
Rend. Sem. Mat. Univ. Politec. Torino
Vol. 69, 4 (2011), 331 – 338
Generalized Functions, Linear and Nonlinear Problems, I

T. Aoki, N. Honda and Y. Umeta

ON THE FORM OF INSTANTON-TYPE SOLUTIONS FOR

EQUATIONS OF THE FIRST PAINLEVÉ HIERARCHY BY

MULTIPLE-SCALE ANALYSIS

Abstract. We construct, using multiple-scale analysis, a formal solution containing suffi-
ciently many free parameters for the first Painlevé hierarchy (PI)m with a large parameter.
This note is a short summary of our forthcoming paper [3].

1. Introduction

Aoki, Kawai and Takei, in 1990’s, investigated the traditional Painlevé equations with
a large parameterη from a viewpoint of the exact WKB analysis and local structure of
formal solutions near turning points. In the papers [4, 8, 9,10, 12], they constructed
the formal solutions with 2-parameters calledinstanton-type solutionsand established
the connection formula among these solutions.

Several Painlevé hierarchies have recently been found in various areas of math-
ematics and it is also expected to establish the connection formula of instanton-type
solutions for these hierarchies with a large parameter. Forthat purpose, we need to
construct instanton-type solutions with sufficiently manyfree parameters so that Stokes
phenomena are correctly caught.

In this note, we consider the first Painlevé hierarchy(PI)m (m= 1,2, . . . ) with
a large parameterη and construct its instanton-type solutions. For the secondmem-
ber (PI)2 of the hierarchy, Y. Takei [13] had constructed instanton-type solutions by
using singular perturbative reduction of a Hamiltonian system to its Birkhoff normal
form. The first author [2] also constructed them by multiple-scale analysis. We follow
the latter method and construct instanton-type solutions for a general member(PI)m.
Detailed construction will be given in our forthcoming article [3].
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2. Instanton-type solutions and multiple-scale analysis

2.1. The first Painlevé hierarchy with a large parameter

Let wj ( j = 1,2, . . . ) be the polynomial of variablesuk andvl (1≤ k, l ≤ j) defined by
the recurrence relation

wj :=
1
2

j

∑
k=1

uku j+1−k+
j−1

∑
k=1

ukwj−k−
1
2

j−1

∑
k=1

vkv j−k+ c j + δ jmt.(1)

Herec j is a constant andδ jm stands for the Kronecker delta. Then the first Painlevé
hierarchy(PI)m with a large parameterη (m= 1,2, . . . ) is the system of non-linear
equations

(2)





η−1duj

dt
= 2v j , j = 1, 2, . . . , m,

η−1dvj

dt
= 2(u j+1+u1u j +wj), j = 1, 2, . . . , m,

whereu j andv j are unknown functions oft with the additional conditionum+1 = 0.

Note that the first member(PI)1 gives the traditional first Painlevé equationPI

with a large parameterη.

As the definition of the system is very complicated, we rewrite the system into
the simpler form with the generating functions defined by

(3)

U(θ) :=
∞

∑
k=1

ukθk, V(θ) :=
∞

∑
k=1

vkθk, W(θ) :=
∞

∑
k=1

wkθk+1

C(θ) :=
∞

∑
k=1

(ck+ δkmt)θk+1.

Hereθ denotes an independent variable. Then the system(2) becomes

(4) η−1 d
dt

(
Uθ
Vθ

)
≡




2Vθ

−(1+2u1θ)(1−U)+
1+2C−θV2

1−U




with the condition that the coefficients ofθm+1 of U andV are zero. HereA≡B implies
thatA−B is equal to zero moduloθm+2.

2.2. 0-parameter solutions of(PI)m

For the construction of instanton-type solutions, we first construct a special kind of
the solution of(PI)m called a 0-parameter solution. We rewrite the result [7] on the
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0-parameter solution of(PI)m by using generating functions. Let us consider formal
series inη−1 of the form

(5) ū j(t) :=
∞

∑
k=0

η−kû j ,k(t), v̄ j(t) :=
∞

∑
k=0

η−kv̂ j ,k(t), j = 1, . . . , m,

and let us define the generating functions with respect to theleading terms ˆu j ,0 andv̂ j ,0

of ū j andv̄ j by

(6) û0(θ) :=
∞

∑
j=1

û j ,0θ j and v̂0(θ) :=
∞

∑
j=1

v̂ j ,0θ j ,

respectively. Then, putting(5) into (2), we find the following equations for the gener-
ating functions:

(7) v̂0 = 0, (1+2û1,0θ) =
1+2C

(1− û0)
2 .

The equations can be easily solved and we have

(8) û0 = 1−
√

1+2C
1+2û1,0θ

.

Note that the ˆu1,0 in the right-hand side of(8) is taken so that the coefficient ˆum+1,0 of
θm+1 in û0 is zero.

2.3. Instanton-type solutions of(PI)m

Let α=− 1
2, and we fix it in what follows. We first introduce several notations to define

instanton-type solutions.

Let uk, jα andvk, jα (k = 1,2, . . . , j = 0,1,2, . . . ) be unknown functions of the
variablet. We define

(9) u :=
∞

∑
j=0

∞

∑
k=1

uk, jα(t)θk η jα, v :=
∞

∑
j=0

∞

∑
k=1

vk, jα(t)θk η jα,

and denote byσθ
k(u) (resp.σθ

k(v)) the coefficient ofθk in u (resp.v).

Let Θ be the set of formal power series ofθ without constant terms, and let
Q : (Θθ)2 −→ Θ2 be the map defined by the relation

(10) Q

(
xθ
yθ

)
:= 2

(
yθ

(1+2û1,0θ)x−σθ
1(x)θ

)

for x=
∞

∑
j=1

x jθ j , y=
∞

∑
j=1

y jθ j ∈ Θ.
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Then, by the change of unknown functions in(4),

(11) U = û0+ηα(1− û0)u, V = v̂0+ηα(1− û0)v,

we obtain the system of unknown functions(u, v) in the form

(12)

(
η−1 d

dt
−Q

)(
uθ
vθ

)
≡ ηα

((
hθ

S(u, v)

)
−uQ

(
uθ
vθ

))

−η2α
(

u

(
h

2σθ
1(u)u

)
+h

(
u
v

))
θ

+η3αu

(
h+

d
dt

)(
u
v

)
θ,

with

(13) S(u, v) :=
1
2
(−v, u)Q

(
uθ
vθ

)
+3σθ

1(u)uθ and h :=
d
dt
(log(1− û0)).

As the form of the above system suggests, the mapQ plays an important role
in the study of(PI)m and its eigenvectorA(λ) corresponding to an eigenvalueλ in the

sense ofQ(A(λ)θ) = λA(λ)θ has the special form

(
a(λ)

λ a(λ)/2

)
with

(14) a(λ) :=
θ

1−g(λ)θ
=

∞

∑
k=0

g(λ)kθk+1, g(λ) :=
λ2−8û1,0

4
.

Since the coefficients ofθm+1 in U andV are zero, the coefficient(1− û0)a(λ) of θm+1

must be zero. Hence the eigenvalueλ of Q is a root of the algebraic equation

(15) Λ(λ, t) := g(λ)m−
m

∑
k=1

ûk,0g(λ)m−k = 0,

whereûk,0 is given by(5). Note thatΛ(λ, t) is an even function ofλ.

Let ν±1(t), . . . , ν±m(t) be the roots of the algebraic equation ofλ where we set
νk = −ν−k, and letΩ be an open subset inCt . We always assume the following two
conditions from now on.

(A1) The rootsνi(t)’s (1≤ |i| ≤ m) are mutually distinct for eacht ∈ Ω.

(A2) The functionp1ν1(t)+ · · ·+ pmνm(t) does not vanish identically onΩ for any
(p1, . . . , pm) ∈ Zm\ {0}.
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Let τ := (τ1, . . . , τm) bem-independent variables, and let us define the rings

(16)

Aα(Ω) := M (Ω)

[[
ηαeτ1, . . . , ηαeτm, ηαe−τ1, . . . , ηαe−τm

]]
,

AO
α (Ω) := O(Ω)

[[
ηαeτ1, . . . , ηαeτm, ηαe−τ1, . . . , ηαe−τm

]]
,

whereM (Ω) (resp.O(Ω)) denotes the set of formal power series inθ with coefficients
in multi-valued holomorphic functions with a finite number of branching points and
poles (resp. holomorphic functions) onΩ. We also denote bŷAα(Ω) (resp. ÂO

α (Ω))
the subset inAα(Ω) (resp. AO

α (Ω)) consisting of a formal power series of order less
than or equal toα with respect toη. Forϕ(τ1, . . . ,τm, t, θ, η) ∈ Aα(Ω), we define the
morphismι by

(17) ι(ϕ) = ϕ
(

η
∫ t

ν1(s)ds, . . . , η
∫ t

νm(s)ds, t, θ, η
)
.

By replacing
d
dt

in (12) with

(18)
∂
∂t

+ην1
∂

∂τ1
+ην2

∂
∂τ2

+ · · ·+ηνm
∂

∂τm
,

we obtain the partial differential equation associated with (12) of the form

(19)

P

(
uθ
vθ

)
≡ ηα

((
hθ

S(u, v)

)
+u P

(
uθ
vθ

))

−η2α
(

u

(
h

2σθ
1(u)u

)
+

(
h+

∂
∂t

)(
u
v

))
θ

+η3αu

(
h+

∂
∂t

)(
u
v

)
θ.

Here the operatorP is defined by

P := χτ −Q, χτ := ν1
∂

∂τ1
+ · · ·+νm

∂
∂τm

.(20)

Then, for a solution(u, v) ∈ A2
α(Ω) := (Aα(Ω))2 of the system (19), the(ι(u), ι(v))

becomes a formal solution of the system (12).

DEFINITION 1. We say that a formal solution(U,V) on Ω of the system(4)
is of instanton-type if(U,V) has the form(û0, v̂0)+ηα(1− û0)(ι(u), ι(v)) for which
(u, v) ∈ A2

α(Ω) is a solution of(19).

2.4. Existence of instanton-type solutions for(PI)m

Now we state our main theorem whose proof is given in [3].
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THEOREM1. LetΩ be an open subset inCt and we assume the conditions(A1)
and(A2). Then we have instanton-type solutions of equations of(PI)m with free2m-
parameters(β−m, . . . , βm) ∈ C2m[[η−1]]. In particular, we can construct the solution
(u, v) in A2

α(Ω) for (19) of the form

(21)

(
u
v

)
= ∑

1≤|k|≤m

fk(τ, t;η)A(νk),

with

fk(τ, t;η) =
∞

∑
j=0, `=0

η( j+2`)α

(

∑
p∈Zm, |p|= j

fk,p,`(t)e
p·τ
)
,

where|p| := |p1|+ · · ·+ |pm|.

We can give the more precise form offk appearing in the above theorem. The
leading termfk,0 and the subleading termfk,α of fk, for example, are described by the
following Lemmas 1 and 2.

LEMMA 1. We have

(22) fk,0 = ωke
τk (1≤ |k| ≤ m),

whereωk, ω−k (1≤ k≤ m) are multi-valued holomorphic functions onΩ of the form

(23)

ωk = β(0)
k exp

(∫ t
(

1
νk

m

∑
j=1

φ(k, j)β(0)
j β(0)

− j exp

(
−2

∫ t
h jdt

)
−hk

)
dt

)
,

ω−k = β(0)
−k exp

(∫ t
(
− 1

νk

m

∑
j=1

φ(k, j)β(0)
j β(0)

− j exp

(
−2

∫ t
h jdt

)
−hk

)
dt

)

with free2m-parameters(β(0)
−m, . . . , β(0)

m ) ∈C2m. Hereφ(k, j) are rational functions of
the variablesνk’s and hk are holomorphic functions inΩ with the conditions

(24) φ(k, j) = φ(−k, j) (1≤ j ≤ m), hk = h−k.

For the explicit forms ofφ(k, j) andhk, see[3]. Furthermore the subleading
term of the solution is given by the following.

LEMMA 2. For any k(1≤ |k| ≤ m), the fk,α is given by

(25)

fk,α = ∑
1≤| j |≤m,

j 6=−k

2
(νk+ν j)νkν j

(
(2νk+ν j)ωkω je

τk+τ j −ν jω−kω− je
−τk−τ j

)

−
(

m

∑
j=1

ν2
j

νk
h j ,kω jω− j +

6
νk

ωkω−k+
1
2

γk

)
× 1

νk
.
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Hereγk are holomorphic functions inΩ with γk = γ−k and hk, j are defined by

(26) hk, j :=

4 ∏
1≤l≤m,
l 6=k, j

(
ν2

k −ν2
l

)

∏
1≤l≤m,

l 6= j

(
ν2

j −ν2
l

) ( j 6= k), hk,k :=
m

∑
l=1,
l 6=k

4

ν2
k −ν2

l

with the convention hk, j := h|k|, | j |.
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