ANALYTIC FUNCTIONS, CAUCHY KERNEL, AND CAUCHY INTEGRAL IN TUBES

Abstract. Analytic functions in tubes in association with ultradistributional boundary values are analyzed. Conditions are stated on the analytic functions satisfying a certain norm growth which force the functions to be in the Hardy space H^2 . Properties of the Cauchy kernel and Cauchy integral are obtained which extend results obtained previously by the author and collaborators.

1. Introduction

The definitions of regular cone $C \subset \mathbb{R}^n$ and the corresponding dual cone C^* of C are given in [2, Chapter 1] where the notation used in this paper is also contained. The Cauchy and Poisson kernels corresponding to the tube $T^C = \mathbb{R}^n + iC \subset \mathbb{C}^n$ with $t \in \mathbb{R}^n$ are defined by

$$K(z-t) = \int_{C^*} \exp(2\pi i \langle z-t, u \rangle) du, \quad z \in T^C = \mathbb{R}^n + iC, \quad t \in \mathbb{R}^n,$$

and

$$Q(z;t) = \frac{|K(z-t)|^2}{K(2iy)}, \quad z = x + iy \in T^C = \mathbb{R}^n + iC, \quad t \in \mathbb{R}^n,$$

respectively; see [2, Chapter 1]. The sequences $M_p, p = 0, 1, 2, ...$, of positive integers with conditions (M.1) through (M.3') and the subsequently defined spaces of functions and ultradistributions of Beurling and Roumieu type $\mathcal{D}(*, L^s)$ and $\mathcal{D}'(*, L^s)$, where * is either (M_p) of Beurling type or $\{M_p\}$ of Roumieu type, are given in [2, Chapter 2]. For sequences M_p which satisfy the conditions (M.1) and (M.3'), the Cauchy kernel $K(z-t) \in \mathcal{D}(*,L^s), 1 < s \leq \infty$, [2, Theorem 4.1.1] as a function of $t \in \mathbb{R}^n$ for $z \in T^C$ where C is a regular cone in \mathbb{R}^n ; and the Poisson kernel $Q(z;t) \in \mathcal{D}(*,L^s), 1 \leq s \leq \infty$, [2, Theorem 4.1.2] as a function of $t \in \mathbb{R}^n$ for $t \in \mathbb{R}^n$ for appropriate values of $t \in \mathbb{R}^n$ for $t \in \mathbb{R}^n$ for appropriate values of $t \in \mathbb{R}^n$ (Chapter 4).

In this paper we extend results in [2] concerning the norm growth of C(U;z), $U \in \mathcal{D}'(*,L^s)$, to the values 1 < s < 2. We obtain a new boundary value result for C(U;z) and obtain a decomposition theorem for $U \in \mathcal{D}'(*,L^s)$, 1 < s < 2. Considering functions analytic in the tube T^C which are known to have $\mathcal{D}'((M_p),L^2)$ boundary values, we impose conditions on the boundary value which force the analytic functions to be in the Hardy space $H^2(T^C)$.

2. Cauchy kernel and integral

Let the sequence M_p satisfy (M.1) and (M.3'). For $U \in \mathcal{D}'(*,L^s), 1 < s < \infty, C(U;z)$ is an analytic function in $T^C = \mathbb{R}^n + iC$ [2, Theorem 4.2.1]; and we have a pointwise growth estimate on C(U;z) ([1], [2, Theorem 4.2.2]). We have a norm growth estimate [2, Theorem 4.2.3] on C(U;z) for $2 \le s < \infty$; we extend this to 1 < s < 2 by obtaining a norm growth on C(U;z) for these cases. We recall the associated function $M^*(\rho)$ given in [2, p. 15].

THEOREM 1. Let C be a regular cone in \mathbb{R}^n and let the sequence M_p satisfy properties (M.1) and (M.3').

Let
$$U \in \mathcal{D}'((M_p), L^s), 1 < s < 2$$
. For $1/r + 1/s = 1$

(1)
$$||C(U;z)||_{L^r} \le A|y|^{-n}e^{M^*(T/|y|)}, \quad |y| \le 1.$$

If n = 1, (1) holds for $y \in C = (0, \infty)$ or $y \in C = (-\infty, 0)$ where A depends on r and s and s and s and s is a fixed constant. If s is a fixed constant which depends on s, s, s, s, s, s is a fixed constant which depends on s. If s is a fixed constant which depends on s. If s is a fixed constant which case s depends on s. C, s, s, and s, and s is a fixed constant which depends on s.

Proof. Both cases for $* = (M_p)$ or $* = \{M_p\}$ when the dimension n = 1 are proved by analysis similar to that contained in the proof of [2, Theorem 5.4.2, pp. 126–128]. By this proof we in fact have for n = 1

$$||C(U;z)||_{L^r} \le Ae^{M^*(T/|y|)}$$

for $y \in (0, \infty)$ or $y \in (-\infty, 0)$; but the constant *A* depends on *y* in this case. By restricting $|y| \le 1$, (2.1) is obtained in both cases where *A* is independent of *y*.

We now prove (1) for dimension $n \ge 2$. Using [2, Theorems 2.3.1 and 2.3.2]

(2)
$$C(U;z) = \langle U_t, K(z-t) \rangle = \sum_{|\alpha|=0}^{\infty} (-1)^{|\alpha|} F_{\alpha}(x,y)$$

where

$$F_{\alpha}(x,y) = \int_{\mathbb{R}^n} f_{\alpha}(t) D_t^{\alpha} K(z-t) dt$$

and the $f_{\alpha} \in L^r, 1/r + 1/s = 1$, satisfy the properties in [2, Theorems 2.3.1 and 2.3.2]. We note the estimate [3, (3.22)] on $D_t^{\alpha}K(z-t)$ which holds for $z = x + iy \in \mathbb{R}^n + iC$. In [3, (3.22)] the $\delta > 0$ depends on $y \in C$; whereas this δ depends on $C' \subset C$ if y is

Analytic functions 341

restricted to compact subcones $C' \subset C$. From this estimate [3, (3.22)] and restricting $|y| \le 1$ we have a constant Q_{δ} , depending on δ , such that

$$|D_t^{\alpha}K(z-t)| \leq S(C^*)\Gamma(n)\pi^{-n-|\alpha|}|\alpha|^{|\alpha|}Q_{\delta}^{1+|\alpha|}|y|^{-n-|\alpha|}(\delta+|x-t|^2)^{-n+1};$$

and recall the other constants in this estimate from [3, (3.22)]. Using this estimate with $|y| \le 1$,

$$|F_{\alpha}(x,y)| \le S(C^*)\Gamma(n)\pi^{-n-|\alpha|}|\alpha|^{|\alpha|}Q_{\delta}^{1+|\alpha|}|y|^{-n-|\alpha|}\widetilde{F}_{\alpha}(x,y)$$

where

$$\widetilde{F}_{\alpha}(x,y) = \int_{\mathbb{R}^n} |f_{\alpha}(t)| (\delta + |x - t|^2)^{-n+1} dt$$

from which

$$|F_{\alpha}(x,y)| \leq S(C^{*})\Gamma(n)\pi^{-n-|\alpha|}|\alpha|^{|\alpha|}Q_{\delta}^{1+|\alpha|}|y|^{-n-|\alpha|}Q_{\delta,s,r}'$$

$$\times \left(\int_{\mathbb{R}^{n}}|f_{\alpha}(t)|^{r}(\delta+|x-t|^{2})^{-1/2-r/4}dt\right)^{1/r}$$

follows using Hölder's inequality. Now using Fubini's theorem

$$||F_{\alpha}(x,y)||_{L^{r}} \leq S(C^{*})\Gamma(n)\pi^{-n-|\alpha|}|\alpha|^{|\alpha|}Q_{\delta}^{1+|\alpha|}Q_{\delta,s,r}''|y|^{-n-|\alpha|}||f_{\alpha}||_{L^{r}}.$$

Using this estimate we return to (2) and obtain

$$\begin{split} \|C(U;z)\|_{L^{r}} &\leq \sum_{|\alpha|=0}^{\infty} \|F_{\alpha}(x,y)\|_{L^{r}} \\ &\leq S(C^{*})\Gamma(n)\pi^{-n}Q_{\delta,s,r}^{"'}|y|^{-n}\sum_{|\alpha|=0}^{\infty} \pi^{-|\alpha|}|\alpha|^{|\alpha|}(Q_{\delta}/|y|)^{|\alpha|}\|f_{\alpha}\|_{L^{r}}. \end{split}$$

From the proof of Stirling's formula

$$|\alpha|^{|\alpha|} \le e^{|\alpha|} |\alpha|!, \qquad |\alpha| = 1, 2, 3, \dots,$$

and we have the convention that $|\alpha|^{|\alpha|} = 1$ if $|\alpha| = 0$. Using these facts, the norm properties of f_{α} from [2, Theorems 2.3.1 and 2.3.2] and proceeding as in [2, (4.73) and (4.60)] the growth (1) follows where $T = 2eQ_{\delta}/k\pi$ for some k > 0 if $* = (M_p)$ Beurling and for all k > 0 if $* = \{M_p\}$ Roumieu. Throughout the analysis the constant Q_{δ} depends on $y \in C$ if y is not restricted to compact subcones $C' \subset C$. If $y \in C' \subset C$, the constant Q_{δ} , and hence the constants A and A, is not dependent on A but is dependent on the compact subcone A constant A and A is not dependent on A but is dependent on the compact subcone A constant A and A is not dependent on A but is dependent on the compact subcone A constant A and A is not dependent on A but is dependent on the compact subcone A constant A and A is not dependent on A but is dependent on the compact subcone A constant A and A is not dependent on A but is dependent on the compact subcone A constant A and A is not dependent on A but is dependent on the compact subcone A constant A and A is not dependent on A but is dependent on the compact subcone A constant A and A is not dependent on A but is dependent on A but A is not dependent on A

In addition to completing the L^r norm growth properties for the considered Cauchy integral for all $s, 1 < s < \infty$, Theorem 1 shows that the Cauchy integral C(U;z) studied there is an example of the type of analytic function with norm growth that we study in section 3 below in this paper.

We make a comment concerning the relation between Theorem 1 and [2, Theorem 5.4.2, p. 126]. For $y \in C$

$$|y|^{-n}e^{M^*(T/|y|)} < Oe^{M^*(T_1/|y|)}$$

where the constant Q does not depend on y for $T_1 > T$. The estimate obtained in the proof of [2, Theorem 5.4.2] is entirely correct, and the estimate obtained in Theorem 1 is a different one which is more precise.

The Fourier transform of a L^1 function ϕ will be symbolized by $\mathcal{F}[\phi(t);x]$ or by $\hat{\phi}(x)$ with $\mathcal{F}^{-1}[\phi(t);x]$ denoting the inverse Fourier transform. We have proved

$$\lim_{y\to 0,y\in C} \langle K(x+iy-t), \phi(x)\rangle = \mathcal{F}^{-1}[I_{C^*}(u)\hat{\phi}(u);t], \quad \phi\in \mathcal{D}(*,\mathbb{R}^n),$$

in $\mathcal{D}(*,L^s)$, $2 \le s < \infty$, [2, Theorems 4.2.5 and 4.2.6]; here C is a regular cone, C^* is the dual cone, and $I_{C^*}(t)$ is the characteristic function of C^* . This result is used to obtain a boundary value result and a decomposition theorem for $U \in \mathcal{D}'(*,L^s)$, $2 \le s < \infty$, [2, Corollary 4.2.1 and Theorem 4.2.7]. We extend the above limit property and subsequent results to 1 < s < 2 for the cases that $C = (0,\infty)$ or $C = (-\infty,0)$ in \mathbb{R}^1 or $C = C_\mu$ is a n-rant cone in \mathbb{R}^n where

$$C_{\mu} = \{ y \in \mathbb{R}^n : \mu_i y_i > 0, j = 1, ..., n \}, \quad \mu_i \in \{-1, 1\}, \quad j = l, ..., n.$$

THEOREM 2. Let C_{μ} be any n-rant cone in \mathbb{R}^n , and let $I_{C_{\mu}^*}$ be the characteristic function of the dual cone $C_{\mu}^* = \overline{C}_{\mu}$. Let $\phi \in \mathcal{D}(*,\mathbb{R}^n)$ where the sequence M_p satisfies the properties (M.1), (M.2), and (M.3'). We have

$$\lim_{y\to 0,y\in C_\mu}\langle K(x+iy-t), \varphi(x)\rangle = \int_{\mathbb{R}^n} I_{C^*_\mu}(u) \hat{\varphi}(u) e^{-2\pi i \langle t,u\rangle} du$$

in
$$\mathcal{D}(*, L^s)$$
, $1 < s < 2$.

Proof. Since the *n*-rant cone C_{μ} , its dual cone $C_{\mu}^* = \overline{C}_{\mu}$, and the corresponding Cauchy kernel function are products of one-dimensional half lines and the one-dimensional Cauchy kernel function, it is sufficient to prove the result in one dimension. We give an outline of the proof for the case that $C = (0, \infty)$. For $\phi \in \mathcal{D}(*, \mathbb{R}^n)$ we know

$$\mathcal{F}[D_x^{\alpha}\phi(x);u] = u^{\alpha}\mathcal{F}[\phi(x);u].$$

As noted in [2, p. 14], condition (M.2) on the sequence M_p implies the existence of constants A and H larger than 1 such that

$$M_{p+q} \leq AH^{p+q}M_pM_q$$
.

Using these facts and integration by parts techniques we prove the following for the cone $C = (0, \infty)$ with 1 < s < 2:

$$\langle K(x+iy-t), \phi(x) \rangle \in \mathcal{D}(*,L^s), \quad t \in \mathbb{R}^1, \quad y \in C;$$

Analytic functions 343

$$\int_0^\infty \hat{\phi}(u)e^{-2\pi itu}du \in \mathcal{D}(*,L^s), \quad t \in \mathbb{R}^1;$$

$$\left\| D_t^\alpha(\langle K(x+iy-t), \phi(x) \rangle - \int_0^\infty \hat{\phi}(u)e^{-2\pi itu}du) \right\|_{L^s} \leq Nh^\alpha M_\alpha,$$

 $\alpha = 0, 1, 2, ...$, for every h > 0, (M_p) Beurling, or for some h > 0, $\{M_p\}$ Roumieu, with N > 0 independent of y > 0 and α ; and

$$\lim_{y\to 0,\ y\in(0,\infty)}\|D^\alpha_t(\langle K(x+iy-t),\phi(x)\rangle-\int_0^\infty\hat{\phi}(u)e^{-2\pi itu}du)\|_{L^s}=0,$$

 $\alpha = 0, 1, 2, ...$, which proves the result.

As noted above Theorem 2 extends [2, Theorems 4.2.5 and 4.2.6] to the cases 1 < s < 2 for half line cones $C = (0, \infty)$ and $C = (-\infty, 0)$ and for n-rant cones $C = C_{\mu}$.

The following result extends [2, Corollary 4.2.1] to the cases 1 < s < 2 for the n-rant cones $C = C_u$ considered in Theorem 2.

THEOREM 3. Let $U \in \mathcal{D}'(*,L^s)$, 1 < s < 2, and $\phi \in \mathcal{D}(*,\mathbb{R}^n)$. Let the sequence M_p satisfy (M.1),(M.2), and (M.3'). We have

$$\lim_{y\to 0,\ y\in C_{\mu}}\langle C(U;x+iy),\phi(x)\rangle = \left\langle U, \int_{\mathbb{R}^n} I_{C_{\mu}^*}(u)\hat{\phi}(u)e^{-2\pi i\langle t,u\rangle}du\right\rangle.$$

Proof. Using the change of order of integration formula [2, Theorem 4.2.4], Theorem 2, and the continuity of $U \in \mathcal{D}'(*,L^s)$ we have

$$\begin{split} \lim_{y \to 0, \ y \in C_{\mu}} \langle C(U; x + iy), \phi(x) \rangle &= \lim_{y \to 0, y \in C_{\mu}} \langle U, \langle K(x + iy - t), \phi(x) \rangle \rangle \\ &= \Big\langle U, \int_{\mathbb{R}^n} I_{C_{\mu}^*}(u) \hat{\phi}(u) e^{-2\pi i \langle t, u \rangle} du \Big\rangle. \end{split}$$

Now we may obtain a decomposition result for $U \in \mathcal{D}'(*,L^s), 1 < s < 2$, similar to that which we have obtained for $2 \le s < \infty$ in [2, Theorem 4.2.7]. For each C_{μ} we form

$$f_{\mu}(z) = \left\langle U, \int_{C_{\mu}^*} \exp(2\pi i \langle z - t, u \rangle) du \right\rangle, \quad z \in T^{C_{\mu}},$$

and note that there are 2^n n-tuples μ . As in the proof of [2, Theorem 4.2.7] we use Theorem 3 here and obtain

$$\langle U, \phi \rangle = \langle U, \sum_{u} \int_{C_{u}^{*}} \hat{\phi}(u) e^{-2\pi i \langle t, u \rangle} du \rangle = \sum_{u} \lim_{y \to 0, y \in C_{\mu}} \langle f_{\mu}(x + iy), \phi(x) \rangle$$

for $U \in \mathcal{D}'(*,L^s)$, 1 < s < 2, and $\phi \in \mathcal{D}(*,\mathbb{R}^n)$. This extends [2, Theorem 4.2.7] to 1 < s < 2 for n-rant cones $C = C_{\mu}$.

3. Analytic functions

Let *B* denote a proper open subset of \mathbb{R}^n , and let d(y) denote the distance from $y \in B$ to the complement of *B* in \mathbb{R}^n . In [2, Chapter 5] we have considered analytic functions in tubes $T^B = \mathbb{R}^n + iB$ satisfying

(3)
$$||f(x+iy)||_{L^r} \le K(1+(d(y))^{-m})^q e^{M^*(T/|y|)}, \quad y \in B,$$

where $K > 0, T > 0, m \ge 0$, and $q \ge 0$ are all independent of $y \in B$ and $M^*(\rho)$ is the associated function of the sequence M_p defined in [2, p. 15].

For B = C, a regular cone in \mathbb{R}^n , we have shown in [2, section 5.2] that analytic functions $f(z), z \in T^C$, which satisfy (3) for m = 0 or q = 0 and $1 < r \le 2$, obtain a boundary value $U \in \mathcal{D}'((M_p), L^1)$ as $y \to 0, y \in C$, [2, Theorem 5.2.1]. A converse result is proved in [2, Theorem 5.2.2]. In this converse result we can now easily prove as an additional conclusion that

$$f(z) = \langle U_t, K(z-t) \rangle, \quad z \in T^C,$$

using the proof of [2, Theorem 5.2.2]; that is, in [2, Theorem 5.2.2] we can add as a conclusion that the analytic function f(z) constructed there can be recovered as the Cauchy integral of its boundary value.

Additionally we note that the result [2, Theorem 5.3.1], and hence the results [2, Theorems 5.3.2 and 5.3.3], can be stated and proved under the more general hypothesis that the set C is any open connected subset of \mathbb{R}^n which is contained in or is any of the 2^n n-rants C_μ in \mathbb{R}^n . The only sacrifice in the conclusion is that the support of the constructed function g(t) can not be determined under this more general hypothesis.

Let us recall the Hardy H^r functions in tubes $T^C = \mathbb{R}^n + iC$, for C being a regular cone, which have been studied extensively by Stein and Weiss [5]. An analytic function $f(z), z \in T^C$, is in the Hardy space $H^r = H^r(T^C), r > 0$, if

$$||f(x+iy)||_{L^r} \le A, \quad y \in C,$$

where the constant A > 0 is independent of $y \in C$. In [4] we showed that if an analytic function $f(z), z \in T^C$, has a distributional boundary value in S' which is a $L^r, 1 \le r \le \infty$, function, the analytic function must be in H^r . Results of this type have applications in quantum field theory.

The Hardy spaces H^r are subspaces of the analytic functions in T^C which satisfy (3) for m=0 or q=0, which are the analytic functions we considered in [2, section 5.2] with respect to the existence of boundary values in $\mathcal{D}'((M_p), L^r)$. Thus for the values of r that we have considered in [2, section 5.2], $f(z) \in H^r$ will have an ultradistributional boundary value. We now obtain a result, like those in [4], in which we show for r=2 that any analytic function $f(z), z \in T^C$, which satisfies (3) with m=0 or q=0 and with r=2 and whose boundary value in $\mathcal{D}'((M_p), L^2)$, which exists by [2, Corollary 5.2.3], is a bounded L^2 function in $\mathcal{D}'((M_p), L^2)$ must be a H^2 function.

Analytic functions 345

THEOREM 4. Let f(z) be analytic in T^C , C being a regular cone, and satisfy

(4)
$$||f(x+iy)||_{L^{2}} \le Ke^{M^{*}(T/|y|)}, y \in C.$$

Let the $\mathcal{D}'((M_p), L^2)$ boundary value of f(z) be a bounded function $h \in \mathcal{D}'((M_p), L^2)$. We have $f(z) \in H^2(T^C)$ and

$$f(z) = \int_{\mathbb{R}^n} h(t)K(z-t)dt = \int_{\mathbb{R}^n} h(t)Q(z;t)dt, \quad z \in T^C.$$

Proof. From [2, Corollary 5.2.3] and its proof we have

(5)
$$f(z) = \int_{\mathbb{R}^n} h(t)K(z-t)dt = \int_{\mathbb{R}^n} g(t)e^{2\pi i\langle z,t\rangle}dt, \quad z \in T^C,$$

where supp $(g) \subseteq C^*$ almost everywhere and $h = \mathcal{F}^{-1}[\tilde{g}]$ with this inverse Fourier transform being an element in $\mathcal{D}'((M_p), L^2)$ [2, (2.52), p. 27]. Now let $w = u + iv \in T^C$ be arbitrary but fixed and consider $K(z+w)f(z), z \in T^C$, where

$$K(z+w) = \int_{C^*} \exp(2\pi i \langle z+w,u\rangle) du.$$

Using [4, Lemma 3.2] we have that K(z+w) is analytic in $z \in T^C$ and

$$|K(z+w)| \le M_v < \infty, \quad z \in T^C,$$

where $M_v > 0$ is a constant that depends only on v = Im(w). Thus K(z+w)f(z) is analytic in $z \in T^C$ and satisfies

$$||K(x+iy+w)f(x+iy)||_{L^{2}} \le KM_{\nu}e^{M^{*}(T/|y|)}, \quad y \in C,$$

with M_v being independent of $z \in T^C$. We have $K(x+iy+w)f(x+iy) \to K(x+w)h(x)$ in $\mathcal{D}'((M_p).L^2)$ as $y \to 0, y \in C$; and $K(x+w)h(x) \in \mathcal{D}'((M_p),L^2)$ since K(x+w) is bounded in $x \in \mathbb{R}^n$. By the proof of [2, Corollary 5.2.3] applied to $K(z+w)f(z), z \in T^C$, we have

(6)
$$K(z+w)f(z) = \int_{\mathbb{R}^n} K(t+w)h(t)K(z-t)dt, z \in T^C,$$

for any fixed $w \in T^C$. Now corresponding to $z = x + iy \in T^C$ choose $w = -x + iy \in T^C$ and obtain

$$K(t+w)K(z-t) = |K(z-t)|^2$$

and

$$K(z+w)=K(2iv).$$

With this choice of $w = -x + iy \in T^C$, (6) becomes

(7)
$$f(z) = \int_{\mathbb{R}^n} h(t)Q(z;t)dt, \quad z \in T^C,$$

where Q(z;t) is the Poisson kernel for $z \in T^C$ and $t \in \mathbb{R}^n$. From (7) and the proof of [4, Lemma 3.5] we have

$$||f(x+iy)||_{L^2} \le ||h||_{L^2} < \infty, y \in C;$$

and
$$f(z) \in H^2(T^C)$$
.

References

- [1] CARMICHAEL, R. D., KAMIŃSKI, A., AND PILIPOVIĆ, S. Cauchy and Poisson integrals of ultradistributions in $\mathcal{D}'(*,L^s)$. Integral Transforms and Special Functions, 17 (2006), 135–139.
- [2] CARMICHAEL, R. D., KAMIŃSKI, A., AND PILIPOVIĆ, S. Boundary Values and Convolution in Ultradistribution Spaces. World Scientific Publishing Co., 2007.
- [3] CARMICHAEL, R. D., AND PILIPOVIĆ, S. The Cauchy and Poisson kernels as ultradifferentiable functions. *Complex Variables Theory Appl.*, 35 (1998), 171–186.
- [4] CARMICHAEL, R. D., AND RICHTERS, S. P. Holomorphic functions in tubes which have distributional boundary values and which are *H*^p functions. *SIAM J. Math. Anal.*, 14 (1983), 596–621.
- [5] STEIN, E. M., AND WEISS, G. *Introduction to Fourier Analysis on Euclidean Spaces*. Princeton University Press, Princeton, N.J., 1971.

AMS Subject Classification: 32A07, 32A10, 32A40, 46F12, 46F20

Richard D. CARMICHAEL
Department of Mathematics, Wake Forest University
Winston-Salem, NC 27109-7388, USA
e-mail: carmicha@wfu.edu

Lavoro pervenuto in redazione il 20.02.2012