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TWO LECTURES ABOUT MUMFORD–TATE GROUPS

Abstract. We define Hodge structures as representations, and introduce the Mumford–Tate
group MT(H) of a rational Hodge structure. We give a characterization ofMT(H) based on
properties of reductive groups, and study it for elliptic curves and their powers. We define
what it means for a Hodge structure to arise from an abelian variety (as is the case for K3
surfaces), and then focus on cases in which this is not true. The presentation includes a
selection of exercises.
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Introduction

These notes correspond, more or less, to two lectures given during the school on Hodge
theory that took place at the CIRM in Trento, Italy, from 31 August to 4 September
2009, for which I filled the role of a teaching assistant. Claire Voisin and Eduard
Looijenga had both suggested that I review the basic theory of Mumford–Tate groups,
together with one interesting application: Deligne’s proof that the cohomology of a
general hypersurface inP3 of degree at least5 cannot be expressed in terms of abelian
varieties.
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200 C. Schnell

The first lecture is mostly based on notes by Ben Moonen [4]; the second on
Deligne’s paper [1]. I have also included a set of exercises handed out during the
school, and the solution to the one describing the Kuga–Satake construction, because
of its relevance to the second lecture. I am very grateful to the organizers for the chance
to participate.

1. First lecture

The object of this lecture is to introduce the Mumford–Tate group of a Hodge structure;
this is an algebraic subgroup MT(H) of GL(H), naturally associated to any rational
Hodge structureH. Roughly speaking, the knowledge of the Mumford–Tate groupof
H is the same as knowing all(0,0)-Hodge classes in any Hodge structure obtained
from H by direct sums, duals, or tensor products. Of course, this means that finding
the Mumford–Tate group of an arbitrary Hodge structure is impossible; on the other
hand, if we do know MT(H), we have a good chance of saying something nontrivial
about Hodge classes. For example, the Hodge conjecture for arbitrary powers of an
elliptic curve can be proved in this way.

1.1. Hodge structures as representations

Before defining the Mumford–Tate group, we briefly recall Deligne’s way of viewing
Hodge structures as representations of a certain algebraicgroupS. To begin with, we
can embedC∗ into GL2(R) by the group homomorphism

C∗→GL2(R), a+ ib 7→ s(a,b) =

(
a b

−b a

)
.

The image is the set of real points of an algebraic subgroupS ⊆ GL2. As with any
scheme, we can describe an algebraic group by giving its set of points over arbitrary
commutative ringsA; in the case at hand,S(A) consists of those invertible matrices

(
a b

c d

)
∈ GL2(A)

that satisfya−d = b+ c = 0. ThenS(R) is isomorphic toC∗ via the map above.
Clearly, S is an algebraic subgroup of GL2, defined overQ, and abelian. We have
R∗ →֒ S(R), embedded as the subgroup of scalar matrices.

Now letHR be a finite-dimensionalR-vector space. A Hodge structure onHR

is a decomposition
HC = C⊗RHR =

⊕

p,q

Hp,q

withHq,p =Hp,q. Here complex conjugation is defined viaλ⊗h= λ⊗h for h∈HR

andλ ∈ C. The Hodge structure determines a representation

ρ : S(R)→GL(HR),
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by letting z = a+ ib act onHp,q as multiplication byzpzq = (a+ ib)p(a− ib)q.
Sinceρ is given by polynomials, this is an algebraic representation, and we can easily
check that it is defined overR. Note that the scalar matrixa id ∈ S(R) acts as multi-
plication byap+q onHp,q; if H is pure of weightk, thenρ(a id) = ak id, which lets
us read off the weight of the Hodge structure from the representation. Conversely, one
can show that any algebraic representation ofS that is defined overR determines an
R-Hodge structure.

LEMMA 1. Let ρ : S(R) → GL(HR) be an algebraic representation; thenρ
comes from a Hodge structure as above. More precisely, the summands of the Hodge
decomposition are given as eigenspaces

Hp,q =
⋂

a2+b2 6=0
ker

(
ρ
(
s(a,b)

)
−(a+ ib)p(a− ib)q id

)
.

To get a Hodge structure defined overQ, one should require in addition that
HR =R⊗QHQ for aQ-vector spaceHQ. A point to be careful about is that, neverthe-
less, the representationρ is only defined overR.

All the usual operations on Hodge structures, such as directsums, tensor prod-
ucts, Hom, etc., can be performed in terms of the representations; one simply uses the
standard definitions from representation theory. We also note that the Weil operator of
the Hodge structureH isρ

(
s(0,1)

)
; the reason is that the elementi∈C∗ is represented

by the matrix

s(0,1) =

(
0 1

−1 0

)
,

which, by definition, acts on the spaceHp,q as multiplication byip−q.

1.2. Mumford–Tate groups

We can now define the main object of these two lectures (I am following Ben Moonen’s
notes on Mumford–Tate groups [4] in this portion of the course).

DEFINITION 1. LetH be a rational Hodge structure, andρ : S(R)→GL(HR)

the corresponding algebraic representation. TheMumford–Tate groupof H is the
smallest algebraic subgroup ofGL(H), defined overQ, whose set of real points con-
tains the image ofρ. It is usually denoted byMT(H).

By definition, the Mumford–Tate group comes with a morphism of algebraic
groupsρ : S→MT(H), defined overR. In particular, any rational vector spaceV with
an algebraic representation MT(H)→ GL(V) naturally acquires a Hodge structure.
For representations that are derived from the standard representation of GL(H) onH
by operations such as direct sum or tensor product, the induced Hodge structure is of
course the same as the usual one.

The main reason for introducing the Mumford–Tate group is its relationship
with Hodge classes in Hodge structures derived fromH. To make this precise, we
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define for any pair of multi-indicesd,e ∈ Nn the tensor space

Td,e(H) =
n⊕

j=1

H⊗dj ⊗ (H∨)⊗ej .

It has a natural action by GL(H), and therefore also by MT(H); note thatTd,e(H) is
a direct sum of pure Hodge structures of weight(dj−ej)k, respectively, wherek still
denotes the weight of the pure Hodge structureH.

PROPOSITION1. LetV ⊆ Td,e(H) be any rational subspace. ThenV is a sub-
Hodge structure if and only if it is stable under the action ofMT(H). Similarly, a
rational vectort ∈ Td,e(H) is a (0,0)-Hodge class if and only if it is invariant under
MT(H).

Proof. If V is stable under the action of MT(H), it becomes a representation of MT(H),
and therefore aQ-Hodge structure. Conversely, suppose thatV ⊆ Td,e(H) is a sub-
Hodge structure defined overQ. We can then look at the subgroupGV ⊆ GL(H) of
those elements that preserveV. Clearly, this is an algebraic subgroup defined over
Q; moreover, its set of real points contains the image ofρ becauseV is a sub-Hodge
structure. By definition, MT(H)⊆GV , proving thatV is preserved by MT(H).

For the second assertion, suppose thatt is invariant under MT(H). Thent is
also invariant under the induced action byS(R), and therefore has to be a Hodge class
of type (0,0). Conversely, lett be a(0,0)-Hodge class. As before, the stabilizer of
t in GL(H) is an algebraic subgroup, defined overQ, and containing the image ofρ;
consequently, it contains the entire Mumford–Tate group.

The morphisms of Hodge structure fromH to itself are exactly the(0,0)-Hodge
classes in End(H); by Proposition 1,

(1) HomQ-HS(H,H)≃ End(H)MT(H).

Let us now look at some of the basic properties of Mumford–Tate groups.

PROPOSITION 2. Let H be a Hodge structure of weightk, and MT(H) its
Mumford–Tate group.

(i) If k 6= 0, thenMT(H) contains the center; ifk= 0, thenMT(H)⊆ SL(H).

(ii) MT (H) is always a connected group.

(iii) If H is polarizable, thenMT(H) is a reductive group.

Proof. The first two assertions are simple consequences of the definition of MT(H). To
prove the third, we use the following criterion for being reductive: A connected group
G over a field of characteristic zero is reductive iff it has a faithful and completely
reducible representation. In the case of the Mumford–Tate group, this representation is
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the tautological representation MT(H) →֒ GL(H). Its sub-representations are exactly
the sub-Hodge structures ofH; complete reducibility follows from the fact that the
category of polarizableQ-Hodge structures is semisimple.

The next lemma shows the relationship between the Mumford–Tate group of a
direct sum of two Hodge structures and those of the two summands. (A similar, but
slightly weaker result is true for tensor products.)

LEMMA 2. LetH1 andH2 be two Hodge structures. Under the natural map
GL(H1)×GL(H2) →֒GL(H1⊕H2), we haveMT(H1⊕H2)⊆ MT(H1)×MT(H2).
Moreover, the projection to either factor is surjective.

Proof. This follows easily from the definition.

An alternative definition of the Mumford–Tate group is as thesubgroup of
GL(H) that fixes every(0,0)-Hodge class in any tensor spaceTd,e(H). The two defi-
nitions agree because of the following fundamental result.

PROPOSITION3. Let G ⊆ GL(H) be the subgroup of elements that fix every
(0,0)-Hodge class in every tensor spaceTd,e(H). ThenG= MT(H).

Proof. By Proposition 1, we have at least the inclusion MT(H) ⊆ G. The converse is
a general fact about reductive groups, and is proved as follows (details can be found in
1.3 below). First, one shows by a rather formal argument thatMT(H) is the stabilizer
of a one-dimensional subspaceL contained in one of the representationsT = Td,e(H).
Since MT(H) is reductive by Proposition 2, there is a decompositionT = L⊕ T ′ as
representations, and MT(H) is the stabilizer of a generator ofL⊗L∨ insideT ⊗ T∨.
As we have seen in Proposition 1, such a generator has to be a Hodge class of type
(0,0), and thereforeG⊆ MT(H).

1.3. A result about reductive groups

The alternative characterization of the Mumford–Tate group in Proposition 3 depends
on a more general result about reductive groups. For the sakeof completeness, we
reproduce Deligne’s proof from [3].

So letG be a reductive algebraic group, defined over a fieldk of characteristic
zero. Accordingly, there are finite-dimensional representationsV1, . . . ,Vn of G such
thatV1⊕·· ·⊕Vn is faithful; in other words, such that the map

G→
n∏

i=1

GL(Vi)

is injective. For any pair of multi-indicesd,e ∈ Nn, we again define the tensor space

Td,e =
n⊕

i=1

V
⊗di
i ⊗ (V∨

i )⊗ei ,
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which is naturally a representation ofG. Given any subgroupH⊆G, we letH ′ be the
subgroup ofG fixing all tensors (in anyTd,e) that are fixed byH. A priori, this is a
bigger group thanH; the question is whetherH ′ =H.

PROPOSITION4. If H is itself a reductive group, thenH ′ =H.

Proof. According to Chevalley’s theorem (see Lemma 4 below),H is the stabilizer of
a lineL in some representationV; by Lemma 3, we may furthermore assume thatV is a
direct sum of representationsTd,e. SinceH is reductive, there exists a decomposition
V = L⊕W, with W another representation ofH; it is then easy to see thatH is the
stabilizer of any generator ofL⊗L∨ insideV⊗V∨. Since such a generator is a direct
sum of tensors in variousTd,e, it follows thatH ′ ⊆H, and thereforeH ′ =H.

LEMMA 3. Any finite-dimensional representation ofG is contained in a direct
sum of representationsTd,e.

Proof. Let k[G] be the ring of regular functions on the algebraic groupG; as a rep-
resentation ofG, it is called the regular representation (and(g · f)(x) = f(g−1x) for
f ∈ k[G] andg ∈ G). Given any representationW of G, letW0 be the trivial repre-
sentation with the same underlying vector space asW; thusgw =w for anyw ∈W0
and anyg ∈G. The multiplication mapG×W→W determines aG-equivariant em-
beddingW →֒W0⊗k k[G], as can be seen by taking a basis; sinceW0⊗k k[G] is
isomorphic to a direct sum of copies ofk[G], it suffices to prove the lemma for the
regular representation (which, of course, is not finite-dimensional).

Now letV = V1⊕·· ·⊕Vn be the faithful representation ofG from above, for
whichG→ GL(V) is injective. The map GL(V)→ End(V)×End(V∨) is a closed
embedding, and therefore both GL(V) andG are closed subvarieties of the product
End(V)×End(V∨). In general, the ring of regular functions on a vector spaceW

is the symmetric algebra SymW∨; from the closed embedding above, it follows that
there is aG-equivariant surjection

SymEnd(V∨)⊗kSymEnd(V)→ k[G].

But nowG is reductive, and so this surjection splits; thereforek[G] is isomorphic to
a direct summand of the left-hand side, which in turn is contained in an infinite sum
of representationsTd,e. Being finite-dimensional, the original representationW then
injects into the direct sum of finitely many of them.

LEMMA 4. Any subgroupH of G is the stabilizer of a lineL in some finite-
dimensional representation ofG.

Proof. Let IH ⊆ k[G] be the ideal of functions that vanish onH. In the regular rep-
resentation, therefore,H is the stabilizer ofIH. Next, we claim that there is a finite-
dimensional subspaceW ⊆ k[G] that is stable underG and contains a set of generators
for the idealIH. In fact, sinceIH is finitely generated, it suffices to show that the
subspaceW(f) spanned by anyf ∈ k[G] and its translates underG has finite dimen-
sion. To see that this is the case, consider the multiplication mapµ : G×G→ G,
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and the induced map on regular functionsµ∗ : k[G]→ k[G]⊗k k[G]. We can write
µ∗f =

∑m
j=1hj⊗ fj with regular functionsf1, . . . , fm,h1, . . . ,hm. For anyg,x ∈ G,

we then have

(g · f)(x) = f(g−1x) = (µ∗f)(g−1,x) =
m∑

j=1

hj(g
−1)fj(x).

The formula shows thatW(f) is contained in the span off1, . . . , fm, and is therefore
finite-dimensional.

TakingW as above,H is now the stabilizer of the subspaceW ∩ IH of W.
Letting d = dimW ∩ IH, we see thatH is also the stabilizer of the one-dimensional
subspace(W∩ IH)∧d inW∧d, proving the lemma.

1.4. Examples of Mumford–Tate groups

First, consider the Hodge structureQ(n). Since GL1 =Gm is the multiplicative group,
we see directly from the definition that

MT
(
Q(n)

)
=

{
Gm if n 6= 0,
1 if n= 0.

Next, we look at the Mumford–Tate group of elliptic curves. LetE be an elliptic
curve, andHQ = H1(E,Q) the Hodge structure on its first cohomology. LetD =

End(E)⊗Q be the rational endomorphism algebra of the elliptic curve;here End(E)
consists of all morphismsφ : E→ E that fix the unit element of the group law. It is
known thatD is eitherQ, or an imaginary quadratic field extension ofQ. In the second
case, the curveE is said to have complex multiplication. For the elliptic curve

Eτ = C/(Z+Zτ),

this happens precisely whenτ belongs to an imaginary quadratic field; thenD≃Q(τ),
and End(Eτ) is isomorphic to an order in the ring of integers ofD.

By Proposition 1 and (1), we know that

D≃ End(HQ)
MT(H),

becauseD is naturally isomorphic to the space of(0,0)-Hodge classes in End(H) (due
to the fact thatE is an abelian variety). This means that MT(H) has to be contained in
the subgroup ofD-linear automorphisms ofH. That condition places enough restric-
tions on MT(H) to let us determine the Mumford–Tate group.

There are two cases. First, let us consider the caseD ≃ Q. We know from
Proposition 2 that MT(H) is a connected and reductive subgroup of GL(H) ≃ GL2
that contains the scalar matrices. Now the only connected reductive groups withGm ·
id ⊆ G ⊆ GL2 are GL2 itself,Gm · id, or maximal tori of GL2. The second and third
possibility are ruled out, because the set of invariants in End(Q2) is bigger than just
Q · id. It follows that we have MT(H) = GL(H).
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Next, consider the case where the curveE has complex multiplication; thenD
is an imaginary quadratic field. In this case,HQ is a free module of rank1 overD.
Since MT(H) has to consist ofD-linear automorphisms ofH, it follows that we have
MT(H) ⊆ TD, whereTD is the algebraic torus whose set of points over any ringA

is TD(A) = (A⊗QD)∗. Thus we haveGm · id ⊆ MT(H) ⊆ TD. The possibility that
MT(H) =Gm · id is again ruled out because the set of invariants in End(HQ) would be
too big; consequently, MT(H)≃ TD.

Once we know the Mumford–Tate group, we know in principle (because of
Proposition 1) what all the(0,0)-Hodge classes in any tensor spaceTd,e(H) are. A
nice application of our computation above is the following.

PROPOSITION5. LetE be an elliptic curve. Then the Hodge conjecture is true
for any powerEn = E×·· ·×E.

Proof. LetX= En. As for any smooth projective variety, we have the Hodge ring

B(X) =
⊕

k>0

HomQ-HS
(
Q(0),H2k(X,Q)(k)

)
.

This is a graded ring, whose component in degreek consists of all(k,k)-Hodge classes
in H2k(X,Q). Using our computation of the Mumford–Tate group, we can prove the
stronger statement thatB(X) is generated in degree2, that is, by the classes of divisors
on X. Since any divisor class is represented by an algebraic cycle, this verifies the
Hodge conjecture forX.

For simplicity, we will only treat the case whereD ≃ Q. As above, letHQ =

H1(E,Q); according to our computation, MT(H) =GL(H). NowX= En is an abelian
variety of dimensionn; sinceH1(X,Q) ≃ H⊕n, the cohomology algebra ofX is iso-
morphic to the wedge algebra ofH⊕n. As direct sums of Hodge structures of weight
0, we therefore have

⊕

k>0

H2k(X,Q)(k)≃
⊕

k>0

(
(H⊕n)∧2k

)
(k)

The assertion thatB(X) is generated by divisor classes is thus implied by the following
result in invariant theory: LetV be a finite-dimensionalQ-vector space. As aQ-
algebra, the set of GL(V)-invariants in

∧(
V⊕n) is generated in degree2.

2. Second lecture

An excellent reference about Hodge theory and the topics in this lecture is the book by
Voisin [5]. LetX be a K3-surface, and

H=H20(X,Q) = ker
(
L : H2(X,Q)→H4(X,Q)

)

its primitive second cohomology (whereL(α) = ω∧α is the Lefschetz operator for
a Kähler structure onX). The Kuga–Satake construction (see 3.1 in the Exercises)
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produces an abelian varietyA, together with an embedding ofH into EndH1(A,Q).
This means that the cohomology of K3-surfaces is closely related to the cohomology
of abelian varieties, and is therefore very special. The goal of this lecture is to explain a
result by Deligne, saying that something similar is not possible for a general surface in
P3 of degree at least5. The invariant that Deligne uses to distinguish Hodge structures
that come from abelian varieties is the Mumford–Tate group.

2.1. The Mumford–Tate group in families

In the proof, we will need to look at families (such as Lefschetz pencils) of surfaces
in P3. This makes it necessary to study the behavior of the Mumford–Tate group in
a family of smooth projective varieties, or, more generally, in a family of polarized
Hodge structures.

So letf : X→ B be a family of smooth complex projective varieties; that is to
say,B is a complex manifold, andf a projective and submersive holomorphic map. Let
Xb = f−1(b) be the fibers; they are complex projective manifolds. We consider the
family of Hodge structuresHb = Hk(Xb,Q), and their Mumford–Tate groups. Since
f is projective, eachHb is naturally polarized. Letb ∈ B be any point, andπ1(B,b)
the fundamental group. We have the monodromy action

µb : π1(B,b)→ Aut
(
Hb,Q

)
,

and the monodromy group (atb) is the image ofµb.

DEFINITION 2. In the setting above, we define thealgebraic monodromy group
as the smallest algebraic subgroup ofGL(Hb), defined overQ, that contains the image
of µb.

More generally, we can consider an arbitrary variation of polarized Hodge struc-
ture onB. Recall that such a variation is given by the following data.First, a local
systemHQ of Q-vector spaces (in the example,HQ = Rkf∗QX), or equivalently, a
representation of the fundamental group

µb : π1(B,b)→ Aut
(
HQ,b

)

on any of its fibersHQ,b. Second, a filtration of the associated vector bundleHO =

OB⊗QHQ by holomorphic subbundlesFpHO, such that Griffiths’ transversality con-
dition

∇
(
FpHO

)
⊆Ω1B⊗OB F

p−1HO

is satisfied (here∇ is the natural flat connection onHO). Third, a flat pairing

Q : HQ⊗QHQ→QB

with the property thatQ
(
FpHO,F

qHO

)
= 0 if p+q > k. It follows that the mon-

odromy representationµb has to preserve the pairingQb; just as above, we define the
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algebraic monodromy group at a pointb ∈ B as the Zariski-closure of the image ofµb
in Aut

(
HQ,b,Qb

)
.

Given a variation of polarized Hodge structureH on B, every fiberHb is a
polarized Hodge structure of weightk, and has its associated Mumford–Tate group
MT(Hb). Since MT(Hb) is contained in GL

(
HQ,b

)
, which is locally constant, it

makes sense to ask how the Mumford–Tate group varies with thepointb ∈ B. Even in
simple examples (such as families of elliptic curves), MT(Hb) is not locally constant
on analytic subsets. This should not be too surprising: after all, Proposition 3 shows
that MT(Hb) is the stabilizer of every Hodge class in any tensor spaceTd,e(Hb), and
we know that the set of Hodge classes can vary wildly as the point b moves around.
On the other hand, there is the following result.

PROPOSITION6. Outside of a countable union of analytic subvarieties ofB, the
Mumford–Tate groupMT(Hb) is locally constant and contains a finite-index subgroup
of the algebraic monodromy group.

Proof. Recall the definition of the Hodge loci for a variation of Hodge structure onB.
The underlying local systemHQ defines an analytic covering space (non-connected)
of B, whose points are pairs(h,b) with h ∈HQ,b. Since the Hodge bundles are holo-
morphic, the subset of those points for whichh is a Hodge class inHb is a countable
union of analytic subvarieties. The image of any irreducible component inB is one of
the Hodge loci forH.

Now consider the Hodge loci for the family of Hodge structures Td,e(Hb), as
d,e range over all multi-indices of any length. Taken together,they form a countable
union of analytic subsets ofB; let B0 be the complement of those that are not equal to
all of B. It then follows from Proposition 3 that the Mumford–Tate group is locally con-
stant onB0. More precisely, we argue as follows. For every pair of multi-indicesd,e,
there is a sub-variation of Hodge structure contained inTd,e(H), entirely of type(0,0),
whose fiber at any pointb ∈ B0 coincides with the set of Hodge classes inTd,e(Hb).
The subgroup of GL(Hb), consisting of those elements that fix every Hodge class in
any tensor spaceTd,e(Hb), is therefore locally constant onB0. But that subgroup is
equal to MT(Hb) by Proposition 3.

For the second assertion, fix any pointb∈B0. The proof of Proposition 3 shows
that there is a Hodge classt in a finite direct sumTd1,e1(Hb)⊕·· ·⊕Tdk,ek(Hb) such
that MT(Hb) is the stabilizer of that class. Now let

T = Td1,e1(H)⊕·· ·⊕Tdk,ek(H),

and letT ′ be the sub-variation purely of type(0,0) from above; thenT ′
b contains the

Hodge classt. Note thatT ′ inherits a polarization fromT; according to one of the ex-
ercises, the monodromy action ofπ1(B,b) onT ′

b is therefore of finite order. It follows
that a subgroup ofπ1(B,b) of finite index stabilizest, and is therefore contained in
MT(Hb). It is then easy to see that MT(Hb) has to contain a finite-index subgroup of
the algebraic monodromy group atb.
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2.2. Hodge structures related to abelian varieties

After these preliminary remarks on Mumford–Tate groups in families, we now come
to Deligne’s result (see Section 7 in [1]) that the Hodge structures on the cohomology
of varieties other than K3-surfaces are usually not relatedto those of abelian varieties.
Following Deligne, we first define more carefully what we meanby the phrase, “related
to the cohomology of abelian varieties.”

DEFINITION 3. We say that a rational Hodge structureH can beexpressed
with the help of abelian varietiesif it belongs to the smallest category of rational Hodge
structures that is stable under direct sums, tensor products, and passage to direct sum-
mands, and containsH1(A,Q) for any abelian varietyA, as well asQ(n) for every
n ∈ Z.

Note that any cohomology groupHk(A,Q) of an abelian variety itself is in
that category, since it is isomorphic toH1(A,Q)∧k, and the wedge product is a direct
summand inH1(A,Q)⊗k. Similarly, H1(X,Q) of any smooth projective varietyX
belongs to the category, because the Picard variety Pic0(X) is an abelian variety with
the same first cohomology. By virtue of the Kuga–Satake construction, the second
cohomology of a K3-surface can also be expressed with the help of abelian varieties.

The next lemma gives a necessary condition, based on the Mumford–Tate group,
for a Hodge structure to be expressible with the help of abelian varieties.

LEMMA 5. If a Hodge structureH can be expressed with the help of abelian
varieties, then the Hodge structure on the Lie algebra of itsMumford–Tate group is of
type{(−1,1),(0,0),(1,−1)}.

Proof. We note that MT(H) acts on its Lie algebra by conjugation; as pointed out be-
fore, the Lie algebra therefore has a natural Hodge structure. Now consider the category
C, consisting of all rational Hodge structuresH for which the Lie algebra LieMT(H)
is of type{(−1,1),(0,0),(1,−1)}; to show that it contains all Hodge structures that can
be expressed with the help of abelian varieties, it suffices to show that this category
satisfies the conditions in Definition 3.

1. ForH =Q(n), the Mumford–Tate group is either trivial or equal toGm, and so
the Hodge structure on its Lie algebra is either0 or Q(0). ForH = H1(A,Q),
the Lie algebra of MT(H) is contained in End(H), whose Hodge structure is of
type {(−1,1),(0,0),(1,−1)}; it follows that the Hodge structure on LieMT(H)
is of the same type.

2. Now suppose thatH = H1⊕H2. Then MT(H) →֒ MT(H1)×MT(H2), and
the projection to either factor is surjective. IfH1 andH2 belong toC, then
it follows from the inclusion LieMT(H) →֒ LieMT(H1)⊕LieMT(H2) that the
Hodge structure on LieMT(H) has the correct type, which means thatH also be-
longs toC. Conversely, suppose thatH belongs to the category. The surjections
LieMT(H)։ LieMT(Hj) are morphisms of Hodge structure, and this implies



210 C. Schnell

that either factorHj is in C.

3. Finally, we consider a tensor productH = H1⊗H2 of two Hodge structures in
C. Note that MT(H) is contained in the image of the composition

MT(H1)×MT(H2) →֒GL(H1)×GL(H2)→GL(H),

and thus LieMT(H) lies in the image of LieMT(H1)⊕LieMT(H2) in End(H).
Arguing as above, we see that the Hodge structure on LieMT(H) is of the correct
type, which proves thatH belongs to the categoryC.

Let (H,Q) be a polarized Hodge structure of even weight. We write End(H,Q)

for the Lie algebra of the orthogonal group O(H,Q) ⊆ GL(H). It consists of those
X ∈ End(HC) that satisfyQ(h,Xh) = 0 for everyh ∈HC.

LEMMA 6. Let (H,Q) be a polarized Hodge structure of type

{(0,2),(1,1),(2,0)},

and consider the induced Hodge structure onEnd(H,Q). If dimH2,0 6 1, then
End(H,Q) is of type{(−1,1),(0,0),(1,−1)}; otherwise,End(H,Q)−2,2 6= 0.

Proof. In any case, the Hodge structure on the ambient Lie algebra End(H) is of type

{(−2,2),(−1,1),(0,0),(1,−1),(2,−2)}.

ElementsX ∈ End(H)−2,2 satisfyXH2,0 ⊆ H0,2 and annihilate the other summands
in the Hodge decomposition. Consequently,X belongs to End(H,Q)−2,2 if and only
if

〈h,Xh〉=−Q(h,Xh) = 0

for everyh∈H2,0. Now lete1, . . . ,en be an orthonormal basis forH2,0, relative to the
inner product defined by the polarization. WritingXej =

∑n
j=1Xjkek, the condition

above becomes
n∑

j,k=1

λjXjkλk = 0

for everyλ ∈ Cn. Whenn = 1, this cannot happen unlessX = 0; but forn > 1, any
anti-symmetric matrix gives an example.

2.3. Deligne’s result

We now consider smooth surfaces inP3 and the Hodge structures on their primitive
cohomologyH20(X,Q).

LEMMA 7. Let X ⊆ P3 be a smooth surface of degree at least4, andH =

H20(X,Q) the Hodge structure on its primitive cohomology, with the polarizationQ
given by the intersection pairing. Then the algebraic monodromy group is the full
orthogonal groupO(H,Q).
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Proof. Let G be the algebraic monodromy group. We apply Lemma 8 to the vector
spaceHC and the bilinear form−Q; all the assumptions are met because of Lefschetz
theory. It follows thatG is either a finite group, or all of O(H,Q). To conclude, we
have to argue that the first possibility cannot happen ifd = degX is at least4 (while it
does happen ford= 2,3). By Zariski’s theorem, the action ofG onH is irreducible; if
G was finite, this would force the polarizationQ to be definite. Using Griffiths’ theory,
we easily compute that

h2,0 = h0,2 =

(
d−1

3

)
while h1,1 =

(
2d−1

3

)
−4

(
d

3

)
.

As long asd > 4, the Hodge structure of the surface has nonzeroH2,0 andH1,1. By
the Hodge-Riemann bilinear relations,Q has a different sign on the two subspaces, and
is therefore not definite. This rules out the possibility that G is finite.

In the proof, we used the following lemma of Deligne’s (whichis Lemma 4.4.2
in [2]). To apply it, we take∆ to be the collection of vanishing cycles in a Lefschetz
pencil onP3 containingX. Since all vanishing cycles are conjugate under the action of
the monodromy group – this is the proof of Zariski’s theorem –∆ is a single orbit for
the algebraic monodromy groupG. Moreover, the self-intersection number of any van-
ishing cycle isQ(δ,δ) = −2, and the Picard–Lefschetz formula shows thatG contains
the transvectionh 7→ h+Q(h,δ)δ.

LEMMA 8. Let V be a finite-dimensional complex vector space with a
non-degenerate symmetric bilinear formB, and letG⊆ O(H,B) be an algebraic sub-
group. Suppose that we have a subset∆⊆ V, consisting of vectorsδ with B(δ,δ) = 2,
such that∆ spansV, and∆ is a single orbit under the action byG. If G is the smallest
algebraic subgroup containing all the transvectionsv 7→ v−B(v,δ)δ, then it is either
a finite group, or all ofO(H,B).

We are now in a position to prove Deligne’s result about Hodgestructures, by
considering surfaces inP3 of degree at least5.

THEOREM 1. LetX⊆ P3 be a very general surface of degreed > 5. Then the
Hodge structure onH20(X,Q) cannot be expressed with the help of abelian varieties.

Proof. Let H = H20(X,Q), with polarizationQ coming from the intersection pairing.
We know that MT(H) ⊆ O(H,Q). SinceX is very general, the Mumford–Tate group
contains a finite-index subgroup of the algebraic monodromygroup by Proposition 6.
Sinced > 4, the algebraic monodromy group is the orthogonal group by Lemma 7; it
follows that MT(H) = O(H,Q), and also that LieMT(H) = End(H,Q). Now observe
that,d being at least5, we have dimH2,0 > 1; by virtue of Lemma 6, the Hodge struc-
ture on LieMT(H) can therefore not be of type{(−1,1),(0,0),(1,−1)}. According to
Lemma 5, this rules out the possibility ofH being expressed with the help of abelian
varieties.
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3. Exercises

Some of these exercises were kindly provided by Claire Voisin.

3.1. The Kuga–Satake construction

Let H be a rational vector space, andQ a nondegenerate bilinear form onH. Recall
that theClifford algebraC(H,Q) is aQ-algebra with a linear mapi : H→ C(H,Q),
and the following universal property: Given anyQ-algebraA and linear map

f : H→A

such thatf(h)2 = Q(h,h) for every h ∈ H, there is a unique map ofQ-algebras
g : C(H,Q)→A such thatf= g◦ i. The universal property implies that

C(H,Q) = T(H)/I,

whereI is the ideal of the tensor algebra generated byh⊗h−Q(h,h) for h ∈H.

(a) As a warm-up, convince yourself thatC(H,Q) has dimension2dimH.

(b) Now let (H,Q) be a polarized Hodge structure of weight2 with dimH2,0 = 1.
Let P =

(
H2,0⊕H0,2

)
∩HR. Show thatP is an oriented2-plane on whichQ is

negative definite.

(c) LetC = C(H,Q) be the Clifford algebra. Lete1,e2 be an oriented basis forP
with Q(e1,e1) = Q(e2,e2) = −1 andQ(e1,e2) = 0. Show that the element
e= e2e1 ∈ CR does not depend on the choice of basis and satisfiese2 =−1.

(d) Consider the complex structure onCR given by left Clifford multiplication bye.
It determines a Hodge structure of weight1 onC, because a complex structure
on a real vector spaceV is the same as a decompositionVC = V1,0⊕V1,0 of
the complexification ofV. Show that the map

H→ EndC,

given by left Clifford multiplication, is an injective morphism of Hodge struc-
tures of bidegree(−1,−1). (The vector space on the right has a Hodge structure
of weight0, induced by the Hodge structure onC defined above.)

Solution

We first review the construction of the Clifford algebra. LetV be a rational vector
space, andQ a nondegenerate bilinear form onV. The Clifford algebraC(V,Q) is a
Q-algebra with a linear mapi : V → C(V,Q), and the following universal property:
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Given anyQ-algebraA and linear mapf : V → A such thatf(v)2 =Q(v,v) for every
v ∈ V, there is a unique map ofQ-algebrasg : C(V,Q)→A such thatf= g◦ i. Thus

C(V,Q) =
⊕

k>0

V⊗k/I,

whereI is the ideal generated byv⊗v−Q(v,v) for v∈V. To get an idea of the dimen-
sion ofC(V,Q), take an orthogonal basise1, . . . ,en for V, meaning thatQ(ei,ej) = 0

for i 6= j (possible becauseQ is nondegenerate). Letdi =Q(ei,ei). ThenI is gener-
ated by the elementsei⊗ei−di andei⊗ej+ej⊗ei; thereforeC(V,Q) has dimension
2n, and a basis is given by the vectorsei1 ⊗·· ·⊗eik , for 16 i1 < · · ·< ik 6 n.

We writeQ for the bilinear form given by the negative of the polarization. The
orientation comes from the fact thatP is naturally isomorphic toH2,0, which has its
standard orientation (1∧ i > 0); Q is positive definite onH2,0⊕H0,2 by the bilinear
relations. This proves (b).

In C(H), we havee21 = e
2
2 = 1 ande1e2 + e2e1 = 0. Let f1, f2 be another

orthonormal basis; writingf1 = ae1+be2 andf2 = ce1+de2, we have

f2f1 = (ce1+de2)(ae1+be2) = ac+bd+(ad−bc)e= e

sincef1, f2 is oriented and orthonormal. Moreover,e2 = e2e1e2e1 = −e2e2e1e1 =

−1, and so (c) is proved.

Finally, we come to (d). Note that the mapH→ EndC(H) is injective, because
H injects intoC(H), andQ is nondegenerate. Sincee2 = −1, left multiplication bye
determines a complex structure on the real vector spaceC(HR). SinceC(H) is defined
overQ, this means that we have a rational Hodge structure of weight1. We have

C(H)1,0 = ker(e− i) and C(H)0,1 = ker(e+ i)

on C(HC). Let ω ∈ H2,0 be a generator, such that‖ω‖2 = Q(ω,ω) = 1
2 . Then

e1 = ω+ω ande2 = i(ω−ω) form an oriented orthonormal basis. We haveω =
1
2 (e1− ie2) andω= 1

2 (e1+ ie2). From the relationse21 = e
2
2 = 1 ande1e2+e2e1 =

0, we deduce thatω2 =ω2 = 0. We then have

e= e2e1 = i(ω−ω)(ω+ω) = 2iωω.

Now letx∈C(H)1,0; thenex= ix, and so2ωωx= x, which means thatωx=
0. On the other hand,

eωx=−2iωωωx=−ix.

This shows that left multiplication byω is of type(1,−1), and left multiplication by
ω is of type(−1,1). Since the map fromH to EndC(H) is defined overQ, it only
remains to show that elements ofH1,1 give operators of type(0,0). So leth ∈H1,1 be
any element; sinceh is orthogonal toω andω by type, it anti-commutes withe1 and
e2, and therefore commutes withe, proving that it defines an endomorphism of type
(0,0).
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3.2. Mumford–Tate groups of elliptic curves

Consider the elliptic curve
Eτ = C/(Z+τZ),

with Imτ > 0, and letHτ =H1
(
Eτ,Q

)
.

(a) Find a formula for the representationρ : S(R)→GL(R2) associated toHτ.

(b) Compute the Mumford–Tate group ofHτ by finding the Zariski-closure of the
image ofρ.

3.3. The big Mumford–Tate group

Let H be aQ-Hodge structure of weightk. If one is interested in Hodge classes of
arbitrary type(p,p), it is useful to define the so-calledbig Mumford–Tategroup

MT♯(H) = MT
(
H⊕Q(1)

)
.

(a) We know that there is a map MT♯(H)→ MT(H)×Gm, surjective onto either
factor. Show that fork= 0, this map is an isomorphism.

(b) LetH be polarized and of weight1. Show that in this case, MT♯(H)≃ MT(H).

(c) Now suppose thatk 6= 0. Show that the map MT♯(H)→MT(H) is finite.

3.4. Mumford–Tate groups and Tannaka duality

This exercise discusses a third possible definition of the Mumford–Tate group, in terms
of Tannaka duality. First, we list some definitions: Atensor categoryis an abelian
category that has tensor products and an identity object1 for ⊗. Internal Hom of X
andY, if it exists, is an object hom(X,Y) in the category with a natural isomorphism
of functors Hom(−⊗X,Y) ≃ Hom

(
−,hom(X,Y)

)
. The tensor category is said to be

rigid if hom(X,Y) exists for every two objects, is compatible with tensor products, and
if X→ (X∨)∨ is an isomorphism for everyX, duals being defined asX∨ = hom(X,1).
Finally, ak-linear rigid tensor category is aneutral Tannakian category overk if there
is a fiber functor, meaning ak-linear, faithful and exact functor to the category of
finite-dimensionalk-vector spaces that preserves tensor products.

The definitions are set up to make such a category look like thecategory of
representations of some group, and in fact, the main theoremis that every neutral Tan-
nakian category is equivalent to the category of representations of an algebraic group
G overk. According toTannaka duality,G is obtained as the group of tensor automor-
phisms of the fiber functor: For anyk-algebraA, theA-valued points ofG are given by
a collection of automorphismsλH ∈ Aut

(
A⊗kH

)
, one for every objectH, such that

λH1⊗H2 = λH1 ⊗λH2 , λ1 = id, andλH2 ◦ (1⊗φ) = (1⊗φ)◦λH1 for any morphism
φ : H1→H2.
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(a) Convince yourself that the categoryQ-HS of rational Hodge structures forms a
neutral Tannakian category overQ, with fiber functor taking a Hodge structure
to the underlyingQ-vector space.

(b) Show that Deligne’s groupS is isomorphic to the group of tensor automorphisms
of the forgetful functor fromR-HS toR-vector spaces.

(c) Now let 〈H〉 be the full subcategory ofQ-HS whose objects are arbitrary sub-
quotients of the tensor spacesTd,e(H) defined before. Show that MT(H) is
isomorphic to the group of tensor automorphisms of the forgetful functor from
〈H〉 toQ-vector spaces. It follows that〈H〉 is equivalent to the category of finite-
dimensional representations of MT(H).

3.5. Complex tori and abelian varieties

Let T andT ′ be two complex tori with dimT > dimT ′ > 0, and let

φ : T → T ′

be a surjective morphism. Denote byT ′′ the connected component of the kernel ofφ

containing0.

(a) Show that for a general deformation of the triple(T,T ′,φ), there is no splitting
T ∼ T ′⊕T ′′ up to isogeny.

(b) Show that ifT is projective, such a splitting always exists.

(c) Show that the deformations of the triple(T,T ′,φ) for which T is projective are
dense in the local universal family of deformations.

(d) Is it true that, in order forT to be projective, it suffices thatT ′ andT ′′ are projec-
tive?

3.6. Hodge classes and monodromy

Let H be a polarized variation of Hodge structure on a complex manifold B, and sup-
pose that for eachb ∈ B, the Hodge structureHb is entirely of type(k,k). Show that
the image of the monodromy representation

µb : π1(B,b)→ Aut
(
HQ,b,Q

)

is necessarily a finite group.
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