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ANALYTIC FUNCTIONS, CAUCHY KERNEL,
AND CAUCHY INTEGRAL IN TUBES

Abstract. Analytic functions in tubes in association with ultradistitional boundary values
are analyzed. Conditions are stated on the analytic fumesatisfying a certain norm growth
which force the functions to be in the Hardy sp&t& Properties of the Cauchy kernel and
Cauchy integral are obtained which extend results obtaprediously by the author and
collaborators.

1. Introduction

The definitions of regular con@ C R" and the corresponding dual co@é of C are
given in [2, Chapter 1] where the notation used in this papeiso contained. The
Cauchy and Poisson kernels corresponding to theTifbe R"+iC ¢ C" witht € R"
are defined by

K(z—t):/ exp(2mi(z—t,u))du, ze TC=R"4iC, teR",

and

_ [K@z=1)]?
- K(2y)

respectively; see [2, Chapter 1]. The sequemdgsp = 0,1,2,..., of positive integers
with conditions(M.1) through(M.3') and the subsequently defined spaces of functions
and ultradistributions of Beurling and Roumieu typ¥x,L%) and 2’ (x,L®), wherex
is either(Mp) of Beurling type o{Mp} of Roumieu type, are given in [2, Chapter 2].
For sequence®l, which satisfy the conditiongM.1) and (M.3'), the Cauchy kernel
K(z—t) € D(x,L5),1 < s< oo, [2, Theorem 4.1.1] as a function b R" for z¢ T¢
whereC is a regular cone ifR"; and the Poisson kern€l(zt) € D(x,L5),1 < s< oo,
[2, Theorem 4.1.2] as a function bk R" for z€ T€. ForU € D/(x,LS) the Cauchy
and Poisson integrals are definedéds ; z) = (U;,K(z—t)) andP(U;z) = (U;,Q(z 1)),
respectively, foz € TC andt € R" for appropriate values of see [2, Chapter 4].

In this paper we extend results in [2] concerning the nornwgiiaof C(U; 2),
U € D'(x,L9), to the values k s< 2. We obtain a new boundary value result for
C(U;z) and obtain a decomposition theoremttbe 2 (x.L%),1 < s< 2. Considering
functions analytic in the tub&C which are known to have ((Mp),L2) boundary
values, we impose conditions on the boundary value whiateftite analytic functions
to be in the Hardy spade?(T°).

Q(zt) z=x+iye T =R"+iC, teR",
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2. Cauchy kernel and integral

Let the sequenchkl,, satisfy(M.1) and(M.3'). ForU € 2/(,L%),1 <s< »,C(U;2)

is an analytic function iT¢ = R" +iC [2, Theorem 4.2.1]; and we have a pointwise
growth estimate o€(U; 2) ([1], [2, Theorem 4.2.2]). We have a norm growth estimate
[2, Theorem 4.2.3] o€(U; 2) for 2 < s < ; we extend this to & s< 2 by obtaining a
norm growth orC(U; z) for these cases. We recall the associated fundfiofp) given
in[2, p. 15].

THEOREM 1. Let C be a regular cone iiR" and let the sequence JVsatisfy
properties(M.1) and(M.3').
LetUe 2'((Mp),L%),1<s<2 Forl/r+1/s=1

(1) IC(U;2) || < Aly| "M T/ Jy| < 1.

If n =1, (1) holds for ye C = (0,) ory € C = (—,0) where A depends onr and s
and T > O s a fixed constant. If & 2, (1) holds for ye C in which case A depends
onyr,s,n, and C; and T> Ois a fixed constant which depends ony. ¥ 12, (1) also
holds for ye C' c C, for any compact subcon€ 6f C, in which case A depends on
C,C',r,s, and n; and T> Ois a fixed constant which depends on C

LetUe 2'({Mp},L%),1<s< 2 and1l/r+1/s=1. If n=1, (1) holds for
yeC=(0,0) orye C=(—»,0) where A depends on r and s and>TO is arbitrary.
If n > 2, (1) holds for ye C in which case A depends oirg,n, and C; and T> 0 is
arbitrary. If n> 2, (1) also holds for y= C' c C, for any compact subconé 6f C, in
which case A depends on@,r,s, and n; and T> Qs arbitrary.

Proof. Both cases fox = (Mp) or x = {Mp} when the dimension = 1 are proved by
analysis similar to that contained in the proof of [2, Theoi®4.2, pp. 126-128]. By
this proof we in fact have fan =1

[C(U;2)||Lr < AW (/)
fory e (0,0) ory € (—,0); but the constanh depends ow in this case. By restricting

ly] <1, (2.1)is obtained in both cases whéris independent of.
We now prove (1) for dimension> 2. Using [2, Theorems 2.3.1 and 2.3.2]

[ee]

(2) C(U;2) = (Ui, K(z—1)) = g (—1)lUF(xy)
|a]=0

where
Fa(y) = [ Ta(DIK(z—t)c
RN

and thefy € L",1/r +1/s= 1, satisfy the properties in [2, Theorems 2.3.1 and 2.3.2].
We note the estimate [3, (3.22)] ®f'K(z—t) which holds forz= x+iy € R"+iC.
In [3, (3.22)] thed > 0 depends oly € C; whereas thid depends o€’ C C if y is
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restricted to compact subcong&sc C. From this estimate [3, (3.22)] and restricting
ly] <1 we have a constafls, depending o®, such that

ID{K(z—1)| < S(C*)F(H)T[_n_‘“‘|a|‘“‘Q§+‘°“|y|—n—\0‘\(5+ X—t[2) "

and recall the other constants in this estimate from [32)3.2Jsing this estimate with
vl <1,

IFa(%,y)| < SCHF (myre ™ol QE 19y =1l (x,y)

where
Fabxy) = [ Ma®](3-+[x—1?) "ot

from which
[Fax,y)| < SCT (M= eljalelQs™*jy n-lelg
x (/an )" (5+ |x—t|2)1/2’/4dt) B
follows using Hélder's inequality. Now using Fubini’s themn

* —N— 1 // —N—
IFa(Y)llr < SCF (e ™19 o Qs Qg ¢ Iy ™1 o

Using this estimate we return to (2) and obtain

ICU:lr < > IFa(xY)Lr
la|=0
< SCHMMT" Qe Y™ S 1ol ®(Qs/ ) Fa
|a|=0
From the proof of Stirling’s formula
lall®l <eap,  jal=1,2,3,...,

and we have the convention that/|®/ = 1 if |a| = 0. Using these facts, the norm
properties offy from [2, Theorems 2.3.1 and 2.3.2] and proceeding as in [Z3[4
and (4.60)] the growth (1) follows whefe = 2eQs/krt for somek > 0 if x = (Mp)
Beurling and for alk > 0 if *x = {Mp} Roumieu. Throughout the analysis the constant
Qs depends og € Cif yis not restricted to compact subco®®s” C. If ye C' C C, the
constanQg, and hence the constamisandT, is not dependent opbut is dependent
on the compact subcoi@ c C. The proof of Theorem 1 is complete. |

In addition to completing th&" norm growth properties for the considered
Cauchy integral for alf, 1 < s < o, Theorem 1 shows that the Cauchy inte@@Jl; z)
studied there is an example of the type of analytic functi@h worm growth that we
study in section 3 below in this paper.
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We make a comment concerning the relation between Theorem PaTheo-
rem5.4.2,p. 126]. Foye C

[y M (T/) < Q" (Ta/Iy)

where the constant Q does not depend/dar T; > T. The estimate obtained in the
proof of [2, Theorem 5.4.2] is entirely correct, and therastie obtained in Theorem 1
is a different one which is more precise.

A The Fourier transform of B! function@will be symbolized by¥ [@(t); X] or by
o(x) with F ~1[g(t);X] denoting the inverse Fourier transform. We have proved

lim (K(x+iy—1),0(X)) = F lc- (u)@u);t], @€ D(x,R"),
y—0,yeC

in D(x,L%),2 < s< o, [2, Theorems 4.2.5 and 4.2.6]; heteis a regular coneC*
is the dual cone, ani¢:(t) is the characteristic function &*. This result is used to
obtain a boundary value result and a decomposition theovebh & 2 (x,L5),2 < s<
o, [2, Corollary 4.2.1 and Theorem 4.2.7]. We extend the abow# property and
subsequent results to< s < 2 for the cases th& = (0,») or C = (—,0) in R or
C =C,isan-rant cone irR" where

Cu={yeR":yy;>0,j=1,...n}, pe{-11}, j=I,..,n

THEOREM2. Let G, be any n-rant cone ifR", and let t; be the characteristic

function of the dual cone C=C,.. Letg D(x,R") where the sequence\atisfies
the propertiesM.1), (M.2), and(M.3'). We have

0.0~ i

in D(x,L%),1<s< 2.

Proof. Since then-rant coneC,,, its dual coneC; = C,, and the corresponding Cauchy
kernel function are products of one-dimensional half lines the one-dimensional

Cauchy kernel function, it is sufficient to prove the resnlbne dimension. We give

an outline of the proof for the case tf@t= (0,«). Forg e D(x,R") we know

F DX 0(); u] = u® 7 [@(x); u].

As noted in [2, p. 14], conditioiM.2) on the sequencil, implies the existence of
constant® andH larger than 1 such that

Mpiq < AHPYIMMq.

Using these facts and integration by parts techniques weegtee following for the
coneC = (0,0) with 1 < s< 2:

(K(x+iy —1),0(x)) € D(,L%), teR' yeC
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/fp(u)e‘ZT‘i‘“due D(x,L5), teR:
0

‘ DY ((K(x+iy —t),@(x)) —/wap(u)e*mt”du) , < Nh"Mq,

a=0,1,2,...,foreveryh> 0, (Mp) Beurling, or for soméa > 0, {Mp} Roumieu, with
N > 0 independent of > 0 anda; and

lim IID?(<K(X+iy—t),<p(X)>—/ Q(u)e”™du)||s =0,
y—0, ye(0,0) 0

a=0,1,2,..., which proves the result. O

As noted above Theorem 2 extends [2, Theorems 4.2.5 and t2t& cases
1 < s< 2 for half line cone€ = (0,%) andC = (—«,0) and for n-rant cone§ = C,,.

The following result extends [2, Corollary 4.2.1] to theead < s< 2 for the
n-rant cone€ = C, considered in Theorem 2.

THEOREM3. LetU e D' (x,L%),1<s< 2, and@pe D(x,R"). Let the sequence
M, satisfy(M.1), (M.2), and (M.3'). We have

lim (C(U;x+iy),0(X)) = <U,/Rn|Cﬁ(u)¢(u)e‘2m<hu>du>.

y—0, yeCy

Proof. Using the change of order of integration formula [2, Theoreth4], Theorem
2, and the continuity df) € 2/ (x,L5) we have

lim (U iy). 000) = lim (UL (KOcHY - ),000)

= <U,/Rn Icﬁ(u)(})(u)e‘zm<t’”>du>.
[l

Now we may obtain a decomposition resultfbe D' (x,L5),1 < s< 2, similar
to that which we have obtained for2s < « in [2, Theorem 4.2.7]. For eadh, we
form

fu(z) = <U’/c* exp(2ru'<z—t,u>)du>, ze T,

and note that there aré' A-tuplesp. As in the proof of [2, Theorem 4.2.7] we use
Theorem 3 here and obtain

V0= Uy [ et dy =3 Im _(fu0criy).o0)
/Gl

m y—0,yeCy

forU € D'(%,L%),1 < s< 2, andp € D(*,R"). This extends [2, Theorem 4.2.7] to
1 <s< 2forn-rant cone€ = C,,.
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3. Analytic functions

Let B denote a proper open subseflf, and letd(y) denote the distance frogne B
to the complement d8 in R". In [2, Chapter 5] we have considered analytic functions
in tubesT® = R" - iB satisfying

(3) [ (x+iy)[|ur < K(L+ (d(y)) ™M T/ yeB,

whereK > 0,T > 0,m > 0, andqg > 0 are all independent ofc B andM*(p) is the
associated function of the sequemégdefined in [2, p. 15].

ForB = C, aregular cone ifR", we have shown in [2, section 5.2] that analytic
functionsf(z),z € TC, which satisfy (3) fom=0 orq= 0 and 1< r < 2, obtain a
boundary valudJ € @’((Mp),Ll) asy — 0,y € C, [2, Theorem 5.2.1]. A converse
result is proved in [2, Theorem 5.2.2]. In this converse Itega can now easily prove
as an additional conclusion that

f(z2) = (U, K(z—t)), zeTC,

using the proof of [2, Theorem 5.2.2]; that is, in [2, TheorBr@.2] we can add as
a conclusion that the analytic functidiiz) constructed there can be recovered as the
Cauchy integral of its boundary value.

Additionally we note that the result[2, Theorem 5.3.1], &edce the results [2,
Theorems 5.3.2 and 5.3.3], can be stated and proved undewttesgeneral hypothesis
that the se€C is any open connected subseffSfwhich is contained in or is any of the
2" n-rantsC, in R". The only sacrifice in the conclusion is that the support ef th
constructed functiog(t) can not be determined under this more general hypothesis.

Let us recall the Hardi" functions in tube3 © = R"+iC, for C being a regular
cone, which have been studied extensively by Stein and \\fgis&n analytic function
f(2),z€ T, is in the Hardy spacll’ = H"(T),r > 0, if

[f(x+iy)llr <A, yeC,

where the constat > 0 is independent of € C. In [4] we showed that if an analytic
functionf(z),z€ TC, has a distributional boundary valueshwhichis aL", 1 <r < oo,
function, the analytic function must be H". Results of this type have applications in
guantum field theory.

The Hardy spaced" are subspaces of the analytic function fnwhich satisfy
(3) form=0 org= 0, which are the analytic functions we considered in [2,iead.2]
with respect to the existence of boundary value®iq(M;),L"). Thus for the values of
r that we have considered in [2, section 58]) € H" will have an ultradistributional
boundary value. We now obtain a result, like those in [4], iak we show for = 2
that any analytic functioi(z),z € T€, which satisfies (3) witin= 0 org = 0 and with
r = 2 and whose boundary value 4 ((Mp), L?), which exists by [2, Corollary 5.2.3],
is a bounded.? function in 2’ (M), L?) must be &H? function.
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THEOREM4. Let f(z) be analytic in F, C being a regular cone, and satisfy
(4) | f(x+iy)|[ 2 < KM T/ yec.

Let the?’((Mp),L?) boundary value of (z) be a bounded function& 2/ ((Mp),L?).
We have {z) ¢ H?(T) and

f(z) = Rnh(t)K(z—t)dt: Rnh(t)Q(z;t)dt, ze TS,

Proof. From [2, Corollary 5.2.3] and its proof we have

(5) f(z) = Rnh(t)K(z—t)dt: Rng(t)ezmmdt, ze T,

where supfg) C C* almost everywhere arfo= # ~1[g] with this inverse Fourier trans-
form being an element i’ (Mp),L?) [2, (2.52), p. 27]. Now letv=u+iv € T be
arbitrary but fixed and consid&(z+w)f(z),z< T, where

K(z+w) = /c exp(2ri (z+w, uy)du.

Using [4, Lemma 3.2] we have thKi(z+ w) is analytic inz€ T¢ and
IK(z+w)| <My <o, zeTC,

whereM, > 0 is a constant that depends only wa- Im(w). ThusK(z+w)f(2) is
analytic inz e T€ and satisfies

K (X4 iy 4 w) f (x+iy)]| 2 < KM T/M - yec,

with My being independent afc T€. We haveK (x+iy +w) f (x+iy) — K(x4w)h(x)
in 2/((Mp).L?) asy — 0,y € C; andK (x+w)h(x) € 2/((Mp),L?) sinceK (x+w) is
bounded ir € R". By the proof of [2, Corollary 5.2.3] applied #(z+w)f (z),z€ TS,
we have

(6) K(z+w)f(z) = . K(t+w)h(t)K(z—t)dt,ze TC,

for any fixedw € TC. Now corresponding ta= x+iy € T¢ choosev = —x+iy € T¢
and obtain
K(t+w)K(z—t) = |K(z—1)[?

and
K(z+w) = K(2iy).

With this choice ofw = —x+ iy € TC, (6) becomes

7) f(2) = Rnh(t)Q(z;t)dt, zeTC,
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whereQ(zt) is the Poisson kernel fare TC andt € R". From (7) and the proof of [4,
Lemma 3.5] we have

[ f(x+iy)lliz <[[hlj 2 <o, yeC;

andf(z) € H?(TC). O
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