP>9 as multiplication byzPz9 = (a+1ib)P(a—1ib)9.
Sincep is given by polynomials, this is an algebraic representa@gmd we can easily
check that it is defined ovék. Note that the scalar matrixid € S(R) acts as multi-
plication byaP*9 onHP9; if H is pure of weightk, thenp(aid) = a*id, which lets
us read off the weight of the Hodge structure from the reprtagion. Conversely, one
can show that any algebraic representatiof$ tifiat is defined oveR determines an
R-Hodge structure.

LEMMA 1. Let p: S(R) — GL(Hg) be an algebraic representation; thegn
comes from a Hodge structure as above. More precisely, timerands of the Hodge
decomposition are given as eigenspaces

HPd = ) ker(p(s(a,b))—(a—f—ib)p(a—ib)qid).
aZ+b24£0

To get a Hodge structure defined ov@gr one should require in addition that
Hr = R®q Hg for aQ-vector spacéig. A point to be careful about is that, neverthe-
less, the representati@nis only defined oveR.

All the usual operations on Hodge structures, such as ditgus, tensor prod-
ucts, Hom, etc., can be performed in terms of the represensatone simply uses the
standard definitions from representation theory. We al$e that the Weil operator of
the Hodge structurkl is p(s(o, 1 )); the reason is that the elemérg C* is represented

by the matrix
0 1
3(0)1)_<_1 O))

which, by definition, acts on the spat->9 as multiplication byiP—9.

1.2. Mumford—Tate groups

We can now define the main object of these two lectures (I aloviolg Ben Moonen’s
notes on Mumford—Tate groups [4] in this portion of the celirs

DEFINITION 1. LetH be a rational Hodge structure, angt S(R) — GL(Hg)
the corresponding algebraic representation. THemford—Tate groupf H is the
smallest algebraic subgroup &L (H), defined ovefQ, whose set of real points con-
tains the image of. It is usually denoted bWIT (H).

By definition, the Mumford—Tate group comes with a morphisinralgebraic
groupsp: S — MT (H), defined oveiR. In particular, any rational vector spakewith
an algebraic representation VH) — GL(V) naturally acquires a Hodge structure.
For representations that are derived from the standaréseptation of G[H) on H
by operations such as direct sum or tensor product, the @lhodge structure is of
course the same as the usual one.

The main reason for introducing the Mumford—Tate group ssréationship
with Hodge classes in Hodge structures derived fidm To make this precise, we
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define for any pair of multi-indiced, e € N™ the tensor space

n
Td,e(H) — @H®dj ® (H\/)®e]- .
j=1

It has a natural action by GH), and therefore also by MH); note thatT%:¢(H) is
a direct sum of pure Hodge structures of weigit — e; )k, respectively, wherg still
denotes the weight of the pure Hodge structdre

PROPOSITIONL. LetV C T4 ¢(H) be any rational subspace. Th&his a sub-
Hodge structure if and only if it is stable under the actionMt (H). Similarly, a
rational vectort € T4¢(H) is a (0,0)-Hodge class if and only if it is invariant under
MT(H).

Proof. If V is stable under the action of M), it becomes a representation of 1),

and therefore &-Hodge structure. Conversely, suppose t¥iat T4¢(H) is a sub-
Hodge structure defined ov&. We can then look at the subgro®, € GL(H) of
those elements that preserVe Clearly, this is an algebraic subgroup defined over
Q; moreover, its set of real points contains the image becausé/ is a sub-Hodge
structure. By definition, MTH) C Gv, proving thatV is preserved by MTH).

For the second assertion, suppose thatinvariant under MTH). Thent is
also invariant under the induced action®§R ), and therefore has to be a Hodge class
of type (0,0). Conversely, let be a(0,0)-Hodge class. As before, the stabilizer of
tin GL(H) is an algebraic subgroup, defined o@rand containing the image of
consequently, it contains the entire Mumford—Tate group. O

The morphisms of Hodge structure frdnto itself are exactly thé0,0)-Hodge
classes in EnH); by Proposition 1,

1) Homg.ps(H, H) ~ EndH)MT (F),
Let us now look at some of the basic properties of Mumforde Gaibups.

PrROPOSITION2. Let H be a Hodge structure of weight, and MT(H) its
Mumford—Tate group.

(i) If k#£0, thenMT(H) contains the center; it =0, thenMT (H) C SL(H).
(i) MT (H) is always a connected group.
(i) If His polarizable, themT (H) is a reductive group.

Proof. The first two assertions are simple consequences of thetitaiiof MT(H). To
prove the third, we use the following criterion for beinguetive: A connected group
G over a field of characteristic zero is reductive iff it has @hflal and completely
reducible representation. In the case of the Mumford—Tadep this representation is
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the tautological representation NIH) — GL(H). Its sub-representations are exactly
the sub-Hodge structures &f; complete reducibility follows from the fact that the
category of polarizabl€-Hodge structures is semisimple. O

The next lemma shows the relationship between the Mumfaid-group of a
direct sum of two Hodge structures and those of the two surdmaA similar, but
slightly weaker result is true for tensor products.)

LEMMA 2. LetH; andH, be two Hodge structures. Under the natural map
GL(H7) xGL(Hz) — GL(H; @ H;), we haveMT(H; ®H,) CMT(H;) x MT(H;).
Moreover, the projection to either factor is surjective.

Proof. This follows easily from the definition. O

An alternative definition of the Mumford—Tate group is as gubgroup of
GL(H) that fixes every0,0)-Hodge class in any tensor spakcé¢(H). The two defi-
nitions agree because of the following fundamental result.

PROPOSITIONS. Let G C GL(H) be the subgroup of elements that fix every
(0,0)-Hodge class in every tensor spate€(H). ThenG = MT(H).

Proof. By Proposition 1, we have at least the inclusion (Ml C G. The converse is
a general fact about reductive groups, and is proved asfsl{details can be found in
1.3 below). First, one shows by a rather formal argumentMiatH) is the stabilizer
of a one-dimensional subspakceontained in one of the representatidns T4:¢(H).
Since MT(H) is reductive by Proposition 2, there is a decomposifior L& T’ as
representations, and MM) is the stabilizer of a generator &fv L insideT® TV.
As we have seen in Proposition 1, such a generator has to belgeHdass of type
(0,0), and therefore&s C MT(H). O

1.3. Aresult about reductive groups

The alternative characterization of the Mumford—Tate grisuProposition 3 depends
on a more general result about reductive groups. For the glakempleteness, we
reproduce Deligne’s proof from [3].

So letG be a reductive algebraic group, defined over a fietif characteristic
zero. Accordingly, there are finite-dimensional represgonsVy,...,V, of G such
thatV; & --- ¢V, is faithful; in other words, such that the map

n
G—JJoeLw)
i=1

is injective. For any pair of multi-indices, e € N™, we again define the tensor space

mn
Td,e _ @V?di ® (Vi\/)®ei»

i=1
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which is naturally a representation @f Given any subgroupl C G, we letH’ be the
subgroup ofG fixing all tensors (in anyl 4:€) that are fixed byH. A priori, this is a
bigger group tha; the question is whethét’ = H.

ProPosITIONA. If H is itself a reductive group, theld’ = H.

Proof. According to Chevalley’s theorem (see Lemma 4 beldw)s the stabilizer of
alineL in some representatior; by Lemma 3, we may furthermore assume iag a
direct sum of representatiofish¢. SinceH is reductive, there exists a decomposition
V =L& W, with W another representation &f; it is then easy to see that is the
stabilizer of any generator &f® LV insideV ® V. Since such a generator is a direct
sum of tensors in varioud:¢, it follows thatH’ C H, and thereforéd’ = H. O

LEMMA 3. Any finite-dimensional representation @fis contained in a direct
sum of representatiorigd:€.

Proof. Let k[G] be the ring of regular functions on the algebraic gr@pas a rep-
resentation ofG, it is called the regular representation (afd f)(x) = f(g~'x) for

f € k[G] andg € G). Given any representatio®v of G, let W, be the trivial repre-
sentation with the same underlying vector spac&ashusgw = w for anyw € W,
and anyg € G. The multiplication mags x W — W determines &-equivariant em-
beddingW — W, ®x k[G], as can be seen by taking a basis; sil¢e® k[G] is
isomorphic to a direct sum of copies BfG], it suffices to prove the lemma for the
regular representation (which, of course, is not finiteetigional).

Now letV =V @ ---® V,, be the faithful representation & from above, for
which G — GL(V) is injective. The map GLV) — End V) x End V") is a closed
embedding, and therefore both Gf) and G are closed subvarieties of the product
End V) x EndVY). In general, the ring of regular functions on a vector spéc¢e
is the symmetric algebra Sywr'; from the closed embedding above, it follows that
there is aG-equivariant surjection

SymEndV") @y SymEndV) — k[G].

But now G is reductive, and so this surjection splits; therefbfg] is isomorphic to
a direct summand of the left-hand side, which in turn is coehin an infinite sum
of representation§%-¢. Being finite-dimensional, the original representatiodhthen
injects into the direct sum of finitely many of them. O

LEMMA 4. Any subgroupH of G is the stabilizer of a lind. in some finite-
dimensional representation ¢f.

Proof. Let Iy C k[G] be the ideal of functions that vanish &h In the regular rep-
resentation, thereforé] is the stabilizer ofi;. Next, we claim that there is a finite-
dimensional subspad& C k[G] that is stable unde® and contains a set of generators
for the ideally. In fact, sincely is finitely generated, it suffices to show that the
subspacé/V(f) spanned by any € k[G] and its translates undér has finite dimen-
sion. To see that this is the case, consider the multiptinathap: G x G — G,
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and the induced map on regular functions k[G] — k[G] ®y k[G]. We can write
wf = Z]-‘L h; ® f; with regular functionsfy,...,fi, hy,...,hy. Foranyg,x € G,
we then have

(g ") (x).

s

—_

(g-f)(x)=flg~ %)= (g ' ,x) =

j

The formula shows thatV(f) is contained in the span @f,...,f,, and is therefore
finite-dimensional.

Taking W as aboveH is now the stabilizer of the subspa®eén I of W.
Letting d = dimW NIy, we see thatH is also the stabilizer of the one-dimensional
subspacéW N 1y)" 4 in W4, proving the lemma. O

1.4. Examples of Mumford—Tate groups

First, consider the Hodge structuggn ). Since Gl = Gn, is the multiplicative group,
we see directly from the definition that

Gm ifn#0,
MT(Q(m) = {1 if n=0.

Next, we look at the Mumford—Tate group of elliptic curve®tE be an elliptic
curve, andHg = H'(E,Q) the Hodge structure on its first cohomology. [@t=
EndE) ® Q be the rational endomorphism algebra of the elliptic cuhare EndE)
consists of all morphismé: E — E that fix the unit element of the group law. It is
known thatD is eitherQ, or an imaginary quadratic field extension@f In the second
case, the curve is said to have complex multiplication. For the elliptic ear

E.=C/(Z+7Z),

this happens precisely wherbelongs to an imaginary quadratic field; tHen~ Q(t),
and EndE~) is isomorphic to an order in the ring of integersiof

By Proposition 1 and (1), we know that
D ~ End(Hg)MT ("),

becausé is naturally isomorphic to the space (@f 0)-Hodge classes in Efitl) (due

to the fact thak is an abelian variety). This means that M) has to be contained in
the subgroup oD-linear automorphisms dfi. That condition places enough restric-
tions on MT(H) to let us determine the Mumford—Tate group.

There are two cases. First, let us consider the €ase Q. We know from
Proposition 2 that MTH) is a connected and reductive subgroup of(BL~ GL,
that contains the scalar matrices. Now the only connectactive groups withzy, -
id C G C GL, are GL itself, G, - id, or maximal tori of GL.. The second and third
possibility are ruled out, because the set of invariantsrid(8?) is bigger than just
Q-id. It follows that we have MTH) = GL(H).
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Next, consider the case where the cukvkas complex multiplication; theD
is an imaginary quadratic field. In this cadéy is a free module of rank over D.
Since MT(H) has to consist oD-linear automorphisms dfl, it follows that we have
MT(H) C Tp, whereTp is the algebraic torus whose set of points over any Ang
is Tp(A) = (A®qgD)*. Thus we haveéGy, -id C MT(H) C Tp. The possibility that
MT (H) = G- id is again ruled out because the set of invariants in(Eigd would be
too big; consequently, M[H) ~ Tp.

Once we know the Mumford—Tate group, we know in principlecéhese of
Proposition 1) what all th¢0,0)-Hodge classes in any tensor spdc¢e¢(H) are. A
nice application of our computation above is the following.

PrROPOSITIONS. LetE be an elliptic curve. Then the Hodge conjecture is true
for any powert™ =E x --- x E.

Proof. Let X =E™. As for any smooth projective variety, we have the Hodge ring

B(X) = € Homg.ns(Q(0), H**(X,Q) (k).

k=0

This is a graded ring, whose component in dedreensists of allk, k)-Hodge classes
in HZ¥(X, Q). Using our computation of the Mumford—Tate group, we carverhe
stronger statement thB{ X) is generated in degrex that is, by the classes of divisors
on X. Since any divisor class is represented by an algebrai@ctfuis verifies the
Hodge conjecture foX.

For simplicity, we will only treat the case whel2 ~ Q. As above, lefHg =
H'(E,Q); according to our computation, MH) = GL(H). Now X = E™ is an abelian
variety of dimensiom; sinceH' (X,Q) ~ H®", the cohomology algebra &f is iso-
morphic to the wedge algebra bif*™. As direct sums of Hodge structures of weight
0, we therefore have

P H(X,Q) (k) ~ P (HT™) ) (k)

k>0 k>0

The assertion thd@ (X) is generated by divisor classes is thus implied by the fatigw
result in invariant theory: LeV be a finite-dimensiona)-vector space. As &-
algebra, the set of GIV)-invariants inA (V@“) is generated in degree O

2. Second lecture

An excellent reference about Hodge theory and the topidsisiecture is the book by
Voisin [5]. Let X be a K3-surface, and

H=H3(X,Q) =ker(L: H*(X,Q) — H*(X,Q))

its primitive second cohomology (whetdx) = w /\ « is the Lefschetz operator for
a Kahler structure oiX). The Kuga—Satake construction (see 3.1 in the Exercises)
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produces an abelian variey, together with an embedding &f into EndH' (A, Q).
This means that the cohomology of K3-surfaces is closebtedlto the cohomology
of abelian varieties, and is therefore very special. Thé gidis lecture is to explain a
result by Deligne, saying that something similar is not fmegor a general surface in
IP3 of degree at leagt The invariant that Deligne uses to distinguish Hodge stines
that come from abelian varieties is the Mumford—Tate group.

2.1. The Mumford—Tate group in families

In the proof, we will need to look at families (such as Lefdehgencils) of surfaces
in P3. This makes it necessary to study the behavior of the Muraffate group in
a family of smooth projective varieties, or, more generaltya family of polarized
Hodge structures.

So letf: X — B be a family of smooth complex projective varieties; thatois t
say,B is a complex manifold, anfla projective and submersive holomorphic map. Let
Xp = f~1(b) be the fibers; they are complex projective manifolds. We icemghe
family of Hodge structuresl, = H*(Xy,Q), and their Mumford—Tate groups. Since
f is projective, eachy, is naturally polarized. Leb € B be any point, andt; (B, b)
the fundamental group. We have the monodromy action

711 (B,b) — Aut(Hy, Q),
and the monodromy group (&) is the image ofy,.

DEFINITION 2. In the setting above, we define @lgebraic monodromy group
as the smallest algebraic subgroup®if (Hy, ), defined ovef), that contains the image
of up.

More generally, we can consider an arbitrary variation d¢dpped Hodge struc-
ture onB. Recall that such a variation is given by the following daarst, a local
system3g of Q-vector spaces (in the exampli,y = R*f.Qx), or equivalently, a
representation of the fundamental group

wp: m (B,b) — AUt(H@,b)

on any of its fibersHg . Second, a filtration of the associated vector buridie =
OB ®q Hg by holomorphic subbundlds 3, such that Griffiths’ transversality con-
dition

O(FPHy) C QL @0, FP~ ' Ho

is satisfied (herél is the natural flat connection dx ). Third, a flat pairing
Q: Hog®gHg — Qs

with the property thaQ (FPHo,F9%He) =0 if p+ q > k. It follows that the mon-
odromy representatiom, has to preserve the pairiri@y; just as above, we define the
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algebraic monodromy group at a pont B as the Zariski-closure of the image 10§
in AUt(H@,b, Qb)

Given a variation of polarized Hodge structure on B, every fiberHy, is a
polarized Hodge structure of weight and has its associated Mumford—Tate group
MT(Hp). Since MTHy) is contained in GI(Hg,1), which is locally constant, it
makes sense to ask how the Mumford—Tate group varies withdimtb € B. Even in
simple examples (such as families of elliptic curves),(MF) is not locally constant
on analytic subsets. This should not be too surprisingr afte Proposition 3 shows
that MT(Hy,) is the stabilizer of every Hodge class in any tensor sg&cg(Hy, ), and
we know that the set of Hodge classes can vary wildly as thet pomoves around.
On the other hand, there is the following result.

PROPOSITIONG. Outside of a countable union of analytic subvarietieB ghe
Mumford—Tate grouT (Hy, ) is locally constant and contains a finite-index subgroup
of the algebraic monodromy group.

Proof. Recall the definition of the Hodge loci for a variation of Hedgfructure orB.

The underlying local systefi(p defines an analytic covering space (non-connected)
of B, whose points are paif$, b) with h € Hg 1. Since the Hodge bundles are holo-
morphic, the subset of those points for whiclis a Hodge class ifly, is a countable
union of analytic subvarieties. The image of any irredweitymponent iB is one of

the Hodge loci for.

Now consider the Hodge loci for the family of Hodge structifé:¢(Hy), as
d, e range over all multi-indices of any length. Taken togetttegy form a countable
union of analytic subsets @f; let By be the complement of those that are not equal to
all of B. It then follows from Proposition 3 that the Mumford—Tategp is locally con-
stant onBy. More precisely, we argue as follows. For every pair of rultiicesd, e,
there is a sub-variation of Hodge structure containélfir§ (), entirely of type(0,0),
whose fiber at any poirtt € By coincides with the set of Hodge classegih®(Hy).
The subgroup of G[Hy, ), consisting of those elements that fix every Hodge class in
any tensor spacéd:¢(Hy,), is therefore locally constant dBy. But that subgroup is
equal to MTHy, ) by Proposition 3.

For the second assertion, fix any pdint Bo. The proof of Proposition 3 shows
that there is a Hodge classén a finite direct sunT41:€1 (Hy, ) @ - -- @ T4k (Hy ) such
that MT(Hy, ) is the stabilizer of that class. Now let

J_Tdner (H)®-- D Tk ex (H),

and letT’ be the sub-variation purely of tyd®,0) from above; thel/ contains the
Hodge class. Note thatT” inherits a polarization frorfl; according to one of the ex-
ercises, the monodromy actionmof (B,b) on T/ is therefore of finite order. It follows
that a subgroup oft; (B, b) of finite index stabilizeg, and is therefore contained in
MT (Hy). Itis then easy to see that MMy, ) has to contain a finite-index subgroup of
the algebraic monodromy grouptat O
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2.2. Hodge structures related to abelian varieties

After these preliminary remarks on Mumford—Tate groupsaimifies, we now come
to Deligne’s result (see Section 7 in [1]) that the Hodgedtmes on the cohomology
of varieties other than K3-surfaces are usually not relaagdose of abelian varieties.
Following Deligne, we first define more carefully what we méguthe phrase, “related
to the cohomology of abelian varieties.”

DEFINITION 3. We say that a rational Hodge structuié¢ can beexpressed
with the help of abelian varietigkit belongs to the smallest category of rational Hodge
structures that is stable under direct sums, tensor pragjuantd passage to direct sum-
mands, and containkl’ (A,Q) for any abelian varietyA, as well asQ(n) for every
nez.

Note that any cohomology grougd®(A,Q) of an abelian variety itself is in
that category, since it is isomorphickb' (A,Q)"\¥, and the wedge product is a direct
summand inH' (A,Q)®*. Similarly, H' (X,Q) of any smooth projective variet¥
belongs to the category, because the Picard varief(Rjds an abelian variety with
the same first cohomology. By virtue of the Kuga—Satake coaon, the second
cohomology of a K3-surface can also be expressed with thedigbelian varieties.

The next lemma gives a necessary condition, based on the dldrTate group,
for a Hodge structure to be expressible with the help of abhelarieties.

LEMMA 5. If a Hodge structuréH can be expressed with the help of abelian
varieties, then the Hodge structure on the Lie algebra ofitsnford—Tate group is of
type{(f] ) 1 )) (O>0)> (1 )f] )}

Proof. We note that MTH) acts on its Lie algebra by conjugation; as pointed out be-
fore, the Lie algebra therefore has a natural Hodge strecNiow consider the category
¢, consisting of all rational Hodge structurkisfor which the Lie algebra Lie MTH)

is of type{(—1,1),(0,0), (1,—1)}; to show that it contains all Hodge structures that can
be expressed with the help of abelian varieties, it suffioeshbw that this category
satisfies the conditions in Definition 3.

1. ForH = Q(n), the Mumford—Tate group is either trivial or equal@g,, and so
the Hodge structure on its Lie algebra is eitbesr Q(0). ForH =H'(A,Q),
the Lie algebra of MTH) is contained in EngH), whose Hodge structure is of
type{(—1,1),(0,0),(1,—1)}; it follows that the Hodge structure on Lie M)
is of the same type.

2. Now suppose thdtl = H; @ H,. Then MTH) — MT(H;) x MT(H>), and
the projection to either factor is surjective. Hf; and H, belong to€, then
it follows from the inclusion LieMTH) — Lie MT(H;) ® Lie MT (H,) that the
Hodge structure on Lie M{(H) has the correct type, which means thiadlso be-
longs to¢. Conversely, suppose thHtbelongs to the category. The surjections
LieMT(H) — LieMT(Hj;) are morphisms of Hodge structure, and this implies
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that either factoH; is in .

3. Finally, we consider a tensor produt¢t= H; @ H, of two Hodge structures in
¢. Note that MTH) is contained in the image of the composition

MT(H1) x MT(Hz) < GL(H;7) x GL(H2) — GL(H),

and thus LieMTH) lies in the image of LieMTH; ) @ LieMT (H;) in End(H).
Arguing as above, we see that the Hodge structure on LigdM1s of the correct
type, which proves thatl belongs to the categoxy. O

Let (H, Q) be a polarized Hodge structure of even weight. We write(En@ )
for the Lie algebra of the orthogonal grougi® Q) € GL(H). It consists of those
X € EndH¢) that satisfyQ (h,Xh) =0 for everyh € Hc.

LEMMA 6. Let(H, Q) be a polarized Hodge structure of type
{(0,2),(1,1),(2,0)},

and consider the induced Hodge structure BndH, Q). If dimH*° < 1, then
EndH, Q) is of type{(—1,1),(0,0),(1,—1)}; otherwise End H, Q) ~%% # 0.

Proof. In any case, the Hodge structure on the ambient Lie algebd&HBris of type
{(_2)2)) (_] ) 1 )) (0)0)> (]>_1 )a (23 _2)}

ElementsX € End H) %2 satisfyXH%° C H%2 and annihilate the other summands
in the Hodge decomposition. Consequeri¥ybelongs to EngH, Q)22 if and only
if

(h,Xh) =—Q(h,Xh) =0
for everyh € H°. Now leteq,..., e, be an orthonormal basis fot*:°, relative to the
inner product defined by the polarization. WritiXg; = ZJT;] Xjxex, the condition
above becomes

n
D> XA =0
ik=1
for everyA € C™. Whenn = 1, this cannot happen unleXs= 0; but forn > 1, any
anti-symmetric matrix gives an example. O

2.3. Deligne’s result

We now consider smooth surfacesltA and the Hodge structures on their primitive
cohomologyH3 (X, Q).

LEMMA 7. Let X C 3 be a smooth surface of degree at ledstand H =
H%(X,Q) the Hodge structure on its primitive cohomology, with théagmation Q
given by the intersection pairing. Then the algebraic meoog group is the full
orthogonal groupO(H, Q).
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Proof. Let G be the algebraic monodromy group. We apply Lemma 8 to theowect
spaceHc and the bilinear form-Q; all the assumptions are met because of Lefschetz
theory. It follows thatG is either a finite group, or all of (1, Q). To conclude, we
have to argue that the first possibility cannot happeh-f degX is at leastt (while it
does happen fat = 2, 3). By Zariski's theorem, the action & on H is irreducible; if

G was finite, this would force the polarizatiéghto be definite. Using Griffiths’ theory,
we easily compute that

d—1 2d—1 d
2,0 _1,0,2 ; 1,1

h%? =h%* = hile h"'= 4 .
(3) whie ( 3 ) (3)

As long asd > 4, the Hodge structure of the surface has nonté¢td® andH"'. By
the Hodge-Riemann bilinear relatior§3 has a different sign on the two subspaces, and
is therefore not definite. This rules out the possibilityttGas finite. O

In the proof, we used the following lemma of Deligne’s (whish.emma 4.4.2
in [2]). To apply it, we takeA to be the collection of vanishing cycles in a Lefschetz
pencil onP3 containingX. Since all vanishing cycles are conjugate under the acfion o
the monodromy group — this is the proof of Zariski’s theorem is a single orbit for
the algebraic monodromy grow Moreover, the self-intersection number of any van-
ishing cycle isQ(4,5) = —2, and the Picard—Lefschetz formula shows tGatontains
the transvectiom — h+ Q(h,3)d.

LEMMA 8. Let V be a finite-dimensional complex vector space with a
non-degenerate symmetric bilinear foBnand letG C O(H, B) be an algebraic sub-
group. Suppose that we have a suhse&t V, consisting of vectors with B(5,6) = 2,
such thatA spansV, andA is a single orbit under the action by. If G is the smallest
algebraic subgroup containing all the transvections» v—B(v, )9, then it is either
a finite group, or all ofO(H, B).

We are now in a position to prove Deligne’s result about Hoslgectures, by
considering surfaces iB® of degree at least

THEOREM1. LetX C IP3 be a very general surface of degrée> 5. Then the
Hodge structure om%(X,Q) cannot be expressed with the help of abelian varieties.

Proof. Let H = H%(X,(@), with polarizationQ coming from the intersection pairing.
We know that MTH) C O(H, Q). SinceX is very general, the Mumford—Tate group
contains a finite-index subgroup of the algebraic monodrgnoyip by Proposition 6.
Sinced > 4, the algebraic monodromy group is the orthogonal group byrha 7; it
follows that MT(H) = O(H, Q), and also that Lie MTH) = End(H, Q). Now observe
that,d being at leass, we have dinH*° > 1; by virtue of Lemma 6, the Hodge struc-
ture on LieMT(H) can therefore not be of tydé—1,1),(0,0),(1,—1)}. According to
Lemma 5, this rules out the possibility bf being expressed with the help of abelian
varieties. O
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3. Exercises

Some of these exercises were kindly provided by Claire Koisi

3.1. The Kuga—Satake construction

Let H be a rational vector space, afda nondegenerate bilinear form déh Recall
that theClifford algebraC(H, Q) is aQ-algebra with a linear map H — C(H, Q),
and the following universal property: Given a@yalgebraA and linear map

f:H—o A

such thatf(h)? = Q(h,h) for every h € H, there is a unique map dp-algebras
g: C(H,Q) — A such that = goi. The universal property implies that

wherel is the ideal of the tensor algebra generatedioyh — Q(h,h) for h € H.

(a) As awarm-up, convince yourself thatH, Q) has dimensiogdmH,

(b) Now let(H, Q) be a polarized Hodge structure of weightvith dimH?° = 1.
LetP = (H*° & H®%2) NHg. Show thaf is an oriente-plane on whichQ is
negative definite.

(c) LetC = C(H,Q) be the Clifford algebra. Let;,e, be an oriented basis fét
with Q(e1,e1) = Q(ez,e2) =—1 andQ(er,e2) = 0. Show that the element
e =e,ej € Cg does not depend on the choice of basis and satisties—1.

(d) Consider the complex structure @r given by left Clifford multiplication bye.
It determines a Hodge structure of weighon C, because a complex structure
on a real vector spac¥ is the same as a decompositivh = V1:° ¢ V1,0 of
the complexification o¥. Show that the map

H — EndC,

given by left Clifford multiplication, is an injective mohgsm of Hodge struc-

tures of bidegre¢é—1,—1). (The vector space on the right has a Hodge structure

of weight0, induced by the Hodge structure @ndefined above.)

Solution

We first review the construction of the Clifford algebra. Détbe a rational vector
space, and) a nondegenerate bilinear form & The Clifford algebraC(V,Q) is a
Q-algebra with a linear map: V — C(V,Q), and the following universal property:
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Given anyQ-algebraA and linear magf: V — A such thatf(v)? = Q(v,v) for every
v € V, there is a unigue map @J-algebragy: C(V,Q) — A such thatf = goi. Thus

C(V,Q) =P veH/1,

k>0

wherel is the ideal generated by v— Q(v,v) for v € V. To get an idea of the dimen-
sion of C(V;Q), take an orthogonal basis, ..., e, for V, meaning thaQ(ei,e;) =0
for 1 #j (possible becaus® is nondegenerate). Leét = Q(ei,e;). Thenlis gener-
ated by the elements @ e; —d; ande; ® e; +ej ® ey ; thereforeC(V; Q) has dimension
2", and a basis is given by the vecters @ ---® e, for 1 <iy <--- <ip <.

We write Q for the bilinear form given by the negative of the polarieati The
orientation comes from the fact thatis naturally isomorphic td12:°, which has its
standard orientationl (\i > 0); Q is positive definite orH*:° & H%2 by the bilinear
relations. This proves (b).

In C(H), we havee? = e3 =1 andeje, +eze; =0. Letfq,f, be another
orthonormal basis; writindy = ae; +be, andf, = cej + dey, we have

fof1 = (cer1 +dez)(ae; +bey) =ac+bd+(ad—bcle=e

sincefy, f, is oriented and orthonormal. Moreover, = eyejeze; = —eresrere =
—1, and so (c) is proved.

Finally, we come to (d). Note that the m&p— EndC(H) is injective, because
H injects intoC(H), andQ is nondegenerate. Sineé = —1, left multiplication bye
determines a complex structure on the real vector spakks ). SinceC(H) is defined
over@Q, this means that we have a rational Hodge structure of weéigitte have

C(H)"® =kerfe—1) and C(H)*' =ker(e+1)

on C(Hc). Letw € H2? be a generator, such thii||? = Q(w, ) = 5. Then
e1 =w+w ande; = i(w —w) form an oriented orthonormal basis. We have=
T (e1 —1iez) andw = J (e +iez). From the relations? = e3 =1 andeje; +ezeq =
0, we deduce thab? = @2 = 0. We then have

e=ee; =i(w—w)(w+w) =2iww.

Now letx € C(H)"°; thenex = ix, and s wwx = x, which means thatx =
0. On the other hand,
ewx = —2lwwx = —ix.

This shows that left multiplication by is of type (1,—1), and left multiplication by
w is of type (—1,1). Since the map fronil to EndC(H) is defined overQ, it only
remains to show that elementsldf-! give operators of typ&0,0). So leth € H">! be
any element; sinct is orthogonal taw andw by type, it anti-commutes with; and
e2, and therefore commutes with proving that it defines an endomorphism of type
(0,0).
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3.2. Mumford—-Tate groups of elliptic curves

Consider the elliptic curve
E.=C/(Z+Z),

with Imt >0, and letH = H' (E+, Q).

(a) Find a formula for the representatipnS(R) — GL(R?) associated tdi..

(b) Compute the Mumford—Tate group bif; by finding the Zariski-closure of the
image ofp.

3.3. The big Mumford—Tate group

Let H be aQ-Hodge structure of weight. If one is interested in Hodge classes of
arbitrary type(p,p), it is useful to define the so-callddg Mumford—Tateyroup

MT#(H) = MT (H&Q(1)).

(@) We know that there is a map M{H) — MT(H) x G, surjective onto either
factor. Show that fok = 0, this map is an isomorphism.

(b) LetH be polarized and of weight Show that in this case, MTH) ~ MT (H).

(c) Now suppose that # 0. Show that the map MTH) — MT(H) is finite.

3.4. Mumford—Tate groups and Tannaka duality

This exercise discusses a third possible definition of thenkbud—Tate group, in terms
of Tannaka duality. First, we list some definitions: ténsor categorys an abelian
category that has tensor products and an identity objéot ®. Internal Hom of X
andY, if it exists, is an object hofiX,Y) in the category with a natural isomorphism
of functors Honf— ® X,Y) ~ Hom(—,hom(X,Y)). The tensor category is said to be
rigid if hom(X,Y) exists for every two objects, is compatible with tensor picid, and

if X — (X¥)V is an isomorphism for ever¥, duals being defined 8" =hom(X, 1).
Finally, ak-linear rigid tensor category isreeutral Tannakian category ovérif there

is afiber functor meaning ak-linear, faithful and exact functor to the category of
finite-dimensionak-vector spaces that preserves tensor products.

The definitions are set up to make such a category look likec#tegory of
representations of some group, and in fact, the main themémat every neutral Tan-
nakian category is equivalent to the category of repreientaof an algebraic group
G overk. According toTannaka dualityG is obtained as the group of tensor automor-
phisms of the fiber functor: For arkralgebraA, the A-valued points ofs are given by
a collection of automorphismsy € Aut(A R H), one for every objecH, such that
Aty eH, =AH, @A, A1 =id, andA, o (1® ¢) = (1®@ ¢) o Ay, for any morphism
(])2 H] — Hz.
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(a) Convince yourself that the categd@yHS of rational Hodge structures forms a
neutral Tannakian category ov@; with fiber functor taking a Hodge structure
to the underlyingQ-vector space.

(b) Show that Deligne’s groupis isomorphic to the group of tensor automorphisms
of the forgetful functor fronR-HS toR-vector spaces.

(c) Now let(H) be the full subcategory d@-HS whose objects are arbitrary sub-
quotients of the tensor spac&$¢(H) defined before. Show that MH) is
isomorphic to the group of tensor automorphisms of the ffugjéunctor from
(H) to Q-vector spaces. It follows thgH) is equivalent to the category of finite-
dimensional representations of VH).

3.5. Complex tori and abelian varieties
Let T andT’ be two complex tori with dinf > dimT’ > 0, and let
G:T—T

be a surjective morphism. Denote BY the connected component of the kerneljof
containingo.

(a) Show that for a general deformation of the tripleT’, ¢), there is no splitting
T~T'®T” up to isogeny.

(b) Show that ifT is projective, such a splitting always exists.

(c) Show that the deformations of the trigl& T', ¢) for which T is projective are
dense in the local universal family of deformations.

(d) Isittrue that, in order fof to be projective, it suffices that andT” are projec-

tive?

3.6. Hodge classes and monodromy

Let H be a polarized variation of Hodge structure on a complex fakhB, and sup-
pose that for each € B, the Hodge structurkly, is entirely of type(k, k). Show that
the image of the monodromy representation

o 71 (B,b) — Aut(Hg,b, Q)

is necessarily a finite group.
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