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NOTES ON THE OPEN DOOR LEMMA

Abstract. Applying the open door function which maps the open unit disk U onto a slit
domain, a certain method of the proof involving a special differential subordination which is
referred to as the open door lemma was discussed by some mathematicians. In the present
paper, by discussing a certain univalent function in U which maps U onto a slit domain, a
new open door lemma is discussed.

1. Introduction

Let H denote the class of functions p(z) which are analytic in the open unit disk U={
z ∈ C : |z| < 1

}
. For a positive integer n and a complex number c, let H [c,n] be the

class of functions p(z) ∈H of the form

p(z) = c+
∞

∑
k=n

ckzk.

Let p(z) and q(z) be members of the class H . Then the function p(z) is said to be
subordinate to q(z) in U, written by

(1.1) p(z)≺ q(z) (z ∈ U),

if there exists a function w(z) ∈ H with w(0) = 0, |w(z)|< 1 (z ∈ U), and such that
p(z) = q

(
w(z)

)
(z ∈ U). From the definition of the subordinations, it is easy to show

that the subordination (1.1) implies that

(1.2) p(0) = q(0) and p(U)⊂ q(U).

In particular, if q(z) is univalent in U, then we see that the subordination (1.1) is equiv-
alent to the condition (1.2) by considering the function

w(z) = q−1
(
p(z)

)
(z ∈ U).

For 0< r0 ! 1, we let

Ur0 =
{
z ∈ C : |z|< r0

}
, ∂Ur0 =

{
z ∈ C : |z|= r0

}

and Ur0 = Ur0 ∪∂Ur0 . In particular, we write U1 = U.
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Miller and Mocanu [1] derived some lemma which is related to the subordina-
tion of two functions as follows.

LEMMA 1.1 Let p(z) ∈ H [c,n] with p(z) &≡ c. Also, let q(z) be analytic and
univalent on the closed unit disk U except for at most one pole on ∂U with q(0) = c. If
p(z) is not subordinate to q(z) in U, then there exist two points z0 ∈ ∂Ur with 0< r< 1
and ζ0 ∈ ∂U, and a real number k with k " n for which p(Ur)⊂ q(U),

(i) p(z0) = q(ζ0)

and
(ii) z0p′(z0) = kζ0q′(ζ0)

Applying Lemma 1.1, Miller and Mocanu [2] discussed some lemma which is
referred to as the open door lemma. By using a certain method which was discussed
by Miller and Mocanu [2], we consider the sharp result for the open door lemma.

LEMMA 1.2 Let c be a complex number with Rec> 0. Also, let P(z) ∈H [c,n],
and suppose that

(1.3) P(U)⊂ C\
{
!+c,n∪ !−c,n

}
,

where

(1.4) !+c,n =

{

w ∈ C : Rew= 0 and Imw"
n
Rec

(

|c|
√
2Rec
n

+1− Imc

)}

and

(1.5) !−c,n =

{

w ∈ C : Rew= 0 and Imw!−
n
Rec

(

|c|
√
2Rec
n

+1+ Imc

)}

.

If p(z) ∈H [ 1c ,n] satisfies the following differential equation

(1.6) zp′(z)+P(z)p(z) = 1 (z ∈ U),

then Re p(z)> 0 (z ∈ U).

Proof. If we define the function q(z) by

q(z) =
1
c +

1
c z

1− z
(z ∈ U),

then q(z) is analytic and univalent in U with q(0) = 1
c , and q(U) =

{
w ∈ C : Rew >

0
}
. In addition, we remark that lim

z→1
q(z) = ∞ and Req(ζ) = 0 (ζ ∈ ∂U\{1}). If we
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assume that p(z) is not subordinate to q(z) in U, then by Lemma 1.1, there exist two
points z0 ∈U and ζ0 ∈ ∂U\{1}, and a real number k with k" n such that p(z0) = q(ζ0)
and z0p′(z0) = kζ0q′(ζ0). We now put si= q(ζ0), where s is real number. Then since

ζ0 =−
c− |c|2q(ζ0)
c+ |c|2q(ζ0)

=−
c− |c|2si
c+ |c|2si

,

we have

kζ0q′(ζ0) =−
k
∣∣c+ |c|2si

∣∣2

2|c|2Rec
!−

n
∣∣c+ |c|2si

∣∣2

2|c|2Rec
< 0.

Therefore, we find that

p(z0) = si and z0p′(z0) = t,

where s and t are real numbers with

(1.7) t !−
n
∣∣c+ |c|2si

∣∣2

2|c|2Rec
=−

n
2Rec

(
1+2s Imc+ |c|2s2

)
< 0.

If we take z= z0 in the equality (1.6), then

z0p′(z0)+P(z0)p(z0) =
{
t− s ImP(z0)

}
+ i
{
sReP(z0)

}
= 1,

which implies that

t− s ImP(z0) = 1 and sReP(z0) = 0.

Since t < 0, it is easy to see that s &= 0. Thus, we obtain

(1.8) ReP(z0) = 0 and ImP(z0) =
t−1
s

.

It follows from (1.7) and (1.8) that

ImP(z0)






!−
nImc
Rec

+
1

2Rec
F(s) (s> 0)

"−
nImc
Rec

+
1

2Rec
F(s) (s< 0),

where
F(s) =−

2Rec+n+n|c|2s2

s
.

By observing the fluctuation of F(s), we obtain that

max
s>0

F(s) = F

(
1
|c|

√
2Rec
n

+1

)

=−2n|c|
√
2Rec
n

+1
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and

min
s<0

F(s) = F

(

−
1
|c|

√
2Rec
n

+1

)

= 2n|c|
√
2Rec
n

+1.

From the above-mentioned calculations, we conclude that

ReP(z0) = 0 and ImP(z0)






!−
nImc
Rec

−
n|c|
Rec

√
2Rec
n

+1 (s> 0)

"−
nImc
Rec

+
n|c|
Rec

√
2Rec
n

+1 (s< 0),

which means that P(z0) &∈C\
{
!+c,n∪ !−c,n

}
. This contradicts the assumption, and hence

we must have p(z)≺ q(z) (z ∈ U), which implies that Re p(z)> 0 (z ∈ U).

REMARK 1.3 In the open door lemma, Miller and Mocanu [1] assumed that
P(U)⊂ C\!c,n, where

!c,n =

{

w ∈ C : Rew= 0 and |Imw|"
n
Rec

(

|c|
√
2Rec
n

+1+ Imc

)}

.

In Lemma 1.2, we supposed that P(U) belongs to the slit domainC\
{
!+c,n∪!−c,n

}
which

is not symmetric with respect to the real axis.

We next introduce a certain univalent function R(z) in U such that R(U) =
C\
{
!+c,n∪ !−c,n

}
.

REMARK 1.4 Let b be a complex number with |b|< 1 such that

(1.9)
n|c|
Rec

√
2Rec
n

+1
2b

1−b2
−
n Imc
Rec

i= c.

If we set
R1(z) =

b− z
1−bz

(z ∈ U),

R2(z) =
n|c|
Rec

√
2Rec
n

+1
2z

1− z2
(z ∈ U)

and
R3(w) = w−

nImc
Rec

i
(
w ∈ R2(U)

)
,

then the function R(z) defined by

(1.10) R(z) =
(
R3 ◦R2 ◦R1

)
(z)
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=
2n|c|
Rec

√
2Rec
n

+1
(b− z)(1−bz)

(1−bz)2− (b− z)2
−
n Imc
Rec

i (z ∈ U)

is analytic and univalent in U with R(0) = c. Moreover, since R2(z) maps U onto the
complex plane w with slits along the half-lines

|Imw|"
n|c|
Rec

√
2Rec
n

+1,

we easily see that R(U) = C\
{
!+c,n ∪ !−c,n

}
. The function R(z) defined by (1.10) is

called the open door function (cf. [2]).
REMARK 1.5 Let us consider the complex number b with |b| < 1 and the rela-

tion (1.9). From the relation (1.9), we have

(1.11) b2+
4c
|c|

√
2Rec
n +1

c2
|c|2
( 2Rec

n +1
)
−1

b−1= 0.

Noting that



2c
|c|

√
2Rec
n +1

c2
|c|2
( 2Rec

n +1
)
−1





2

+1=




c2
|c|2
( 2Rec

n +1
)
+1

c2
|c|2
( 2Rec

n +1
)
−1




2

,

it follows from the relation (1.11) that b= b+,b−, where

b+ =
− 2c

|c|

√
2Rec
n +1+

{
c2
|c|2
( 2Rec

n +1
)
+1
}

c2
|c|2
( 2Rec

n +1
)
−1

=

c
|c|

√
2Rec
n +1−1

c
|c|

√
2Rec
n +1+1

and

b− =
− 2c

|c|

√
2Rec
n +1−

{
c2
|c|2
( 2Rec

n +1
)
+1
}

c2
|c|2
( 2Rec

n +1
)
−1

=−
c
|c|

√
2Rec
n +1+1

c
|c|

√
2Rec
n +1−1

.

Since
∣∣∣∣∣
c
|c|

√
2Rec
n

+1+1

∣∣∣∣∣

2

−

∣∣∣∣∣
c
|c|

√
2Rec
n

+1−1

∣∣∣∣∣

2

=
4Rec
|c|

√
2Rec
n

+1> 0,

we find that

|b+|=
1

|b−|
=

∣∣∣∣∣∣

c
|c|

√
2Rec
n +1−1

c
|c|

√
2Rec
n +1+1

∣∣∣∣∣∣
< 1.

Therefore, we see that

(1.12) b= 1−
2

c
|c|

√
2Rec
n +1+1

(0< |b|< 1).
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In particular, if c> 0 in the equality (1.12), we obtain

b= 1−
2√

2c
n +1+1

=

n
(√

2c
n +1−1

)2

2c
(0< b< 1).

Since the open door function R(z) given in (1.10) is univalent in U, we find that
the assumption (1.3) in Lemma 1.2 is equivalent to the subordination

(1.13) P(z)≺ R(z) (z ∈ U)

from the definition of the subordinations. Also, it is easy to see that

Re p(z)> 0 (z ∈ U) if and only if p(z)≺
1
c +

1
c z

1− z
(z ∈ U)

for p(z) ∈ H [ 1c ,n]. Hence by Lemma 1.2, we derive the open door lemma concerned
with the subordinations bellow.

LEMMA 1.6 Let c be a complex number with Rec > 0, and let P(z) ∈ H [c,n]
satisfy the subordination (1.13). If p(z) ∈ H [ 1c ,n] satisfies the differential equation
(1.6), then

p(z)≺
1
c +

1
c z

1− z
(z ∈ U).

2. Notes on new open door function

Since the open door function R(z) given in (1.10) is complicated, we will provide a
simpler version of the open door function by using another method.

In order to discuss our problem, we first notice the differential equation

(2.1) zp′(z)+P(z)p(z) = 1 (z ∈ U).

It follows from the equation (2.1) that

P(z) =
1
p(z)

−
zp′(z)
p(z)

(z ∈ U).

Hence, the subordination relation in Lemma 1.6 can be written as follows:

1
p(z)

−
zp′(z)
p(z)

≺ R(z) (z ∈ U) implies p(z)≺
1
c +

1
c z

1− z
(z ∈ U)
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for p(z) ∈ [ 1c ,n], where R(z) is the open door function given in (1.10). We now set

q(z) =
1
c +

1
c z

1− z
(z ∈ U).

From the theory of the differential subordinations (cf. [1]), we see that p(z) ∈ [ 1c ,n]
satisfies the following implication:

1
p(z)

−
zp′(z)
p(z)

≺
1
q(z)

−
nzq′(z)
q(z)

(z ∈ U) implies p(z)≺ q(z) (z ∈ U).

Then, a simple calculation yields to

1
q(z)

−
nzq′(z)
q(z)

=
1− z
1
c +

1
c z

−n
(
−

1
1+ c

c z
+

1
1− z

)

=−c−
n

1− z
+
2Rec+n
1+ c

c z
(z ∈ U).

From the above facts, we expect that the function Rc,n(z) defined by

(2.2) Rc,n(z) =−c−
n
1− z

+
2Rec+n
1+ c

c z
(z ∈ U)

is a new open door function.

We discussed some properties for the function Rc,n(z) defined by (2.2) as follows.

THEOREM 2.1 Let n be a positive integer, and let c be a complex number with
Rec> 0. Then the function Rc,n(z) defined by (2.2) is analytic and univalent in U with
Rc,n(0) = c.
In addition, the function Rc,n(z) maps U onto the complex plane with the slits along the
half-lines !+c,n and !−c,n, where !+c,n and !−c,n are defined by (1.4) and (1.5) respectively.

Proof. It is easy to see that Rc,n(z) is analytic in U with Rc,n(0) = c. Thus, we first
show that Rc,n(z) is univalent in U. For z1,z2 ∈ U with z1 &= z2, we calculate that

Rc,n(z1)−Rc,n(z2)=
(
−c+2Rec

c− (c+n)z1
(1− z1)(c+ cz1)

)
−
(
−c+2Rec

c− (c+n)z2
(1− z2)(c+ cz2)

)

=
2Rec

{(
c− (c+n)z1

)
(c+ cz2)(1− z2)−

(
c− (c+n)z2

)
(c+ cz1)(1− z1)

}

(1− z1)(c+ cz1)(1− z2)(c+ cz2)

=
2Rec(z2− z1)

{
|c|2+nc− |c|2(z1+ z2)+(|c|2+nc)z1z2

}

(1− z1)(c+ cz1)(1− z2)(c+ cz2)
.
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We now suppose that

(2.3) |c|2+nc− |c|2(z1+ z2)+(|c|2+nc)z1z2 = 0 (z1,z2 ∈ U).

Then, it follows from the equality (2.3) that

|z1|=
∣∣∣∣
|c|2+nc− |c|2z2
|c|2− (|c|2+nc)z2

∣∣∣∣< 1,

which implies that
(∣∣|c|2+nc

∣∣2− |c|4
)
|z2|2 >

∣∣|c|2+nc
∣∣2− |c|4.

Since ∣∣|c|2+nc
∣∣2− |c|4 = n|c|2

(
2Rec+n

)
> 0,

we find that |z2|> 1. This contradicts the fact z2 ∈ U, and hence we must have

|c|2+nc− |c|2(z1+ z2)+(|c|2+nc)z1z2 &= 0 (z1,z2 ∈ U).

Therefore, we conclude that

Rc,n(z1)−Rc,n(z2) =
2Rec(z2− z1)

{
|c|2+nc− |c|2(z1+ z2)+(|c|2+nc)z1z2

}

(1− z1)(c+ cz1)(1− z2)(c+ cz2)
&= 0

for z1,z2 ∈ U with z1 &= z2, which proves that Rc,n(z) is univalent in U.

We next consider the image of U by the function Rc,n(z). Letting

z= eiθ (0! θ< 2π) and c= |c|eiϕ
(
|ϕ|<

π
2

)
,

we obtain

Rc,n(eiθ) =−c−
n

1− eiθ
+
2Rec+n
1+ e2iϕeiθ

=−
(
Rec− i Imc

)
−n
(
1
2
+
i
2
cot

θ
2

)
+
(
2Rec+n

){ 1
2
−
i
2
tan
(
θ
2
+ϕ

)}

= i
[
Imc−

n
2

{(
2Rec
n

+1
)
tan
(
θ
2
+ϕ

)
+ cot

θ
2

}]
.

Therefore, we have





ReRc,n(eiθ) = 0

ImRc,n(eiθ) = Imc−
n
2

{(
2Rec
n

+1
)
tan
(
θ
2
+ϕ

)
+ cot

θ
2

}
.
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Here, we observe the fluctuation of ImRc,n(eiθ) for 0< θ< 2π (θ &= π−2ϕ). If we let

F(θ) = Imc−
n
2

{(
2Rec
n

+1
)
tan
(
θ
2
+ϕ

)
+ cot

θ
2

}
,

then, a simple calculation yields that

(2.4) F ′(θ) =−
n
2






(
2Rec
n

+1
)

1

2cos2
(
θ
2
+ϕ

) −
1

2sin2
θ
2






=
n

4cos2
(
θ
2
+ϕ

)






cos2
(
θ
2
+ϕ

)

sin2
θ
2

−
(
2Rec
n

+1
)





=
n

4cos2
(
θ
2
+ϕ

)
{(

cosϕcot
θ
2
− sinϕ

)2
−
(
2Rec
n

+1
)}

=
n

4cos2
(
θ
2
+ϕ

)
{(

Rec
|c|

cot
θ
2
−
Imc
|c|

)2
−
(
2Rec
n

+1
)}

,

where θ &= 0,π−2ϕ. Thus, we see that F ′(θ) = 0 for θ= θ1,θ2, where

θ1 = 2cot−1
(
Imc
Rec

+
|c|
Rec

√
2Rec
n

+1

)

and

θ2 = 2cot−1
(
Imc
Rec

−
|c|
Rec

√
2Rec
n

+1

)

.

Then since

Imc
Rec

−
|c|
Rec

√
2Rec
n

+1 <
Imc
Rec

<
Imc
Rec

+
|c|
Rec

√
2Rec
n

+1

and
2cot−1

Imc
Rec

= π−2ϕ,

a simple check gives us that

0< θ1 < π−2ϕ< θ2 < 2π.
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Moreover, it is easy to see that F ′(θ) is positive for 0 < θ < θ1 and θ2 < θ < 2π, and
F ′(θ) is negative for θ1 < θ< θ2 (θ &= π−2ϕ). Also, it follows from (2.4) that

lim
θ→+0

F(θ) = lim
θ→ψ−0

F(θ) =−∞

and
lim

θ→ψ+0
F(θ) = lim

θ→2π−0
F(θ) = +∞,

where ψ= π−2ϕ.

Noting that

cot
θ1
2

=
Imc
Rec

+
|c|
Rec

√
2Rec
n

+1 and cot
θ2
2

=
Imc
Rec

−
|c|
Rec

√
2Rec
n

+1,

we find that

F(θ1) = Imc−
n
2






(
2Rec
n

+1
)



Imc
Rec

+
|c|2

(Rec)2
1

cot
θ1
2

−
Imc
Rec



+ cot
θ1
2






=−
n
Rec

(

|c|
√
2Rec
n

+1+ Imc

)

< 0

and

F(θ2) = Imc−
n
2






(
2Rec
n

+1
)



Imc
Rec

+
|c|2

(Rec)2
1

cot
θ2
2

−
Imc
Rec



+ cot
θ2
2






=
n
Rec

(

|c|
√
2Rec
n

+1− Imc

)

> 0.

Therefore, we conclude that Rc,n(z) maps U onto the complex plane with the
slits along the half-lines !+c,n and !−c,n, where !+c,n and !−c,n are defined by (1.4) and (1.5)
respectively.

This completes the proof of the assertions of Theorem 2.1.

EXAMPLE 2.2 Taking n= 1 and c= 1+ i, we have

R1+i,1(z) =−1+ i−
1

1− z
+

3
1+ i z

(z ∈ U).
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The function R1+i,1(z)mapsU onto the complex plane with the slits along the half-lines
!+1+i,1 and !

−
1+i,1, where

!+1+i,1 =
{
w ∈ C : Rew= 0 and Imw"

√
6−1

}

and
!−1+i,1 =

{
w ∈ C : Rew= 0 and Imw!−

(√
6+1

)}
.

REMARK 2.3 By Remark 1.4 and Theorem 2.1, we find that

R(0) = Rc,n(0) and R(U) = Rc,n(U),

where R(z) and Rc,n(z) are given in (1.10) and (2.2) respectively. Hence, the open door
function R(z) can be also defined in terms of the function Rc,n(z).

Applying the new open door function Rc,n(z) defined by (2.2) in Lemma 1.2,
we obtain the simpler following version of the open door lemma as follows.

THEOREM 2.4 Let c be a complex number with Rec> 0, and let P(z) ∈H [c,n]
satisfy

P(z)≺−c−
n
1− z

+
2Rec+n
1+ c

c z
(z ∈ U).

If p(z) ∈H [ 1c ,n] satisfies the differential equation (2.1), then

p(z)≺
1
c +

1
c z

1− z
(z ∈ U),

which means that Re p(z)> 0 (z ∈ U).

For two open door functions R(z) and Rc,n(z), it is difficult to find that

(2.5) R(z) = Rc,n(z) (z ∈ U)

by the calculation, because R(z) given in (1.10) is complicated. But, if we consider the
special case n= 1 and c= 4, then since b= 1

2 in the equality (1.12), we see that

R(z) =
6
( 1
2 − z

)(
1− 1

2 z
)

(
1− 1

2 z
)2−

( 1
2 − z

)2 =
2(1−2z)(2− z)

1− z2
(z ∈ U).

On the other hand, we find that

R4,1(z) =−4−
1
1− z

+
9
1+ z

=
2(1−2z)(2− z)

1− z2
(z ∈ U).

Thus, we can observe the equality (2.5) for n= 1 and c= 4 from this calculation.
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