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ANALYTIC FUNCTIONS, CAUCHY KERNEL,

AND CAUCHY INTEGRAL IN TUBES

Abstract. Analytic functions in tubes in association with ultradistributional boundary values
are analyzed. Conditions are stated on the analytic functions satisfying a certain norm growth
which force the functions to be in the Hardy spaceH2. Properties of the Cauchy kernel and
Cauchy integral are obtained which extend results obtainedpreviously by the author and
collaborators.

1. Introduction

The definitions of regular coneC ⊂ Rn and the corresponding dual coneC∗ of C are
given in [2, Chapter 1] where the notation used in this paper is also contained. The
Cauchy and Poisson kernels corresponding to the tubeTC = Rn+ iC ⊂Cn with t ∈Rn

are defined by

K(z− t) =
∫

C∗
exp(2πi〈z− t,u〉)du, z∈ TC = R

n+ iC, t ∈R
n,

and

Q(z; t) =
|K(z− t)|2

K(2iy)
, z= x+ iy ∈ TC = R

n+ iC, t ∈ R
n,

respectively; see [2, Chapter 1]. The sequencesMp, p= 0,1,2, ..., of positive integers
with conditions(M.1) through(M.3′) and the subsequently defined spaces of functions
and ultradistributions of Beurling and Roumieu typeD(∗,Ls) andD ′(∗,Ls), where∗
is either(Mp) of Beurling type or{Mp} of Roumieu type, are given in [2, Chapter 2].
For sequencesMp which satisfy the conditions(M.1) and(M.3′), the Cauchy kernel
K(z− t) ∈ D(∗,Ls),1< s≤ ∞, [2, Theorem 4.1.1] as a function oft ∈ Rn for z∈ TC

whereC is a regular cone inRn; and the Poisson kernelQ(z; t) ∈ D(∗,Ls),1≤ s≤ ∞,
[2, Theorem 4.1.2] as a function oft ∈ Rn for z∈ TC. ForU ∈ D ′(∗,Ls) the Cauchy
and Poisson integrals are defined asC(U ;z) = 〈Ut ,K(z−t)〉 andP(U ;z) = 〈Ut ,Q(z; t)〉,
respectively, forz∈ TC andt ∈ Rn for appropriate values ofs; see [2, Chapter 4].

In this paper we extend results in [2] concerning the norm growth of C(U ;z),
U ∈ D ′(∗,Ls), to the values 1< s< 2. We obtain a new boundary value result for
C(U ;z) and obtain a decomposition theorem forU ∈ D ′(∗.Ls),1< s< 2. Considering
functions analytic in the tubeTC which are known to haveD ′((Mp),L2) boundary
values, we impose conditions on the boundary value which force the analytic functions
to be in the Hardy spaceH2(TC).

339



340 R. D. Carmichael

2. Cauchy kernel and integral

Let the sequenceMp satisfy(M.1) and(M.3′). ForU ∈ D ′(∗,Ls),1< s< ∞,C(U ;z)
is an analytic function inTC = Rn+ iC [2, Theorem 4.2.1]; and we have a pointwise
growth estimate onC(U ;z) ([1], [2, Theorem 4.2.2]). We have a norm growth estimate
[2, Theorem 4.2.3] onC(U ;z) for 2≤ s< ∞; we extend this to 1< s< 2 by obtaining a
norm growth onC(U ;z) for these cases. We recall the associated functionM∗(ρ) given
in [2, p. 15].

THEOREM 1. Let C be a regular cone inRn and let the sequence Mp satisfy
properties(M.1) and(M.3′).

Let U ∈ D ′((Mp),Ls),1< s< 2. For 1/r +1/s= 1

(1) ‖C(U ;z)‖Lr ≤ A|y|−neM∗(T/|y|), |y| ≤ 1.

If n = 1, (1) holds for y∈C= (0,∞) or y∈C = (−∞,0) where A depends on r and s
and T> 0 is a fixed constant. If n≥ 2, (1) holds for y∈ C in which case A depends
on y, r,s,n, and C; and T> 0 is a fixed constant which depends on y. If n≥ 2, (1) also
holds for y∈ C′ ⊂ C, for any compact subcone C′ of C, in which case A depends on
C,C′, r,s, and n; and T> 0 is a fixed constant which depends on C′.

Let U ∈ D ′({Mp},Ls),1 < s< 2, and1/r + 1/s= 1. If n = 1, (1) holds for
y∈C= (0,∞) or y∈C= (−∞,0) where A depends on r and s and T> 0 is arbitrary.
If n ≥ 2, (1) holds for y∈C in which case A depends on y, r,s,n, and C; and T> 0 is
arbitrary. If n≥ 2, (1) also holds for y∈C′ ⊂C, for any compact subcone C′ of C, in
which case A depends on C,C′, r,s, and n; and T> 0 is arbitrary.

Proof. Both cases for∗= (Mp) or ∗= {Mp} when the dimensionn= 1 are proved by
analysis similar to that contained in the proof of [2, Theorem 5.4.2, pp. 126–128]. By
this proof we in fact have forn= 1

‖C(U ;z)‖Lr ≤ AeM∗(T/|y|)

for y∈ (0,∞) or y∈ (−∞,0); but the constantA depends ony in this case. By restricting
|y| ≤ 1, (2.1) is obtained in both cases whereA is independent ofy.

We now prove (1) for dimensionn≥ 2. Using [2, Theorems 2.3.1 and 2.3.2]

(2) C(U ;z) = 〈Ut ,K(z− t)〉=
∞

∑
|α|=0

(−1)|α|Fα(x,y)

where
Fα(x,y) =

∫
Rn

fα(t)D
α
t K(z− t)dt

and thefα ∈ Lr ,1/r +1/s= 1, satisfy the properties in [2, Theorems 2.3.1 and 2.3.2].
We note the estimate [3, (3.22)] onDα

t K(z− t) which holds forz= x+ iy ∈ Rn+ iC.
In [3, (3.22)] theδ > 0 depends ony ∈ C; whereas thisδ depends onC′ ⊂ C if y is
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restricted to compact subconesC′ ⊂ C. From this estimate [3, (3.22)] and restricting
|y| ≤ 1 we have a constantQδ, depending onδ, such that

|Dα
t K(z− t)| ≤ S(C∗)Γ(n)π−n−|α||α||α|Q1+|α|

δ |y|−n−|α|(δ+ |x− t|2)−n+1;

and recall the other constants in this estimate from [3, (3.22)]. Using this estimate with
|y| ≤ 1,

|Fα(x,y)| ≤ S(C∗)Γ(n)π−n−|α||α||α|Q1+|α|
δ |y|−n−|α|F̃α(x,y)

where
F̃α(x,y) =

∫
Rn

| fα(t)|(δ+ |x− t|2)−n+1dt

from which

|Fα(x,y)| ≤ S(C∗)Γ(n)π−n−|α||α||α|Q1+|α|
δ |y|−n−|α|Q

′
δ,s,r

×
(∫

Rn
| fα(t)|r(δ+ |x− t|2)−1/2−r/4dt

)1/r

follows using Hölder’s inequality. Now using Fubini’s theorem

‖Fα(x,y)‖Lr ≤ S(C∗)Γ(n)π−n−|α||α||α|Q1+|α|
δ Q

′′
δ,s,r |y|−n−|α|‖ fα‖Lr .

Using this estimate we return to (2) and obtain

‖C(U ;z)‖Lr ≤
∞

∑
|α|=0

‖Fα(x,y)‖Lr

≤ S(C∗)Γ(n)π−nQ
′′′
δ,s,r |y|−n

∞

∑
|α|=0

π−|α||α||α|(Qδ/|y|)|α|‖ fα‖Lr .

From the proof of Stirling’s formula

|α||α| ≤ e|α||α|!, |α|= 1,2,3, . . . ,

and we have the convention that|α||α| = 1 if |α| = 0. Using these facts, the norm
properties offα from [2, Theorems 2.3.1 and 2.3.2] and proceeding as in [2, (4.73)
and (4.60)] the growth (1) follows whereT = 2eQδ/kπ for somek > 0 if ∗ = (Mp)
Beurling and for allk> 0 if ∗= {Mp} Roumieu. Throughout the analysis the constant
Qδ depends ony∈C if y is not restricted to compact subconesC′ ⊂C. If y∈C′ ⊂C, the
constantQδ, and hence the constantsA andT, is not dependent ony but is dependent
on the compact subconeC′ ⊂C. The proof of Theorem 1 is complete.

In addition to completing theLr norm growth properties for the considered
Cauchy integral for alls,1< s< ∞, Theorem 1 shows that the Cauchy integralC(U ;z)
studied there is an example of the type of analytic function with norm growth that we
study in section 3 below in this paper.
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We make a comment concerning the relation between Theorem 1 and [2, Theo-
rem 5.4.2, p. 126]. Fory∈C

|y|−neM∗(T/|y|) ≤ QeM∗(T1/|y|)

where the constant Q does not depend ony for T1 > T. The estimate obtained in the
proof of [2, Theorem 5.4.2] is entirely correct, and the estimate obtained in Theorem 1
is a different one which is more precise.

The Fourier transform of aL1 functionφ will be symbolized byF [φ(t);x] or by
φ̂(x) with F −1[φ(t);x] denoting the inverse Fourier transform. We have proved

lim
y→0,y∈C

〈K(x+ iy− t),φ(x)〉= F −1[IC∗(u)φ̂(u); t], φ ∈ D(∗,Rn),

in D(∗,Ls),2 ≤ s< ∞, [2, Theorems 4.2.5 and 4.2.6]; hereC is a regular cone,C∗

is the dual cone, andIC∗(t) is the characteristic function ofC∗. This result is used to
obtain a boundary value result and a decomposition theorem forU ∈ D ′(∗,Ls),2≤ s<
∞, [2, Corollary 4.2.1 and Theorem 4.2.7]. We extend the above limit property and
subsequent results to 1< s< 2 for the cases thatC = (0,∞) or C = (−∞,0) in R1 or
C=Cµ is an-rant cone inRn where

Cµ = {y∈ R
n : µjy j > 0, j = 1, ...,n}, µj ∈ {−1,1}, j = l , ...,n.

THEOREM 2. Let Cµ be any n-rant cone inRn, and let IC∗
µ be the characteristic

function of the dual cone C∗µ =Cµ. Let φ ∈ D(∗,Rn) where the sequence Mp satisfies
the properties(M.1), (M.2), and(M.3′). We have

lim
y→0,y∈Cµ

〈K(x+ iy− t),φ(x)〉=
∫
Rn

IC∗
µ
(u)φ̂(u)e−2πi〈t,u〉du

in D(∗,Ls),1< s< 2.

Proof. Since then-rant coneCµ, its dual coneC∗
µ =Cµ, and the corresponding Cauchy

kernel function are products of one-dimensional half linesand the one-dimensional
Cauchy kernel function, it is sufficient to prove the result in one dimension. We give
an outline of the proof for the case thatC= (0,∞). Forφ ∈ D(∗,Rn) we know

F [Dα
x φ(x);u] = uαF [φ(x);u].

As noted in [2, p. 14], condition(M.2) on the sequenceMp implies the existence of
constantsA andH larger than 1 such that

Mp+q ≤ AHp+qMpMq.

Using these facts and integration by parts techniques we prove the following for the
coneC= (0,∞) with 1< s< 2:

〈K(x+ iy− t),φ(x)〉 ∈ D(∗,Ls), t ∈R
1, y∈C;
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∫ ∞

0
φ̂(u)e−2πitudu∈ D(∗,Ls), t ∈R

1;

∥∥∥∥Dα
t (〈K(x+ iy− t),φ(x)〉−

∫ ∞

0
φ̂(u)e−2πitudu)

∥∥∥∥
Ls
≤ NhαMα,

α = 0,1,2, . . . , for everyh> 0,(Mp) Beurling, or for someh> 0,{Mp} Roumieu, with
N > 0 independent ofy> 0 andα; and

lim
y→0, y∈(0,∞)

‖Dα
t (〈K(x+ iy− t),φ(x)〉−

∫ ∞

0
φ̂(u)e−2πitudu)‖Ls = 0,

α = 0,1,2, ..., which proves the result.

As noted above Theorem 2 extends [2, Theorems 4.2.5 and 4.2.6] to the cases
1< s< 2 for half line conesC= (0,∞) andC= (−∞,0) and for n-rant conesC=Cµ.

The following result extends [2, Corollary 4.2.1] to the cases 1< s< 2 for the
n-rant conesC=Cµ considered in Theorem 2.

THEOREM3. Let U∈ D ′(∗,Ls),1< s< 2, andφ ∈ D(∗,Rn). Let the sequence
Mp satisfy(M.1),(M.2), and(M.3′). We have

lim
y→0, y∈Cµ

〈C(U ;x+ iy),φ(x)〉=
〈

U,

∫
Rn

IC∗
µ
(u)φ̂(u)e−2πi〈t,u〉du

〉
.

Proof. Using the change of order of integration formula [2, Theorem4.2.4], Theorem
2, and the continuity ofU ∈ D ′(∗,Ls) we have

lim
y→0, y∈Cµ

〈C(U ;x+ iy),φ(x)〉= lim
y→0,y∈Cµ

〈U,〈K(x+ iy− t),φ(x)〉〉

=
〈

U,
∫
Rn

IC∗
µ
(u)φ̂(u)e−2πi〈t,u〉du

〉
.

Now we may obtain a decomposition result forU ∈ D ′(∗,Ls),1< s< 2, similar
to that which we have obtained for 2≤ s< ∞ in [2, Theorem 4.2.7]. For eachCµ we
form

fµ(z) =
〈

U,

∫
C∗

µ

exp(2πi〈z− t,u〉)du
〉
, z∈ TCµ,

and note that there are 2n n-tuplesµ. As in the proof of [2, Theorem 4.2.7] we use
Theorem 3 here and obtain

〈U,φ〉= 〈U,∑
µ

∫
C∗

µ

φ̂(u)e−2πi〈t,u〉du〉= ∑
µ

lim
y→0,y∈Cµ

〈 fµ(x+ iy),φ(x)〉

for U ∈ D ′(∗,Ls),1 < s< 2, andφ ∈ D(∗,Rn). This extends [2, Theorem 4.2.7] to
1< s< 2 for n-rant conesC=Cµ.
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3. Analytic functions

Let B denote a proper open subset ofRn, and letd(y) denote the distance fromy∈ B
to the complement ofB in Rn. In [2, Chapter 5] we have considered analytic functions
in tubesTB =Rn+ iB satisfying

(3) ‖ f (x+ iy)‖Lr ≤ K(1+(d(y))−m)qeM∗(T/|y|), y∈ B,

whereK > 0,T > 0,m≥ 0, andq ≥ 0 are all independent ofy∈ B andM∗(ρ) is the
associated function of the sequenceMp defined in [2, p. 15].

ForB=C, a regular cone inRn, we have shown in [2, section 5.2] that analytic
functions f (z),z∈ TC, which satisfy (3) form= 0 or q = 0 and 1< r ≤ 2, obtain a
boundary valueU ∈ D ′((Mp),L1) asy → 0,y ∈ C, [2, Theorem 5.2.1]. A converse
result is proved in [2, Theorem 5.2.2]. In this converse result we can now easily prove
as an additional conclusion that

f (z) = 〈Ut ,K(z− t)〉, z∈ TC,

using the proof of [2, Theorem 5.2.2]; that is, in [2, Theorem5.2.2] we can add as
a conclusion that the analytic functionf (z) constructed there can be recovered as the
Cauchy integral of its boundary value.

Additionally we note that the result [2, Theorem 5.3.1], andhence the results [2,
Theorems 5.3.2 and 5.3.3], can be stated and proved under themore general hypothesis
that the setC is any open connected subset ofRn which is contained in or is any of the
2n n-rantsCµ in Rn. The only sacrifice in the conclusion is that the support of the
constructed functiong(t) can not be determined under this more general hypothesis.

Let us recall the HardyHr functions in tubesTC =R
n+ iC, forC being a regular

cone, which have been studied extensively by Stein and Weiss[5]. An analytic function
f (z),z∈ TC, is in the Hardy spaceHr = Hr(TC), r > 0, if

‖ f (x+ iy)‖Lr ≤ A, y∈C,

where the constantA> 0 is independent ofy∈C. In [4] we showed that if an analytic
function f (z),z∈TC, has a distributional boundary value inS ′ which is aLr ,1≤ r ≤∞,
function, the analytic function must be inHr . Results of this type have applications in
quantum field theory.

The Hardy spacesHr are subspaces of the analytic functions inTC which satisfy
(3) form= 0 orq= 0, which are the analytic functions we considered in [2, section 5.2]
with respect to the existence of boundary values inD ′((Mp),Lr). Thus for the values of
r that we have considered in [2, section 5.2],f (z) ∈ Hr will have an ultradistributional
boundary value. We now obtain a result, like those in [4], in which we show forr = 2
that any analytic functionf (z),z∈ TC, which satisfies (3) withm= 0 orq= 0 and with
r = 2 and whose boundary value inD ′((Mp),L2), which exists by [2, Corollary 5.2.3],
is a boundedL2 function inD ′((Mp),L2) must be aH2 function.
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THEOREM 4. Let f(z) be analytic in TC, C being a regular cone, and satisfy

(4) ‖ f (x+ iy)‖L2 ≤ KeM∗(T/|y|), y∈C.

Let theD ′((Mp),L2) boundary value of f(z) be a bounded function h∈ D ′((Mp),L2).
We have f(z) ∈ H2(TC) and

f (z) =
∫
Rn

h(t)K(z− t)dt =
∫
Rn

h(t)Q(z; t)dt, z∈ TC.

Proof. From [2, Corollary 5.2.3] and its proof we have

(5) f (z) =
∫
Rn

h(t)K(z− t)dt =
∫
Rn

g(t)e2πi〈z,t〉dt, z∈ TC,

where supp(g)⊆C∗ almost everywhere andh=F −1[g̃] with this inverse Fourier trans-
form being an element inD ′((Mp),L2) [2, (2.52), p. 27]. Now letw= u+ iv ∈ TC be
arbitrary but fixed and considerK(z+w) f (z),z∈ TC, where

K(z+w) =
∫

C∗
exp(2πi〈z+w,u〉)du.

Using [4, Lemma 3.2] we have thatK(z+w) is analytic inz∈ TC and

|K(z+w)| ≤ Mv < ∞, z∈ TC,

whereMv > 0 is a constant that depends only onv = Im(w). ThusK(z+w) f (z) is
analytic inz∈ TC and satisfies

‖K(x+ iy+w) f (x+ iy)‖L2 ≤ KMve
M∗(T/|y|), y∈C,

with Mv being independent ofz∈ TC. We haveK(x+ iy+w) f (x+ iy)→ K(x+w)h(x)
in D ′((Mp).L2) asy → 0,y ∈ C; andK(x+w)h(x) ∈ D ′((Mp),L2) sinceK(x+w) is
bounded inx∈Rn. By the proof of [2, Corollary 5.2.3] applied toK(z+w) f (z),z∈TC,
we have

(6) K(z+w) f (z) =
∫
Rn

K(t +w)h(t)K(z− t)dt,z∈ TC,

for any fixedw∈ TC. Now corresponding toz= x+ iy ∈ TC choosew=−x+ iy∈ TC

and obtain
K(t +w)K(z− t) = |K(z− t)|2

and
K(z+w) = K(2iy).

With this choice ofw=−x+ iy∈ TC, (6) becomes

(7) f (z) =
∫
Rn

h(t)Q(z; t)dt, z∈ TC,
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whereQ(z; t) is the Poisson kernel forz∈ TC andt ∈Rn. From (7) and the proof of [4,
Lemma 3.5] we have

‖ f (x+ iy)‖L2 ≤ ‖h‖L2 < ∞, y∈C;

and f (z) ∈ H2(TC).
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