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E. Esteves

JETS OF SINGULAR FOLIATIONS∗

Abstract. Given a singular foliation satisfying locally everywhere the Frobenius condition,
even at the singularities, we show how to construct its global sheaves of jets. Our construction
is purely formal, and thus applicable in a variety of contexts.

1. Introduction

LetM be a complex manifold of complex dimensionm. A holomorphic foliation
L of dimension n of M is a decomposition of M in complex submanifolds, called
leaves, of dimension n. Also, locally the leaves must pile up nicely, like the fibers of
a holomorphic map. In other words, for each point p of M there must exist an open
neighborhoodU and a holomorphic submersion ϕ : U→V to an open subsetV ⊆Cm−n
such that the fibers of ϕ are the intersection of the leaves withU . We say that ϕ defines
L onU .

A holomorphic foliation L ofM induces a vector subbundle of the tangent bun-
dle TM of M: for each p ∈ M, the vector subspace of TM,p is the tangent space at p
of the unique leaf passing through p. Thinking in dual terms, L induces a surjection
w : T ∗M → E from the bundle of holomorphic 1-forms to a holomorphic rank-n vector
bundle E. The bundle E, also denoted by T ∗L , is regarded as the bundle of 1-forms of
L .

Not all surjections w : T ∗M → E to a holomorphic vector bundle E arise from
foliations. The necessary and sufficient condition for this is given by the Frobenius
Theorem: locally at each point p of M, choose a trivialization of E, and consider the
vector fields X1, . . . ,Xn induced by w; if their Lie brackets [Xi,Xj] can be expressed as
sums ∑! g!X!, where the g! are holomorphic functions on a neighborhood of p, then w
arises from a foliation.

The surjection w can be seen, locally on an open subsetU ⊆M for which there
is a submersion ϕ : U→V ⊆Cm−n defining L , as the natural map T ∗U → T ∗U/V from the
bundle of 1-forms onU to the bundle of relative 1-forms onU over V . Also, on such a
U , we may consider the natural surjection JqU → JqU/V from the bundle J

q
U of q-jets (or

principal parts of order q) onU to the bundle JqU/V of relative jets of ϕ, for each integer
q≥ 0. These patch to form surjections wq : JqM→ JqL to bundles J

q
L that can be regarded

as the bundles of q-jets of the foliation.
But what happens if all the data are algebraic? More precisely, assume M is

algebraic, E and w are algebraic, and there is an algebraic trivialization of E at each
p∈M such that the resulting vector fields X1, . . . ,Xn are involutive, i.e. satisfy [Xi,Xj] =
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∑! g
i, j
! X! for g

i, j
! algebraic. Are the bundles JmL algebraic? In principle, they are just

holomorphic, since the local submersions ϕ fromwhich they arise are just holomorphic,
constructed by means of the implicit function theorem.

Moreover, it is rare for a projective manifold to admit interesting foliations.
For this reason, one has started to study singular foliations, in a variety of ways. For
instance, a singular foliation ofM of dimension nmay be defined to be a map w : T ∗M→
E to a rank-n holomorphic vector bundle E which, on a dense open subset M0 ⊆ M,
arises from a foliationL . We still regard E as the bundle of 1-forms of the foliation. But
the bundles of jets JmL are, in principle, only defined on M0. Under which conditions
do they extend toM?

In the present paper, we will show that if all the data are algebraic, then the bun-
dles JmL are algebraic. Furthermore, if the same Frobenius’ conditions, appropriately
formulated, are verified at each point of M−M0, then the bundles JmL extend to the
whole M. For the proofs, we will completely bypass Frobenius Theorem, giving an
entirely formal construction of the bundles of jets that applies in many categories, for
instance that of differentiable manifolds, or of schemes over any base. Furthermore,
not only will we consider maps to bundles E, but also to sheaves of modules, locally
free or not, obtaining thus sheaves of jets.

Our construction of the sheaves of jets is by “iteration”, so will only apply in
characteristic zero. For an approach in positive characteristic, albeit limited in scope,
see [1] or [10]. From now on, all rings are assumed to be Q-algebras.

Here is what we do. Let X be a topological space, OB a sheaf of Q-algebras
and OX a sheaf of OB-algebras. Let F be a sheaf of OX -modules and D : OX → F an
OB-derivation. We may think of OX as the sheaf of “functions” on X and of OB as the
sheaf of “constant functions.” For each integer i ≥ 0, let T i(F ) be the tensor product
over OX of i copies of F , and denote by S i(F ) and A i(F ) its symmetric and exterior
quotients. Let S(F ) be the direct product of all the Si(F ) for all integers i ≥ 0, with
its natural graded OX -algebra structure. We may think of S(F ) as the sheaf of “formal
power series” on the sections of F .

We define aD-connection to be a map of OB-modules γ : F → T 2(F ) satisfying

γ(am) = D(a)⊗m+aγ(m)

for all local sections a of OX and m of F . We will see in Construction 2 how γ can be
used to iterate D to obtain a sequence of maps Ti : F → S i(F )⊗F , for i = 0,1, . . . ,
where T0 := idF , T1 = γ, and the Ti satisfy properties similar to that of a connection,
i.e. Equations 3. We call any sequence of maps T = (T0,T1, . . .) with these properties,
for any D-connection γ, an extended D-connection.

From an extendedD-connection T we get a map h : OX→ S(F ) of OB-algebras,
with h0 := idOX and h1 := D, by letting hi(a) be the class in S i(F ) of (1/i)Ti−1D(a)
for each local section a of OX ; see Construction 3. We may think of h as a way of
computing “Taylor series” of functions on X . In this way, S(F ) may be regarded as a
sheaf of jets. We call such an h an iterated Hasse derivation.

However, D-connections are usually local gadgets. So, to be able to patch the
local maps h, we need D-connections to be canonical. But there is nothing canonical
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about γ: for every OX -linear map ν : F → T 2(F ), the sum γ+ν is also aD-connection!
So we study special D-connections.

A D-connection γ is called flat if the image of γD(OX ) in A2(F ) is zero. When
such γ exists, we say that D is integrable. Our main result, Theorem 5, shows that,
given a flat D-connection γ, there is an extended D-connection T with T1 = γ, which is
also flat, meaning that TiD(OX ) lies in the subsheaf of S i(F )⊗F generated locally by

i

∑
!=1

m1m2 · · ·m!−1m!+1m!+2 · · ·mi⊗m!

for all local sections m1, . . . ,mi of F , for each i≥ 1.
Now, our Proposition 1 says that a flat, extended D-connection is “comparable”

to any other extended D-connection. So, Theorem 5 and Proposition 1 can be coupled
to yield that all iterated Hasse derivations are equivalent; see Corollary 1. More pre-
cisely, if h and h′ are iterated Hasse derivations, there is an OX -algebra automorphism
φ : S(F )→ S(F ) such that h′ = φh. Furthermore, the degree-i part of this φ is zero if
i< 0 and the identity if i= 0.

Now, for the patching we also need the automorphisms φ to be canonical, so
that cocycle conditions are satisfied. For this, we make a technical assumption on D,
that bounds its singularities, and holds in all applications we know of; see Corollary 1
and the remark thereafter.

Finally, assume that D is locally integrable, and has bounded singularities, in
the sense alluded to above. The patching of the local iterated Hasse derivations and
the OX -algebra automorphisms comparing them is straightforward. We obtain an OX -
algebra J and a map h : OX → J of OB-algebras. Also, since the local OX -algebra
automorphisms do not decrease degrees, and their degree-0 parts are the identity, J
comes naturally with a filtration by OX -algebra quotients J q, for q= 0,1, . . . , and nat-
ural exact sequences

0→ Sq(F )→ J q→ J q−1→ 0

for each q> 0; see Construction 6. We say that J q is the sheaf of q-jets of D.
How does this formal construction fit with the geometric setting? If M is a

holomorphic manifold, let (X ,OX ) be the ringed space where X is the underlying topo-
logical space of M and OX is its sheaf of holomorphic functions. Let OB be the sheaf
of constant complex functions. A map of vector bundles w : T ∗M → E corresponds to
a derivation D : OX → F , where F is the sheaf of holomorphic sections of E. To
say that w arises from a foliation on an open subset U ⊆ M is equivalent to say that
F |U = OUD(OU ) and D|U is locally integrable on U ; see Example 2. Now, assume
that D is locally integrable on the whole X , and that D(OX ) generates F as an OX -
module on a dense open subset M0 ⊆M. Then there exists a sheaf of q-jets J q on X ,
as explained above. Also, w defines a foliation L on M0, and J q|M0 is the sheaf of
sections of the bundle of q-jets JqL ; see Example 4.

Bundles of jets associated to foliations or derivations were considered by a num-
ber of people. In algebraic geometry, to my knowledge, the first was Letterio Gatto,
who in his thesis [6] constructed jets from a family of stable curves f : X → S and



404 E. Esteves

its canonical derivation OX → ωX/S, where ωX/S is the relative dualizing sheaf. Af-
terwards, in [1], jets were constructed for more general families, of local complete
intersection curves, over any base and in any characteristic.

Also, Dan Laksov and Anders Thorup constructed bundles of jets in a series
of articles in different setups; see [8], [9] and [10]. In characteristic zero, their more
general work is [9]. Actually, in [9], Laksov and Thorup construct larger sheaves of
“jets”, that are naturally noncommutative. The true generalization of the sheaf of jets
is what they call “symmetric” jets. They show that the sheaf of (symmetric) jets is
uniquely defined when F is free and has an OX -basis under which D can be expressed
using commuting derivations of OX . As we have observed above, the uniqueness of
the definition is important for patching. However, the commutativity is stronger than
Frobenius’ conditions, at least in the algebraic category — in the analytic category,
at nonsingular points, the local existence of commuting derivations follows from the
existence of the foliation. The present work arose from the feeling that the Frobenius’
conditions should be enough to construct sheaves of jets.

There have already been applications of the sheaves of jets associated to a fo-
liation or a derivation. They were used by Gatto [7], and Gatto and myself [3] in
enumerative aplications. They were used by myself in understanding limits of ramifi-
cation points [2], and of Weierstrass points, with Nivaldo Medeiros, [4] and [5]. They
were also used by Jorge Vitório Pereira in the study of foliations of the projective space
[12].

Finally, we will see an example where the integrability condition holds and F is
not locally free; see Example 3. That will be the example of the canonical derivation on
a special non-Gorenstein curve, arguably the simplest non-Gorenstein unibranch curve
there is, whose complete local ring at the singular point is of the form C[[t3, t4, t5]], as
a subring of C[[t]]. It could be that the integrability condition holds for the canonical
derivation on any curve, Gorenstein or not. If so, the sheaf of jets might be used to
define Weierstrass points on non-Gorenstein integral curves, and show that these points
are limits of Weierstrass points on nearby curves, in the way done by Robert Lax and
Carl Widland for Gorenstein curves; see [11] and [13]. However, this problem will not
be pursued here.

Here is a layout of the article. In Section 2, we define connections, extended
connections and iterated Hasse derivations, and explain a few preliminary construc-
tions. In Section 3, we define integrable derivations and flat (extended) connections,
and show that a flat, extended connection is comparable with any other extended con-
nection. Finally, in Section 4, we show that, if a derivation D is integrable, then flat,
extended connections exist, and all iterated Hasse derivations are equivalent; then we
construct the sheaves of jets for locally integrable derivations.

Throughout the paper, X will stand for a topological space, OB for a sheaf ofQ-
algebras, OX for a sheaf of OB-algebras, F for a sheaf of OX -modules and D : OX →F
for an OB-derivation.

This work started as a joint work with Letterio Gatto. However, he felt he did
not contribute to it as much as he wished. Though a few discussions with him were
vital to how this work came to be, and though I feel that this could be classified as a
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joint work, I had to respect his decision to not coauthor it. Anyway, being the only
thing left for me to do, I thank him for his great contributions.

2. Derivations and connections

Recall the notation for X , OB, OX , F and D.

CONSTRUCTION 1. (Tensor operations) We denote by

T (F ) :=
∞

∏
n=0

T n(F ), S(F ) :=
∞

∏
n=0

Sn(F ), A(F ) :=
∞

∏
n=0

An(F )

the formal tensor, symmetric and exterior graded sheaf of OX -algebras of F , respec-
tively. (Note that we take the direct product and not the direct sum.)

Set R 0(F ) := OX . Also, set R n(F ) := Sn−1(F )⊗F for each integer n ≥ 1,
and

R (F ) :=
∞

∏
n=0

R n(F ).

Then R (F ) is a graded OX -algebra quotient of T (F ), in a natural way.
As usual, we let T+(F ), S+(F ),A+(F ) andR+(F ) denote the ideals generated

by formal sums with zero constant terms in each of the indicated OX -algebras.
We view T (F ) as a sheaf of algebras, with the (noncommutative) product in-

duced by tensor product. So, given local sections m1, . . . ,mn of F , we let m1 · · ·mn
denote their product in T n(F ). Also, we view S(F ), A(F ) and R (F ) as sheaves
of T (F )-algebras, and S(F ) as a sheaf of R (F )-algebras, under the natural quotient
maps. So, given a local section ω of T n(F ) (resp. R n(F )), we will use the same
symbol ω to denote its image in Sn(F ), An(F ) or R n(F ) (resp. Sn(F )). These
simplifications should not lead to confusion, and will clean the notation enormously.

Define the switch operator σ : R+(F )→R+(F ) as the homogeneous OX -linear
map of degree 0 given by σ|F := 0, and on each R n(F ), for n≥ 2, by the formula:

σ(m1 · · ·mn) =
n−1

∑
i=1

mnmn−1 · · ·mn−i+2mn−i+1m1m2 · · ·mn−i−1mn−i

for all local sections m1, . . . ,mn of F . The reader may check that σ is actually well-
defined on R+(F ), and not only on T+(F ).

Let σ" := 1+σ. Notice that σ" factors through S+(F ). For each integer n≥ 1,
let K n(F ) := σ"(R n(F )). Then K n(F ) is also the kernel of n−σ". In particular,
K 2(F ) is the kernel of the surjection T 2(F )→ A2(F ). Indeed, that K n(F ) is in the
kernel of n−σ" follows from the equality

σ"σ"|R n(F ) = nσ"|R n(F ),

a fact checked locally. And if ω is a local section of R n(F ) such that (n−σ")(ω) = 0,
then ω= σ"((1/n)ω), and thus ω is a local section of K n(F ).
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Put
K+(F ) :=

∞

∏
n=1

K n(F ).

DEFINITION 1. A Hasse derivation of F is a map of OB-algebras

h= (h0,h1, . . .) : OX −→
∞

∏
i=0

S i(F )

with h0 = idOX . We say that h extends D if h1 = D.

If h = (h0,h1, . . .) is a Hasse derivation of F , then h1 : OX → F is an OB-
derivation of F . Conversely, given D, we may ask when there is a Hasse derivation
h = (h0,h1, . . .) of F extending D. We will see in Construction 3 that such h exists
when there is a D-connection.

DEFINITION 2. A D-connection is a map of OB-modules

γ : F → T 2(F )

satisfying

(1) γ(am) = D(a)m+aγ(m)

for each local sections a of OX and m of F .

EXAMPLE 1. There may not exist a D-connection. For instance, assume X is
the union of two transversal lines in the plane, or X = Spec(C[x,y]/(xy)). Assume
F = Ω1X , the sheaf of differentials, and D : OX → Ω1X is the universal C-derivation.
The sheaf Ω1X is generated by D(x) and D(y), and the sheaf of relations is generated
by the single relation yD(x)+ xD(y) = 0. In particular, D(x) and D(y) are C-linearly
independent at the node. Suppose there were a D-connection γ : Ω1X → T 2(Ω1X ). Then

0= γ(yD(x)+ xD(y)) = D(y)D(x)+D(x)D(y)+ yγ(D(x))+ xγ(D(y)).

However, D(x)D(x), D(x)D(y), D(y)D(x) and D(y)D(y) are linearly independent sec-
tions of T 2(Ω1X ) at the node. Hence the above relation is not possible.

When a D-connection γ exists, it is not unique, since for every OX -linear map
λ : F → T 2(F ), the sum γ+ λ is a D-connection. However, these are all the D-
connections.

A D-connection allows us to iterate D to a Hasse derivation, as we will explain
in Construction 3. First, we will see how to extend a connection.

CONSTRUCTION 2. (Extending connections) Let γ : F → T 2(F ) be a
D-connection. Define a homogeneous map of degree 1 of OB-modules,

(1) ∇ : R+(F )→ R+(F ),
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given on each graded part R n(F ) by

(2) ∇(m1 · · ·mn) :=
n

∑
i=1

m1 · · ·mi−1γ(mi)mi+1 · · ·mn

for each local sections m1, . . . ,mn of F .
At first, it seems ∇ would be a well-defined map from T+(F ) to T+(F ). This

would indeed be true, were γ a map of OX -modules. But γ is not! To check that ∇,
as given above, is well-defined, we need to check the following three properties for
all local sections m1, . . . ,mi,m′i, . . . ,m′n of F and a of OX , and each permutation τ of
{1, . . . ,n−1}:

1. For each i= 1, . . . ,n,

∇(m1 · · ·(mi+m′i) · · ·mn) = ∇(m1 · · ·mi · · ·mn)+∇(m1 · · ·m′i · · ·mn).

2. For each i, j = 1, . . . ,n,

∇(m1 · · ·(ami) · · ·mn) = ∇(m1 · · ·(amj) · · ·mn).

3. ∇(m1 · · ·mn−1mn) = ∇(mτ(1) · · ·mτ(n−1)mn).

The first (multilinearity) and third (symmetry) properties are left for the reader to check.
The second property is the key to why ∇must take values in R+(F ), so let us check it:
from the definition of ∇, and using γ(ami) = D(a)mi+aγ(mi), we get

∇(m1 · · ·(ami) · · ·mn) = m1 · · ·mi−1D(a)mi · · ·mn+a
n

∑
j=1

m1 · · ·γ(mj) · · ·mn.

So ∇(m1 · · ·(ami) · · ·mn) would depend on i, were ∇ to take values in T+(F ). But
instead, ∇ takes values in R+(F ), and hence

m1 · · ·mi−1D(a)mi · · ·mn = D(a)m1 · · ·mi−1mi · · ·mn.

So the second property (scalar multiplication) is checked, and the three properties im-
ply that ∇ is well-defined. Also, we proved the formula

∇(aω) = D(a)ω+a∇(ω)

for all local sections ω of R+(F ) and a of OX .
Now, for each integer n≥ 1, put

Tn :=
1
n!
∇n|F : F → R n+1(F ).

Also, set T0 := idF . Then Tn = (1/n)∇Tn−1 for each n ≥ 1. Furthermore, for each
integer i≥ 1, and each local sections a of OX and m of F ,

(3) Ti(am) = aTi(m)+
i

∑
j=1

1
j
Tj−1D(a)Ti− j(m).
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Indeed, Formula (3) holds for i= 1, because T1 = γ and γ is a D-connection. And if, by
induction, Formula (3) holds for a certain i≥ 1, then

Ti+1(am) =
1

(i+1)
∇Ti(am)

=
1

(i+1)
∇
(
aTi(m)+

i

∑
j=1

1
j
Tj−1D(a)Ti− j(m)

)

=
1

(i+1)

(
a∇Ti(m)+D(a)Ti(m)

)

+
1

(i+1)

i

∑
j=1

1
j

(
∇Tj−1D(a)Ti− j(m)+Tj−1D(a)∇Ti− j(m)

)

=aTi+1(m)+
1

(i+1)
D(a)Ti(m)

+
1

(i+1)

i

∑
j=1

(
TjD(a)Ti− j(m)+

(i+1− j)
j

Tj−1D(a)Ti+1− j(m)
)

=aTi+1(m)+
1

(i+1)
D(a)Ti(m)

+
i

∑
j=2

(1
j
Tj−1D(a)Ti+1− j(m)

)
+

1
(i+1)

TiD(a)m+
i

(i+1)
D(a)Ti(m)

=aTi+1(m)+
i+1

∑
j=1

1
j
Tj−1D(a)Ti+1− j(m).

The maps Tn form an extended D-connection, according to the definition below.

DEFINITION 3. Let n be a positive integer or n := ∞. A map of OB-modules

T = (T0,T1,T2, . . .) : F −→
n

∏
i=0

R i+1(F )

is called an extended D-connection if T0 = idF and Formula (3) holds for each i ≥ 1
and all local sections a of OX and m of F .

If nothing is noted otherwise, extended D-connections are assumed full, that is,
with n := ∞.

CONSTRUCTION 3. (Hasse derivations extending D) Let T : F → R+(F ) be
an extended D-connection. Notice that the map T1 : F → F ⊗F is a D-connection.
However, T need not arise from T1 as in Construction 2.

Put h0 := idOX , and for each integer i≥ 1 let hi : OX → S i(F ) be the OB-linear
map given by hi(a) := (1/i)Ti−1D(a) for each local section a of OX . Then

h := (h0,h1,h2, . . .) : OX −→
∞

∏
i=0

S i(F )
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is a Hasse derivation of F extending D. Indeed, clearly h1 = D. Now, if a and b are
local sections of OX , and i≥ 1, then

hi(ab) =
1
i
Ti−1

(
aD(b)+bD(a)

)

=
1
i

(
aTi−1D(b)+

i−1

∑
j=1

1
j
Tj−1D(a)Ti−1− jD(b)

)

+
1
i

(
bTi−1D(a)+

i−1

∑
j=1

1
j
Tj−1D(b)Ti−1− jD(a)

)

=ahi(b)+bhi(a)

+
1
i

i−1

∑
j=1

(1
j
Tj−1D(a)Ti−1− jD(b)+

1
i− j

Ti−1− jD(b)Tj−1D(a)
)

=ahi(b)+bhi(a)+
i−1

∑
j=1

( 1
j(i− j)

Tj−1D(a)Ti−1− jD(b)
)

=
i

∑
j=0

h j(a)hi− j(b),

where in the fourth equality we used that the computation is done in S i(F ).

DEFINITION 4. Let h be a Hasse derivation extending D. We say that h is
iterated if there is an extended D-connection T such that hi = (1/i)Ti−1D for each
i≥ 1.

3. Flat connections and integrable derivations

Recall the notation for X , OB, OX , F and D.

DEFINITION 5. A D-connection γ : F → T 2(F ) is called flat if γD(OX ) ⊆
K 2(F ). We say that D is integrable if there exists a flat D-connection.

EXAMPLE 2. Assume that F is the free sheaf of OX -modules with basis e1, . . . ,
en. Then D=D1e1+ · · ·+Dnen, where the Di are OB-derivations of OX . Conversely, a
n-tuple (D1, . . . ,Dn) of OB-derivations of OX defines an OB-derivation of F .

There is a natural D-connection γ : F → T 2(F ), satisfying

γ(
n

∑
i=1

aiei) =
n

∑
i=1

n

∑
j=1

Dj(ai)e jei

for all local sections a1, . . . ,an of OX . Any other D-connection is of the form γ+ ν,
where ν : F → T 2(F ) is a map of OX -modules. The map ν is defined by global
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sections c j,i! of OX , for 1≤ i, j,!≤ n, satisfying

ν(e!) =
n

∑
i=1

n

∑
j=1

c j,i! e jei.

To say that (γ+ν)D(a) = 0 in A2(F ) for a local section a of OX is to say that

n

∑
i=1

n

∑
j=1

DjDi(a)e jei+
n

∑
!=1

n

∑
i=1

n

∑
j=1

c j,i! D!(a)e jei = 0

in A2(F ) or, equivalently,

DjDi(a)−DiDj(a) =
n

∑
!=1

(ci, j! − c
j,i
! )D!(a)

for all distinct i and j. In other words, D is integrable if and only if the collection
{D1, . . . ,Dn} is involutive, i.e., if and only if there are sections b j,i! of OX such that

[Dj,Di] =
n

∑
!=1

b j,i! D!

for all distinct i and j.
Let T be the extended D-connection of Construction 2, derived from γ. From

the definition of γ we have Tq(ei) = 0 for each integer q > 0 and each i = 1, . . . ,n.
Suppose γD = 0 in A2(F ), or in other words [Dj,Di] = 0 for all i and j. Then the
Hasse derivation h associated to T satisfies

(1) hq(a) =
n

∑
j1=1

· · ·
n

∑
jq=1

Dj1 · · ·Djq(a)
q!

e j1 · · ·e jq

for each integer q> 0 and each local section a of F .

EXAMPLE 3. It is not necessary that F be locally free for a flat D-connection
to exist. For instance, assume X = Spec(C[t3, t4, t5]). Viewed as a sheaf of regular
meromorphic differentials, Rosenlicht-style, the dualizing sheaf ωX is generated by
dt/t2 and dt/t3. Assume F = ωX . Let η1 := dt/t2 and η2 := dt/t3. The following
relations generate all relations η1 and η2 satisfy with coefficients in OX :

(1) t3η1 = t4η2, t4η1 = t5η2, t5η1 = t6η2.

Assume D : OX → ωX is the composition of the universal derivation with the canonical
map Ω1X → ωX . Then D satisfies

D(t3) = 3t4η1 = 3t5η2, D(t4) = 4t5η1 = 4t6η2, D(t5) = 5t6η1 = 5t7η2.

So D(a)ηi = 0 in A2(ωX ) for each local section a of OX and each i= 1,2.
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Define γ : ωX → T 2(ωX ) by letting

γ(aη1+bη2) = D(a)η1+D(b)η2+4t3aη2η2+3bη1η1

for all local sections a and b of OX . To check that γ is well defined we need only check
that the values of γ on both sides of the three relations (1) agree. This is the case; for
instance,

γ(t3η1) = 3t4η1η1+4t6η2η2 = 7t4η1η1 = 4t5η1η2+3t4η1η1 = γ(t4η2).

Now, since D(a)η1 = D(b)η2 = 0 in A2(ωX ), we have that γ= 0 in A2(ωX ). So γ is a
flat D-connection, and hence D is integrable.

DEFINITION 6. An extended D-connection T : F → R+(F ) is said to be flat if
TD(OX )⊆K+(F ).

We will see in Theorem 5 that flat extended D-connections exist, when D is
integrable. Also, by Proposition 1 below, any two of them are “comparable”. First, a
piece of notation.

CONSTRUCTION 4. (Generating maps) Let n be a positive integer or n := ∞.
Let

λ= (λ0,λ1, . . .) : F −→
n

∏
i=0

R i+1(F )

be a map of OX -modules. For each integer p > 0 and each sequence i1, . . . , ip of non-
negative indices at most equal to n, let q := i1+ · · ·+ ip and define

(λi1 · · ·λip) : T
p(F )→ R p+q(F )

to be the map of OX -modules satisfying

(λi1 · · ·λip)(m1 · · ·mp) := λi1(m1) · · ·λip(mp)

for all local sections m1, . . . ,mp of F .
The maps (λi1 · · ·λip) are not defined on R p(F ), but the sum

sq(λ) := ∑
i1+···+ip=q

(ip+1)
(
λi1 · · ·λip

)
: R p(F )−→ R p+q(F )

is, for all integers p> 0 and each integer q with 0≤ q≤ n. Analogously, the sum

s̃q(λ) := ∑
i1+···+ip=q

(
λi1 · · ·λip

)
: S p(F )−→ S p+q(F )

is well-defined, for all integers p> 0 and each integer q with 0≤ q≤ n.
Notice that, for each local section ω of K p(F ),

(1) sq(λ)(ω) =
p+q
p

s̃q(λ)(ω) in S p+q(F ).
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Indeed, locally,

ω=
p

∑
i=1

m1 · · · m̂i · · ·mpmi

for local sections m1, . . . ,mp of F . Thus, in S p+q(F ),

sq(λ)(ω) =
p

∑
i=1

∑
j1+···+ jp=q

( jp+1)
i−1

∏
s=1

λ js(ms)
p−1

∏
s=i

λ js(ms+1)λ jp(mi)

= ∑
j1+···+ jp=q

p

∑
i=1

( ji+1)
p

∏
s=1

λ js(ms)

=(p+q) ∑
j1+···+ jp=q

p

∏
s=1

λ js(ms)

=
p+q
p ∑

j1+···+ jp=q

p

∑
i=1

i−1

∏
s=1

λ js(ms)
p−1

∏
s=i

λ js(ms+1)λ jp(mi)

=
p+q
p ∑

j1+···+ jp=q
(λ j1 · · ·λ jp)(ω)

=
p+q
p

s̃q(λ)(ω).

PROPOSITION 1. Let n be a positive integer. Let

T = (T0,T1, . . . ,Tn) : F −→
n

∏
i=0

R i+1(F ),

S= (S0,S1, . . . ,Sn) : F −→
n

∏
i=0

R i+1(F )

be two OB-linear maps. Assume that TiD(OX ) ⊆ K i+1(F ) for each i = 0, . . . ,n− 1.
Then any two of the following three statements imply the third:

1. The map S is an extended D-connection.

2. The map T is an extended D-connection.

3. There is a (unique) map of OX -modules

λ= (λ0, . . . ,λn) : F −→
n

∏
i=0

R i+1(F )

such that λ0 = idF and

(1) Si =
i

∑
!=0

si−!(λ)T!

for each i= 0,1, . . . ,n.
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Proof. We will argue by induction. For n = 1, the proposition simply says that, given
a D-connection T1, a map of OB-modules S1 : F → R 2(F ) is a D-connection if and
only if S1−T1 is OX -linear, a fact already observed.

Suppose now that n ≥ 2, and that the statement of the proposition is known
for n− 1 in place of n. So we may assume that (S0, . . . ,Sn−1) and (T0, . . . ,Tn−1) are
extended D-connections, and that there exists a map of OX -modules

λ= (λ0, . . . ,λn−1) : F −→
n−1

∏
i=0

R i+1(F )

such that λ0 = idF and Equations (1) hold for each i< n.
Define

Rn :=
n−1

∑
!=1

sn−!(λ)T!.

We need only show that, for each local sections a of OX and m of F ,

(2) Rn(am)−aRn(m)+
n−1

∑
z=0

Tn−z−1D(a)
n− z

Tz(m) =
n−1

∑
z=0

Sn−z−1D(a)
n− z

Sz(m).

Indeed, if S and T are D-connections, Formula (2) implies that Sn−Rn− Tn is OX -
linear. So, setting λn := (1/(n+1))(Sn−Rn−Tn), Equation (1) holds for i= n as well.
Conversely, if there is an OX -linear map λn : F → R n+1(F ) such that Equation (1)
holds for i= n, then (n+1)λn+Rn = Sn−Tn. So, from Formula (2) we see that S is a
D-connection if and only if T is.

Now, on the one hand, since (T0, . . . ,Tn−1) is an extended D-connection,

Rn(am)−aRn(m) =
n−1

∑
!=1

∑
j0+···+ j!=n−!

( j!+1)
(
λ j0 · · ·λ j!

)(
T!(am)−aT!(m)

)

=
n−1

∑
!=1

∑
j0+···+ j!=n−!

!−1

∑
p=0

j!+1
!− p

(
λ j0 · · ·λ j!

)(
T!−1−pD(a)Tp(m)

)
.

Thus the left-hand side of Formula (2) is equal to

(3)
n

∑
!=1

∑
j0+···+ j!=n−!

!−1

∑
p=0

j!+1
!− p

(
λ j0 · · ·λ j!

)(
T!−1−pD(a)Tp(m)

)
.

On the other hand, using Equations (1) for i < n, the right-hand side of (2)
becomes

n−1

∑
z=0

1
n− z

( n−z−1

∑
k=0

∑
j0+···+ jk=n−z−1−k

( jk+1)
(
λ j0 · · ·λ jk

)
TkD(a)

)( z

∑
p=0

ωz−p

)
,

where
ω! := ∑

j′0+···+ j′p=!

( j′p+1)
(
λ j′0 · · ·λ j′p

)
Tp(m)
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for each != 0, . . . ,n−1. Now, for each z= 0, . . . ,n−1 and k = 0, . . . ,n− z−1, using
that TkD(a) is a local section of K k+1(F ), Formula (1) yields the following equation
in Sn−z(F ):

∑( jk+1)(λ j0 · · ·λ jk)TkD(a) =∑
n− z
k+1

(λ j0 · · ·λ jk)TkD(a),

where the sum on both sides runs over the (k+1)-tuples ( j0, . . . , jk) such that j0+ · · ·+
jk = n− z−1−k. Thus, introducing ! := k+ p+1, the right-hand side of (2) becomes

n

∑
!=1

!−1

∑
p=0

1
!− p

n−!+p

∑
z=p

∑
j0+···+ j!−p−1=n−z−!+p

(λ j0 · · ·λ j!−p−1)T!−p−1D(a)ωz−p,

whence, introducing u := z− p, equal to

n

∑
!=1

!−1

∑
p=0

1
!− p

n−!

∑
u=0

∑
j0+···+ j!−p−1=n−!−u

(λ j0 · · ·λ j!−p−1)T!−p−1D(a)ωu,

which is equal to (3).

4. Jets

Recall the notation for X , OB, OX , F and D.

THEOREM 5. If D is integrable, then there exists a flat, extended D-connection.

Proof. Since D is integrable, there is a flat D-connection T1 : F → T 2(F ). Set T0 :=
idF . Suppose, by induction, that for an integer n≥ 2 we have constructed an extended
D-connection

T = (T0,T1, . . . ,Tn−1) : F −→
n−1

∏
i=0

R i+1(F ).

We will also suppose the maps Ti satisfy one additional property, Equations (2), after
we make a definition.

For each j= 0, . . . ,n−1, define a map of OB-modules T ′j : R 2(F )→R j+2(F )
by letting

T ′j (m1m2) :=
j

∑
i=0

Ti(m1)Tj−i(m2)

for all local sections m1 and m2 of F . To check that T ′j is well defined, we need only
check that ∑i Ti(am1)Tj−i(m2) =∑i Ti(m1)Tj−i(am2) for each local section a of OX . In
fact, using (3), we see that both sides are equal to

j

∑
i=0

aTi(m1)Tj−i(m2)+
j

∑
!=1

j−!

∑
i=0

1
!
T!−1D(a)Ti(m1)Tj−!−i(m2).
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Furthermore, we see from this computation that

T ′j (aω) = aT ′j (ω)+
j

∑
i=1

1
j+1− i

Tj−iD(a)T ′i−1(ω)

for all local sections ω of R 2(F ) and a of OX .
Also, notice that σ"T ′i−1(1−σ) = 0. Indeed, for local sections m1 and m2 of F ,

σ"T ′i−1(1−σ)(m1m2) =σ"T ′i−1(m1m2−m2m1)

=σ"
( i−1

∑
j=0

(
Tj(m1)Ti−1− j(m2)−Ti−1− j(m2)Tj(m1)

))

=
i−1

∑
j=0

(
σ"
(
Tj(m1)Ti−1− j(m2)

)
−σ"

(
Ti−1− j(m2)Tj(m1)

))
,

which is zero because σ"(ω1ω2) = σ"(ω2ω1) for all local sections ω1 and ω2 of
R+(F ). Then

(1) T ′i−1(1−σ) =
i−σ
i+1

T ′i−1(1−σ).

Now, suppose that

(2) (i−σ)
(
(i+1)Ti−T ′i−1(1−σ)T1

)
= 0

for each i = 1, . . . ,n− 1. (Notice that Equation (2) holds automatically for i = 1, be-
cause (1−σ)σ"(R 2(F )) = 0.) Also, from Equation (2), and the flatness of T1, we get
TiD(OX )⊆K i+1(F ) for each i= 1, . . . ,n−1.

Let

T :=
1

n+1
T ′n−1(1−σ)T1.

Then

(3) (n−σ)
(
T (am)−aT (m)−

n

∑
i=1

1
i
Ti−1D(a)Tn−i(m)

)
= 0
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for all local sections m of F and a of OX . Indeed,

(n−σ)T (am) =
n−σ
n+1

T ′n−1(1−σ)T1(am)

=
n−σ
n+1

(
T ′n−1

(
D(a)m−mD(a)+a(1−σ)T1(m)

))

=
n−σ
n+1

(
Tn−1D(a)m+

n−1

∑
i=1

Tn−1−iD(a)Ti(m)
)

−
n−σ
n+1

(
mTn−1D(a)+

n−1

∑
i=1

Ti(m)Tn−1−iD(a)
)

+
n−σ
n+1

(
aT ′n−1(1−σ)T1(m)

)

+
n−σ
n+1

( n−1

∑
i=1

Tn−i−1D(a)T ′i−1
(1−σ)
n− i

T1(m)
)
.

Now, first observe that, for each i= 0, . . . ,n−1, we have (n− i−σ")Tn−1−iD(a) = 0,
since Tn−1−iD(a) is a local section of K n−i(F ). Then

(n−σ)
(
Ti(m)Tn−1−iD(a)

)
=(n−σ)

(
Ti(m)

σ"

n− i
Tn−1−iD(a)

)

=−
n−σ
n− i

(
Tn−1−iD(a)σ"Ti(m)

)
.

Also, from (1) and (2),

Tn−i−1D(a)T ′i−1(1−σ)T1(m) =Tn−i−1D(a)
i−σ
i+1

T ′i−1(1−σ)T1(m)

=Tn−i−1D(a)(i−σ)Ti(m)

for each i= 1, . . . ,n−1. So

n−σ
n+1

(
Tn−1D(a)m−mTn−1D(a)

)
=
n−σ
n

(
Tn−1D(a)m

)
,

and, for each i= 1, . . . ,n−1,

n−σ
n+1

(
Tn−1−iD(a)Ti(m)−Ti(m)Tn−1−iD(a)+Tn−i−1D(a)T ′i−1

1−σ
n− i

T1(m)
)

is equal to
n−σ
n+1

(
Tn−1−iD(a)

(
1+

1+σ
n− i

+
i−σ
n− i

)
Ti(m)

)
,

whence equal to
n−σ
n− i

(
Tn−1−iD(a)Ti(m)

)
.
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Applying these equalities in the above expression for (n− σ)T (am) we get Equa-
tion (3).

We want to show that there exists a map of OB-modules Tn : F → R n+1(F )
such that (2) holds for i = n, and such that (T0, . . . ,Tn) is an extended D-connection.
First we claim that there exists a map of OB-modules Tn : F → R n+1(F ) such that
(T0, . . . ,Tn) is an extended D-connection. Indeed, from T1 construct an extended D-
connection (S0, . . . ,Sn) by iteration, as described in Construction 2. By Proposition 1,
there is a map of OX -modules

λ= (λ0,λ1, . . . ,λn−1) : F −→
n−1

∏
i=0

R i+1(F )

such that λ0 = idF and such that Equations (1) hold for i = 0, . . . ,n−1. Now, just set
λn := 0 in Equation (1) for i= n, and let it define Tn. Then, by Proposition 1, the map
(T0, . . . ,Tn) is an extended D-connection.

The above map Tn does not necessarily make (2) hold for i = n. So, rename it
byU . At any rate, since (T0, . . . ,Tn−1,U) is an extended D-connection, it follows from
Equation (3) that (n−σ)(U−T ) is OX -linear. Set

Tn :=U−
(n−σ)
n+1

(U−T ).

Then Tn differs from U by an OX -linear map, and thus (T0, . . . ,Tn) is an extended D-
connection. Now,

(n−σ)Tn = (n−σ)U−
(n−σ)2

n+1
(U−T ).

Since
(n−σ)2|R n+1(F ) = (n+1)(n−σ)|R n+1(F ),

we get (n−σ)Tn = (n−σ)T . So (2) holds for i= n.
The induction argument is complete, showing that there is an infinite extended

D-connection

T = (T0,T1, . . .) : F −→
∞

∏
i=0

R i+1(F )

such that (2) holds for each i≥ 1, and thus TiD(OX )⊆K i+1(F ) for each i≥ 0.

DEFINITION 7. Two Hasse derivations h and h′ of F are said to be equivalent if
there is an OX -algebra automorphism φ of S(F ) such that φ0|F = idF and h′ = φh. We
say that h and h′ are canonically equivalent when there is only one such automorphism.

COROLLARY 1. Let h and h′ be iterated Hasse derivations of F extending D.
If D is integrable, then h and h′ are equivalent. Furthermore, if νD(OX ) *= 0 for every
nonzero OX -linear map ν : F → S(F ), then h and h′ are canonically equivalent.
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Proof. First, we prove the existence of an equivalence. By Theorem 5, there is a flat,
extended D-connection T = (T0,T1, . . .). We may suppose h arises from T . Let S =
(S0,S1, . . .) be an extended D-connection from which h′ arises.

By Proposition 1, there is a map of OX -modules

λ= (λ0,λ1, . . .) : F −→
∞

∏
i=0

R i+1(F )

such that λ0 = idF and

(1) Si =
i

∑
!=0

si−!(λ)T! for each i≥ 0.

Let φ : S(F )→ S(F ) be the map of OX -algebras whose graded part φq of de-
gree q satisfies φq|S p(F ) = s̃q(λ)|S p(F ) for all integers p > 0 if q ≥ 0, and φq = 0 if
q< 0. Since λ0 = idF , the homogeneous degree-0 part φ0 is the identity, and thus φ is
an automorphism. We claim that h′ = φh.

Indeed, clearly h′0 = (φh)0. Now, since T is flat, T!D(OX )⊆ K !+1(F ) for each
!≥ 0. Thus, for each i≥ 0 and each local section a of OX , using Equations (1) and (1),
the following equalities hold on S i+1(F ):

h′i+1(a) =
SiD(a)
i+1

=
i

∑
!=0

si−!(λ)
T!D(a)
i+1

=
i

∑
!=0

s̃i−!(λ)
T!D(a)
!+1

=
i

∑
!=0

φi−!h!+1(a).

Since φi+1|OX = 0, we have h′i+1 = (φh)i+1. So h′ = φh.
Now, assume that νD(OX ) *= 0 for every nonzero OX -linear map ν : F → S(F ).

Let φ be an OX -algebra automorphism of S(F ) such that φ0|F = idF and h′ = φh. To
see that φ is unique, we just need to show that φq|F is uniquely defined for each q≥ 0.
We do it by induction. Since h′ = φh, for each q≥ 0 the following equality holds:

h′q+1 = φqh1+φq−1h2+ · · ·+φ1hq+hq+1.

Then φqD is determined by φ1, . . . ,φq−1. Since φq is OX -linear and takes values in
Sq+1(F ), it follows from our extra assumption that φq is determined.

If (X ,OX ) is a Noetherian scheme over a Noetherian Q-scheme (B,OB), if F
is a locally free sheaf on X , and if D : OX → F is an OB-derivation such that F is
generated by D(OX ) at the associated points of X , then νD(OX ) *= 0 for all nonzero
OX -linear maps ν : F → S(F ).

CONSTRUCTION 6. (Jets) Assume that D : OX → F is locally integrable, and
that the sheaf of OX -linear maps from F to S(F ) sending D(OX ) to zero has only
trivial local sections. Let U be the collection of open subspaces U ⊆ X such that D|U
is integrable. For eachU ∈U, there exist iterated Hasse derivations extendingD|U . Let
CU be the collection of these Hasse derivations. By Corollary 1, for any two h,h′ ∈ CU
there is a unique OU -algebra automorphism φh,h′ of S(F )|U such that h′ = φh,h′h. Now,
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consider the collection of all the h ∈ CU for allU ∈U. Consider also the collection of
all the φh,h′ for all U ∈ U and all h,h′ ∈ CU . If h,h′,h′′ ∈ CU , then h′′ = φh′,h′′φh,h′h.
From the uniqueness of φh,h′′ , we get φh′,h′′φh,h′ = φh,h′′ . The cocycle condition being
satisfied, the φh,h′ patch the S(F |U ) to an OX -algebra J , and the h patch to a map of OB-
algebras τ : OX → J . Since the φh,h′ do not decrease degrees, for each integer n≥ 0 the
truncated sheaves ∏n

i=0 S
i(F |U ) patch to an OX -algebra quotient J n of J . Also, since

the (φh,h′)0 are the identity maps, there is a natural map of OX -modules Sn(F )→ J n.
This map is an isomorphism for n = 0. Also, for each integer n > 0, the OX -algebra
J n−1 is a subquotient of J n, and there is a natural exact sequence,

0→ Sn(F )→ J n→ J n−1→ 0.

We say that J is the sheaf of jets of D, and that τ : OX → J is its Hasse derivation.
For each integer n ≥ 0, we say that J n is the sheaf of n-jets of D, and that the induced
τn : OX → J n is the n-th order truncated Hasse derivation.

EXAMPLE 4. Let M be a complex manifold of complex dimension m, and L a
foliation of dimension n ofM. Let w : T ∗M→ E be the surjection associated to L . Then
w induces a derivation D : OM → F , where F is the sheaf of holomorphic sections of
E. The Frobenius conditions imply that D is integrable. Also, since w is surjective, F
is generated by D(OM). Thus, applying Construction 6, we have an associated sheaf of
q-jets J q onM for each integer q≥ 0. Also we may consider the bundle of q-jets JqL of
L . Then J q is the sheaf of holomorphic sections of JqL .

Indeed, for each point p of M, there exist a neighborhood X of p in M, and
an open embedding of X in Cn×Cm−n whose composition ϕX : X → Cm−n with the
second projection defines L on X . The sheaf F |X is the pullback of the sheaf of 1-
forms on Cn, and the canonical vector fields on Cn yield a basis e1, . . . ,en of F |X such
that D=D1e1+ · · ·+Dnen, where the Di are the pullbacks of these vector fields. Since
they commute, so do the Di.

Using the D-connection γ given in Example 2, and the associated extended D-
connection T given in Construction 2, we obtain an iterated Hasse derivation hX on
X extending D|X , and given by Formula (1) for each integer q > 0 and each local
section a of F . Then the truncation in order q of hX has exactly the same form of the
canonical Hasse derivation of the sheaf of sections of the bundle of relative q-jets JqϕX .
So, patching the hX is compatible with patching the JqϕX . The patching of the latter
yields the bundle of jets JqL , and hence we get that J

q is the sheaf of sections of JqL .
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