Rend. Sem. Mat. Univ. Politec. Torino Vol. 71, 2 (2013), 219 – 226

Yu. Gliklikh* and N. Vinokurova

ON THE NEWTON-NELSON TYPE EQUATIONS ON VECTOR BUNDLES WITH CONNECTIONS

Abstract. An equation of Newton-Nelson type on the total space of vector bundle with a connection, whose right-hand side is generated by the curvature form, is described and investigated. An existence of solution theorem is obtained.

Introduction

In [5] (see also [6]) a certain second order differential equation on the total space of vector bundle with a connection was constructed and investigated. In some cases it was interpreted as an equation of motion of a classical particle in the classical gauge field. The form of this equation allowed one to apply the quantization procedure in the language of Nelson's Stochastic Mechanics (see, e.g., [8, 9]). In [7] this procedure was realized for the vector bundles over Lorentz manifolds with complex fibers. The corresponding relativistic-type Newton-Nelson equation (the equation of motion in Stochastic Mechanics) was constructed and the existence of its solutions under some natural conditions was proved. The results of [7] were interpreted as the description of motion of a quantum particle in the gauge field.

In this paper we consider the analogous non-relativistic Newton-Nelson equation in the situation where the base of the bundle is a Riemannian manifold and the fiber is a real linear space. In this case some deeper results are obtained under some less restrictive conditions with respect to the case of [7].

We refer the reader to [2, 6] for the main facts of the geometry of manifolds and to [4, 6] for general facts of Stochastic Analysis on Manifolds.

1. Necessary facts from the Geometry of Manifolds

Recall that for every bundle *E* over a manifold *M*, in each tangent space $T_{(m,x)}E$ to the total space *E* there is a special sub-space $V_{(m,x)}$, called *vertical*, that consists of the vectors tangent to the fiber E_m (called also vertical). In the case of principal or vector bundle, a connection H on *E* is a collection of sub-spaces in tangent spaces to *E* such that $T_{(m,x)}E = H_{(m,x)} \oplus V_{(m,x)}$ at each $(m,x) \in E$ and this collection possesses some properties of smoothness and invariance (see, e.g., [6]).

Denote by \mathcal{M} a Riemannian manifold with metric tensor $g(\cdot, \cdot)$. Let $\Pi : \mathcal{E} \to \mathcal{M}$ be a principal bundle over \mathcal{M} with a structure group G. By \mathfrak{g} we denote the Lie algebra of G. Let a connection H with connection form θ and curvature form $\Phi = D\theta$ be given

^{*}The research is supported in part by the RFBR Grants 10-01-00143 and 12-01-00183

on \mathcal{E} . Here *D* is the covariant differential (see, e.g., [2]). Recall that the 1-form θ and the 2-form Φ are equivariant and take values in the algebra \mathfrak{g} of *G* and that Φ is horizontal (equals zero on vertical vectors).

We suppose G to be a subgroup of $GL(k,\mathbb{R})$ for a certain k. Let \mathcal{F} be a k-dimensional real vector space, on which G acts from the left, and let on \mathcal{F} an inner product $h(\cdot, \cdot)$, invariant with respect to the action of G, be given. We suppose that a mapping $e: \mathcal{F} \to \mathfrak{g}^*$ (where \mathfrak{g}^* is the co-algebra) having constant values on the orbits of G, is given. This mapping is called *charge*.

Consider the vector bundle $\pi : Q \to \mathcal{M}$ with standard fiber \mathcal{F} , associated to \mathcal{E} . We denote by Q_m the fiber at $m \in \mathcal{M}$. Consider the factorization $\lambda : \mathcal{E} \times \mathcal{F} \to Q$ that yields the bundle Q (see [2]). The tangent mapping $T\lambda$ translates the connection H from the tangent spaces to \mathcal{E} to tangent spaces to Q. This connection on Q is denoted by H^{π} . Recall that the spaces of connection are the kernels of operator $K^{\pi} : TQ \to Q$ called *connector*, that is constructed as follows. Consider the natural expansion of the tangent vector $X \in T_{(m,q)}Q$ at $(m,q) \in Q$ into horizontal and vertical components X = HX + VX, where $HX \in H^{\pi}_{(m,q)}$ and $VX \in V_{(m,q)}$. Introduce the operator $\mathbf{p} : V_{(m,q)} \to Q_m$, the natural isomorphism of the linear tangent space $V_{(m,q)} = T_q Q_m$ to the fiber Q_m of Q onto the fiber (linear space) Q_m . Then $K^{\pi}X = \mathbf{p}VX$.

On the manifold Q (the total space of bundle) we construct the Riemannian metric g^Q as follows: in the horizontal subspaces H^{π} we introduce it as the pull-back $T\pi^*g$, in the vertical subspaces V – as h and define that H^{π} are V orthogonal to each other.

We denote the projection of tangent bundle $T\mathcal{M}$ to \mathcal{M} by $\tau : T\mathcal{M} \to \mathcal{M}$ and by H^{τ} the Levi-Civita connection of metric g on \mathcal{M} . Its connector is denoted by K^{τ} : $T^2\mathcal{M} \to T\mathcal{M}$. The construction of K^{τ} is quite analogous to that of K^{π} where Q is replaced by $T\mathcal{M}$ and TQ by $T^2\mathcal{M} = TT\mathcal{M}$.

Recall the standard construction of a connection on the total space of bundle Q, based on the connections H^{π} and H^{τ} (see, e.g., [3, 6]). The connector $K^Q : T^2Q \to TQ$ of this connection has the form: $K^Q = K^H + K^V$ where $K^H : T^2Q \to \mathsf{H}^{\pi}$ and $K^V : T^2Q \to \mathsf{V}$, and the latter connectors are introduced as: $K^H = T\pi^{-1} \circ K^{\tau} \circ T^2\pi$ where $T^2\pi = T(T\pi) : T^2Q \to T^2\mathcal{M}$ and $T\pi^{-1}$ is the linear isomorphism of tangent spaces to \mathcal{M} onto the spaces of connection $\mathsf{H}^{\pi}; K^V = \mathbf{p}^{-1} \circ K^{\pi} \circ TK^{\pi}$.

Recall that λ is a one-to-one mapping of the standard fiber \mathcal{F} onto the fibers of bundle Q, hence the charge e is well-defined on the entire Q. Since $T\lambda$ is also a one-to-one mapping of the connections and Φ is equivariant, we can introduce the differential form $\tilde{\Phi}$ on Q with values in \mathfrak{g} as follows. Consider $(m,q) = \lambda((m,p), f)$ for $(m,p) \in \mathcal{E}$ and $f \in \mathcal{F}$. For $X, Y \in T_{(m,q)}Q$ we denote by HX and HY their horizontal components. Then we define $\tilde{\Phi}_{(m,q)}(X,Y) = \Phi_{(m,p)}(T\lambda^{-1}\mathsf{H}X, T\lambda^{-1}\mathsf{H}Y)$.

Denote by • the coupling of elements of g and g*.Consider the vector ((m,q),X) tangent to Q at (m,q). It is clear that $e((m,q)) \bullet \tilde{\Phi}_{(m,q)}(\cdot,X)$ is an ordinary 1-form (i.e., differential form with values in real line). Denote by $\overline{e((m,q))} \bullet \tilde{\Phi}_{(m,q)}(\cdot,X)$ the tangent vector to the total space of Q physically equivalent to the form $e((m,q)) \bullet \tilde{\Phi}_{(m,q)}(\cdot,X)$ (i.e., obtained by lifting the indices with the use of Riemannian metric g^Q).

On the Newton-Nelson type equations on vector bundles with connections

LEMMA 1 ([5]). The vector field $e((m,q)) \bullet \tilde{\Phi}_{(m,q)}(\cdot,X)$ is horizontal, i.e., it belongs to the spaces of connection H^{π} .

THEOREM 1 ([7]). Let (m(t),q(t)) be a smooth curve in Q. Let X(t) be the parallel translation of the vector $X \in T_{(m(t_0),q(t_0))}Q$ along (m(t),q(t)) with respect to H^Q . (i) Both the horizontal HX(t) and vertical VX(t) components of X(t) are parallel along (m(t),q(t)) with respect to H^Q . (ii) The parallel translation of horizontal vectors preserves constant the norms and scalar products with respect to g^Q . (iii) The vector field $T\pi X(t)$ is parallel along m(t) on \mathcal{M} with respect to H^{τ} .

2. Mean derivatives on manifolds and vector bundles

Consider a stochastic process $\xi(t)$ with values in \mathcal{M} , given on a certain probability space $(\Omega, \mathfrak{F}, \mathsf{P})$. By \mathfrak{N}_t^{ξ} we denote the minimal σ -sub-algebra of σ -algebra \mathfrak{F} generated by the pre-images of Borel sets in \mathcal{M} under the mapping $\xi(t) : \Omega \to \mathcal{M}$ (the "present" or "now" of $\xi(t)$) and by $E(\cdot | \mathfrak{N}_t^{\xi})$ the conditional expectation with respect to \mathfrak{N}_t^{ξ} . Recall that the conditional expectation of a random element ϑ with respect to \mathfrak{N}_t^{ξ} can be represented as $\Theta(\xi(t))$ where Θ is the so-called *regression* introduced by the formula $\Theta(m) = E(\theta | \xi(t) = m)$ (see, e.g., [10]).

Specify a point in \mathcal{M} and consider the normal chart U_m at this point with respect to the exponential mapping of Levi-Civita connection on \mathcal{M} . In U_m construct the following regressions

(1)
$$Y^{U_m}(t,m') = \lim_{\Delta t \downarrow 0} E\left(\frac{\xi(t+\Delta t) - \xi(t)}{\Delta t} \mid \xi(t) = m'\right)$$

(2)
$$\underset{*}{\overset{U_m}{}}(t,m') = \lim_{\Delta t \downarrow 0} E\left(\frac{\xi(t) - \xi(t - \Delta t)}{\Delta t} \mid \xi(t) = m'\right)$$

Introduce $X^0(t,m) = Y^{U_m}(t,m)$ and $X^0_*(t,m) = Y^{U_m}_*(t,m)$. Note that $X^0(t,m)$ and $X^0_*(t,m)$ are vector fields on \mathcal{M} , i.e., under the coordinate changes they transform like cross-sections of the tangent bundle $T\mathcal{M}$.

Forward and backward mean derivatives of $\xi(t)$ are defined by the formulae $D\xi(t) = X^0(t,\xi(t))$ and $D_*\xi(t) = X^0_*(t,\xi(t))$.

The vector $v^{\xi}(t) = \frac{1}{2}(D+D_*)\xi(t)$ is called the *current velocity* of $\xi(t)$. From the properties of conditional expectation it follows that there exists a Borel measurable vector field (regression) $v^{\xi}(t,m)$ on \mathcal{M} such that $v^{\xi}(t) = v^{\xi}(t,\xi(t))$.

Introduce the increment $\Delta \xi(t)$ of process $\xi(t)$: $\Delta \xi(t) = \xi(t + \Delta t) - \xi(t)$ and the so called quadratic mean derivative D_2 (see [1, 6]) $D_2\xi(t) = \lim_{\Delta t \downarrow 0} E(\frac{\Delta \xi(t) \otimes \Delta \xi(t)}{\Delta t} | \mathfrak{N}_t^{\xi})$. If

 $D_2\xi(t)$ exists, it takes values in (2,0)-tensors.

Everywhere below we are dealing with processes, along which the parallel translation with respect to an appropriate connection is well-posed. Here we use $\xi(\cdot)$ and parallel translation with respect to the connection H^{τ} and such an assumption is

true, for example, if $\xi(t)$ is an Itô process on \mathcal{M} , i.e., an Itô development of an Itô process in a certain tangent space to \mathcal{M} as it is defined in [6]. Denote by $\Gamma_{t,s}$ the operator of such parallel translation along $\xi(\cdot)$ of tangent vectors from the (random) point $\xi(s)$ of the process to the (random) point $\xi(t)$.

For a vector field Z(t,m) on \mathcal{M} the covariant forward and backward mean derivatives $\mathbf{D}Z(t,\xi(t))$ and $\mathbf{D}_*Z(t,\xi(t))$ are constructed by the formulae

(3)
$$\mathbf{D}Z(t,\xi(t)) = \lim_{\Delta t \downarrow 0} E\left(\frac{\Gamma_{t,t+\Delta t}Z(t+\Delta t,\xi(t+\Delta t)) - Z(t,\xi(t))}{\Delta t} \mid \mathfrak{N}_t^{\xi}\right);$$

(4)
$$\mathbf{D}_*Z(t,\xi(t)) = \lim_{\Delta t \downarrow 0} E_t^{\xi} \left(\frac{Z(t,\xi(t)) - \Gamma_{t,t-\Delta t}Z(t-\Delta t,\xi(t-\Delta t))}{\Delta t} \mid \mathfrak{N}_t^{\xi} \right).$$

From formulae (1), (2), (3) and (4) it evidently follows that $T\pi \mathbf{D}Z(t,\xi(t)) = D\xi(t)$ and $T\pi \mathbf{D}_*Z(t,\xi(t)) = D_*\xi(t)$.

Now consider a stochastic process $\eta(t)$ in the total space of bundle Q and introduce the process $\xi(t) = \pi \eta(t)$ on \mathcal{M} . Denote by $\Gamma_{t,s}^{\pi}$ the parallel translation of random vectors from the fiber $Q_{\xi(s)}$ to the fiber $Q_{\xi(t)}$ along $\xi(\cdot)$ with respect to connection H^{π} . For $\eta(t)$ we introduce the covariant mean derivatives by formulae

(5)
$$\mathbf{D}\eta(t) = \lim_{\Delta t \downarrow 0} E\left(\frac{\Gamma^{\pi}_{t,t+\Delta t}\eta(t+\Delta t) - \eta(t)}{\Delta t} \mid \mathfrak{N}^{\xi}_{t}\right);$$

(6)
$$\mathbf{D}_* \boldsymbol{\eta}(t) = \lim_{\Delta t \downarrow 0} E\left(\frac{\boldsymbol{\eta}(t) - \Gamma^{\pi}_{t,t-\Delta t} \boldsymbol{\eta}(t-\Delta t)}{\Delta t} \mid \mathfrak{N}^{\xi}_t\right)$$

(analogs of (3) and (4)). As above, $v^{\eta}(t) = \frac{1}{2}(\mathbf{D} + \mathbf{D}_*)\eta(t)$ is called the *current velocity* of $\eta(t)$.

In order to define the mean derivatives of a vector field along $\eta(t)$ on Q we use the parallel translation $\Gamma_{t,s}^Q$ of vectors tangent to Q at $\eta(s)$, to vectors tangent to Q at $\eta(t)$ along $\eta(\cdot)$ with respect to connection H^Q . By analogy with formulae (3) and (4) for a vector field Z(t, (m, q)) on Q we introduce the covariant mean derivatives by formulae

(7)
$$\mathbf{D}^{Q}Z(t,\eta(t)) = \lim_{\Delta t \downarrow 0} E\left(\frac{\Gamma^{Q}_{t,t+\Delta t}Z(t+\Delta t,\eta(t+\Delta t)) - Z(t,\eta(t))}{\Delta t} \mid \mathfrak{N}^{\xi}_{t}\right);$$

(8)
$$\mathbf{D}^{Q}_{*}Z(t,\eta(t)) = \lim_{\Delta t \downarrow 0} E\left(\frac{Z(t,\eta(t)) - \Gamma^{Q}_{t,t-\Delta t}Z(t-\Delta t,\eta(t-\Delta t))}{\Delta t} \mid \mathfrak{N}^{\xi}_{t}\right).$$

LEMMA 2. $\Gamma_{t,s}^Q$ translates $H_{\eta(s)}^{\pi}$ onto $H_{\eta(t)}^{\pi}$ and $V_{\eta(s)}$ onto $V_{\eta(t)}$; the parallel translation of horizontal components preserves the norms and inner products with respect to g^Q .

The assertion of Lemma 2 follows from Theorem 1 and from the fact that (see [3,6]) that the parallel translation along random processes can be described as the limit

of parallel translations along the processes whose sample paths are piece-wise geodesic approximations of the sample paths of the process under consideration.

By symbols \mathbf{D}^{H} and \mathbf{D}_{*}^{H} we denote the derivatives introduced by formulae (7) and (8), respectively, for the horizontal components of vectors (i.e., taking values in H^{π}). By symbols \mathbf{D}^{V} and \mathbf{D}_{*}^{V} we denote the derivatives for vertical components (i.e., taking values in V). Thus, $\mathbf{D}^{Q} = \mathbf{D}^{H} + \mathbf{D}^{V}$ and $\mathbf{D}_{*}^{Q} = \mathbf{D}_{*}^{H} + \mathbf{D}_{*}^{V}$.

3. The Newton-Nelson equation on the total space of vector bundle

In the problem under consideration the Newton-Nelson equation takes the form

(9)
$$\begin{cases} \frac{1}{2} (\mathbf{D}^{Q} \mathbf{D}_{*} + \mathbf{D}_{*}^{Q} \mathbf{D}) \eta(t) = \overline{e(\eta(t)) \bullet \tilde{\Phi}_{\eta(t)}(\cdot, \nu^{\eta}(t))} \\ D_{2} \xi(t) = \frac{\hbar}{m} I \end{cases}$$

where $\xi(t) = \pi \eta(t)$ (cf. [8, 9]).

Expand the current velocity v^{η} in the right-hand side of (9) into the sum of vertical and horizontal components: $v^{\eta} = v^{H}_{\eta} + v^{V}_{\eta}$, where $v^{H}_{\eta} \in H^{\pi}$ and $v^{V}_{\eta} \in V$. Since $\tilde{\Phi}_{\eta(t)}(\cdot, \cdot)$ is linear in both arguments, $\tilde{\Phi}_{\eta(t)}(\cdot, v^{\eta}) = \tilde{\Phi}_{\eta(t)}(\cdot, v^{H}_{\eta}) + \tilde{\Phi}_{\eta(t)}(\cdot, v^{V}_{\eta})$. Then, since the form $\tilde{\Phi}$ is horizontal (see Lemma 1) we obtain that $\tilde{\Phi}_{\eta(t)}(\cdot, v^{V}_{\eta}) = 0$. Thus, the first equation of system (9) is equivalent to the following system:

(10)
$$\frac{1}{2}(\mathbf{D}^{H}\mathbf{D}_{*}+\mathbf{D}_{*}^{H}\mathbf{D})\boldsymbol{\eta}(t)=\overline{e(\boldsymbol{\eta}(t))\bullet\tilde{\Phi}_{\boldsymbol{\eta}(t)}(\cdot,v_{\boldsymbol{\eta}}^{H}(t))},$$

(11)
$$\frac{1}{2} (\mathbf{D}^V \mathbf{D}_* + \mathbf{D}_*^V \mathbf{D}) \boldsymbol{\eta}(t) = 0.$$

For simplicity of presentation we denote $\overline{e(\eta(t))} \bullet \tilde{\Phi}_{\eta(t)}(\cdot, v_{\eta}^{H}(t))$ by $\alpha_{(t,\eta(t))}v_{\eta}^{H}$ where, by construction, $\alpha_{(t,(m',q'))}(\cdot)$ is a linear operator in $\mathsf{H}^{\pi}_{(m',q')}$ ((1,1)-tensor).

Introduce the horizontal (1,2)-tensor field $\nabla^H \alpha(\cdot, \cdot) = K^H T \alpha(\cdot)$ on Q. The vector tr $\nabla^H \alpha(\alpha \cdot, \cdot)$ is horizontal by construction.

THEOREM 2. Let for the tensor field $\alpha_{(t,(m,q))}(\cdot)$ there exist a constant C > 0such that $\int_0^T (\|\alpha_{(t,x(t))}(\cdot)\|^2 + \|\operatorname{tr} \nabla^H \alpha_{(t,x(t))}(\alpha,\cdot)\|^2) dt < C$ for a certain T > 0 and every continuous curve x(t) in Q given on $t \in [0,T]$. Here $\|\alpha_{(t,x)}(\cdot)\|$ is the operator norm (all the norms are generated by g^Q). Let also the connections H^{τ} and H^{π} be stochastically complete (see [6]). Then for every point $(m,q) \in Q$, every vector $\beta_0 \in$ $H^{\pi}_{(m,q)}$ and every time instant $t_0 \in (0,T)$ there exists a stochastic process $\eta(t)$ in Q such that: (i) it is well-defined on [0,T]; (ii) $\eta(0) = (m,q)$ and $D\eta(0) = \beta_0$; (iii) for all $t \in (t_0,T)$ the processes $\eta(t)$ and $\xi(t) = \pi\eta(t)$ satisfy (9); (iv) along $\eta(t)$ the charge $e(\eta(t))$ is constant.

Proof. For simplicity and without loss of generality we suppose that $\frac{\hbar}{m} = 1$.

Consider on the space of continuous curves $C^0([0,T],T_mM)$ the filtration \mathcal{P}_t where for every $t \in [0,T]$ the σ -algebra \mathcal{P}_t is generated by cylinder sets with bases

over [0,t]. Consider the Wiener measure v on the measure space $(C^0([0,T],T_mM),\mathcal{P}_T)$ and so the standard Wiener process $W_m(t)$ in T_mM as the coordinate process on the probability space $(C^0([0,T],T_mM),\mathcal{P}_T,v)$. Since H^{τ} is stochastically complete, the Itô development $W^M(t)$ of $W_m(t)$ with respect to H^{τ} on M is well-posed. Since H^{π} is also stochastically complete, the horizontal lift $W^Q(t)$ of $W^M(t)$ onto Q with respect to H^{π} with initial condition (m,q) is also well-posed. A detailed description of the construction of processes $W^M(t)$ and $W^Q(t)$ can be found in [6].

Since $T\pi : \mathsf{H}_{(m,q)}^{\pi} \to T_m M$ is a linear isomorphism that defines the metric tensor g^Q in $\mathsf{H}_{(m,q)}^{\pi}$ by the pull back of g from $T_m M$, we can translate the Wiener measure and the Wiener process from $T_m M$ to $\mathsf{H}_{(m,q)}^{\pi}$. Denote by W(t) the Wiener process obtained by this construction. This is a coordinate process on the space of continuous curves in $\mathsf{H}_{(m,q)}^{\pi}$ with σ -algebra \mathcal{P}_T and Wiener measure.

For $t_0 \ge 0$ we introduce the real-valued function $t_0(t)$ that equals $\frac{1}{t_0}$ for $t < t_0$ and $\frac{1}{t}$ for $t \ge t_0$. Its derivative $t'_0(t)$ is equal to 0 for $t < t_0$ and to $-\frac{1}{t^2}$ for $t \ge t_0$.

Now consider the following Itô equation in $H^{\pi}_{(m,q)}$:

(12)
$$\beta(t) = \beta_0 + \frac{1}{2} \int_0^t \Gamma_{0,s}^Q tr \nabla^H \alpha_{(s,WQ(s))}(\alpha, \cdot) ds + \int_0^t \Gamma_{0,s}^Q \alpha_{(s,WQ(s))} dW(s) ds - \frac{1}{2} \int_0^t t_0(s) \beta(s) ds - \frac{1}{2} \int_0^t t_0'(s) W(s) ds.$$

Since equation (12) is linear in β , it has a strong and strongly unique solution $\beta(t)$. Since this solution is strong, it can be given on the space of continuous curves in $H^{\pi}_{(m,q)}$ equipped with Wiener measure. Consider the following density on the latter space of curves $\theta(t) = \exp\left(-\frac{1}{2}\int_0^T \beta(s)^2 ds + \int_0^T (\beta(s) \cdot dW(s))\right)$. From the hypothesis and from Lemma 2 it follows that it is well-posed. Introduce the measure that has this density with respect to the Wiener measure. It is well-known that with the new measure the coordinate process takes the form $\zeta(t) = \int_0^t \beta(s) ds + w(t)$ where w(t) is a certain Wiener process adapted to \mathcal{P}_t . Denote $W^Q(t)$, considered with respect to the new measure, by the symbol $\eta(t)$ and introduce the process $\xi(t) = \pi\eta(t)$; $\xi(t)$ is obtained from $W^M(t)$ by the change of measure. Equation (12) turns into

$$\begin{split} \beta(t) &= \beta_0 + \frac{1}{2} \int_0^t \Gamma_{0,s}^Q tr \nabla^H \alpha_{(s,\eta(t))}(\alpha,\cdot) ds + \int_0^t \Gamma_{0,s}^Q \alpha_{(s,\eta(s))} \beta(s) ds \\ &+ \int_0^t \left(\Gamma_{0,s}^Q \alpha_{(s,\eta(s))}(\cdot) + \frac{1}{2} t_0(s) \right) dw(s) - \frac{1}{2} \int_0^t t_0(s) \beta(s) ds - \frac{1}{2} \int_0^t t_0'(t) \zeta(t) ds. \end{split}$$

By construction, $\eta(0) = (m,q)$ and $D\eta(t) = \beta_0$. The process $\eta(t)$ satisfies (11) also by construction. The fact that for $t \in (t_0,T)$ the processes $\eta(t)$ and $\xi(t) = \pi\eta(t)$ satisfy (10) and that $D_2\xi(t) = I$ follows from the formulae for mean derivatives obtained in [6, Chapters 12 and 18].

Evidently $\eta(t)$ is the horizontal lift of the process $\xi(t)$ with respect to connection H^{π} with the initial condition (m,q). Recall that the horizontal lift $\eta(t)$ of $\xi(t)$ is a

parallel translation of (m,q) along $\xi(\cdot)$ with respect to H^{π} . Hence, it can be presented in the form $(\xi(t), b_t(f))$ where b_t is the horizontal lift of $\xi(t)$ to \mathcal{E} with respect to connection H and f is a certain vector in the standard fiber \mathcal{F} . Thus, the sample paths of $\eta(t)$ belong to an orbit of G and so the charge e is constant along $\eta(t)$.

References

- [1] AZARINA S.V. AND GLIKLIKH YU.E. *Differential inclusions with mean derivatives*, Dynamic Systems and Applications **16** 1 (2007), 49-71.
- [2] BISHOP R.L. AND CRITTENDEN R.J. *Geometry of Manifolds*, Academic Press, New York-London 1964.
- [3] BELOPOLSKAYA YA.I. AND DALECKY YU.L. Stochastic processes and differential geometry. Kluwer Academic Publishers, Dordrecht 1989.
- [4] ELWORTHY K.D. Stochastic differential equations on manifolds, Cambridge University Press, Cambridge 1982.
- [5] GLIKLIKH YU.E. AND RATINER P.S. On a certain type of second order differential equations on total spaces of fiber bundles with connections, Nonlinear Analysis in Geometry and Topology, Hadronic Press, Palm Harbor, Fl. (2000), 99-106.
- [6] GLIKLIKH YU.E. Global and Stochastic Analysis with Applications to Mathematical *Physics*. Springer-Verlag, London 2011.
- [7] GLIKLIKH YU.E. AND VINOKUROVA N.V. On the Description of Motion of a Quantum Particle in the Classical Gauge Field in the Language of Stochastic Mechanics, Communications in Statistics-Theory and Methods 40 19-20 (2011), 3630-3640.
- [8] NELSON E. Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Reviews, 150 4 (1966), 1079-1085.
- [9] NELSON E. Quantum fluctuations, Princeton University Press, Princeton 1985.
- [10] PARTHASARATHY K.R. Introduction to Probability and Measure, Springer-Verlag, New York 1978.

AMS Subject Classification: 58J65; 60H30; 60H10

Yuri GLIKLIKH, Department of mathematics, Voronezh State University Universitetskaya pl. 1, 394006 Voronezh, RUSSIAN FEDERATION e-mail: yeg@math.vsu.ru

Natalia VINIKUROVA,

Department of physics mathematics and informatics, Kursk State University Ul. Radishcheva 13, 305416 Kursk, RUSSIAN FEDERATION e-mail: vinoknata@mail.ru

Lavoro pervenuto in redazione il 22.05.2013

226