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ASYMPTOTICS OF FRACTIONAL PERIMETER
FUNCTIONALS

AND RELATED PROBLEMS

Abstract. In this paper we review some recent results concerning the asymptotics of a frac-
tional perimeter and the regularity of the corresponding minimizers. We also provide an
elementary example of set with infinite s-perimeter.

1. Introduction

In [4] the notion of nonlocal perimeter was introduced. Namely, given s ∈ (0,1/2) and
a bounded open set Ω⊂Rn withC1,γ-boundary, for some γ ∈ (0,1), the s-perimeter of
a (measurable) set E ⊆Rn in Ω is defined as

Pers(E;Ω) :=L (E ∩Ω,(CE)∩Ω)
+L (E ∩Ω,(CE)∩ (CΩ))+L (E ∩ (CΩ),(CE)∩Ω),

(1)

where CE =Rn \E denotes the complement of E. The interactionL considered in [4]
is the following

L (A,B) :=
∫
A

∫
B

dxdy
|x− y|n+2s

for any measurable sets A and B.
We mention also [22, 23], where the author analyses some functionals related

to the one defined in (1), also in connection with fractal dimensions.
The idea behind definition (1) is that each point in E interacts with each point

in the complement of E, in such a way that the set Ω is taken into account. More
precisely, in Figure 1 we can see that Ω splits E, which is the set below the line, and
the complement of E into four parts: the black set E ∩ (CΩ), the dark gray set E ∩Ω,
the light gray set (CE)∩Ω and the white set (CE)∩ (CΩ). Then, the functional
in (1) takes into account the interactions between all these sets, with the exception of
the interaction between the black one and the white one. The reason for this is that
in [4] the authors were interested in minimizing the functional in (1), and therefore the
interaction of the two sets outside Ω is assumed as a fixed boundary datum.

Notice that, when s ∈ (−∞,0]∪ [1/2,+∞), the integrals in (1) may diverge even
for smooth sets. In the case s ! 0 the problem comes from the interaction between
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Figure 1: The sets considered in the nonlocal perimeter (1).

points x and y that are very far away from each other, while in the case s" 1/2 from the
interaction between points x and y that are very close to each other, since the contribu-
tion to the integrals in (1) of these interactions becomes unbounded. On the contrary,
when s ∈ (0,1/2), the integrals in (1) are finite, for instance, if the set E is smooth,
see [5].

As already mentioned, in [4] the minimization problem corresponding to (1)
was introduced. That is, we say that a set E is s-minimal in Ω if

Pers(E,Ω)! Pers(F,Ω)

for any measurable set F that coincides with E outside Ω, i.e. F \Ω= E \Ω.
The existence of an s-minimizer is ensured by the following result, which is

proved using the lower semicontinuity of the functional in (1) and a compactness prop-
erty, see Section 3 in [4]:

THEOREM 1. (Theorem 3.2 in [4]) Let Ω be a bounded Lipschitz domain,
and E0 ⊂ Rn \Ω be a given set. Then, there exists a set E, with E \Ω = E0 such
that

Pers(E,Ω)! Pers(F,Ω)

for any F such that F \Ω= E0.

Moreover, in [4] the authors established the Euler-Lagrange equation associated
to the functional in (1): that is, if E is an s-minimizer in Ω and x ∈Ω∩ (∂E), then

(2)
∫
Rn

χE(x+ y)−χCE(x+ y)
|y|n+2s

dy= 0.
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We remark that the integral equation in (2) is the fractional counterpart of the zero
mean curvature equation, that is the equation satisfied by classical minimal surfaces
(i.e. surfaces that minimize the classical perimeter). Therefore, the integral in (2) can
be seen as a sort of fractional mean curvature, see [1] where this notion was introduced
and compared with the classical one.

From a geometric point of view, we can say that (2) means that there is a balance
between a suitable average of the set E, centred at points of the boundary ∂E, and the
average of its complement.

In [4], equation (2) is taken in the viscosity sense for any measurable set E,
since the denominator may be singular if E is not smooth. An interesting thing is that,
setting χ̃E := χE −χCE , (2) reads

(−Δ)sχ̃E = 0 along ∂E,

we refer to [20, 10] for a basic introduction to the fractional Laplace operator.
As a consequence of the Euler-Lagrange equation (2), in [4] the authors proved

a comparison principle, namely if an s-minimizer is contained in a strip outside Ω then
it is contained in the same strip inside Ω too.

Using this comparison principle, one can see that the half-plane in
an s-minimizer in any domain Ω (see Corollary 5.3 in [4]). As far as we know, ac-
tually the half-plane is the only explicit example of s-minimizer.

Recently, the s-perimeter has attracted a lot of attention and inspired many
works in different directions, both in the pure mathematical setting (see, for instance,
the papers [3, 6, 19], where the problem of the regularity of the s-minimal surfaces was
studied) and in view of concrete applications (such as phase transition problems with
long range interactions, see [16, 17, 18, 21]).

The limits as s ↘ 0 and s ↗ 1/2 are somehow the critical cases for the s-
perimeter, due to the fact that the functional in (1) diverges as it is. Nevertheless, if
suitably rescaled, these limits seem to give useful information on the problem, con-
cerning, for instance, the regularity of the nonlocal minimal surfaces, see [6].

The paper is organized as follows. In Sections 2 and 3 we discuss the asymp-
totics of the s-perimeter when s↗ 1/2 and s↘ 0, respectively. In Section 4 we give
an example of set E which has infinite s-perimeter for any s ∈ (0,1/2) (and therefore
it does not make sense to talk about the asymptotics for such a set E). In Section 5
we review the state of the art concerning the regularity of s-minimal surfaces. Finally,
in Section 6 we recall the Bernstein problem and some related results obtained in the
nonlocal setting.

2. Asymptotic of the s-perimeter when s↗ 1/2

One of the reasons for which the functional defined in (1) is called s-perimeter relies
on the asymptotic as s↗ 1/2. Indeed, one can prove that, when s↗ 1/2, the fractional
perimeter, suitably renormalised, approaches the classical perimeter, as stated in the
following:
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THEOREM 2. ([5, 2])

i) Let α ∈ (0,1), R> 0 and sk ↗ 1/2. Suppose that E is a set with C1,α-boundary
in BR. Then,

lim
k↗+∞

(1−2sk)Persk(E,Br) = ωn−1 Per(E,Br) a.e. r ∈ (0,R).

ii) Let R> r > 0, sk ↗ 1/2 and Ek be such that

sup
k∈N

(1−2sk)Persk(Ek,BR)<+∞.

Then, up to subsequence,

χEk → χE in L1(Br),

for a suitable set E with finite perimeter in Br.

iii) Let R> r > 0, sk ↗ 1/2 and Ek be sk-minimizers in BR such that

χEk → χE in L1(BR).

Then, E is a minimizer for the perimeter in Br. Also, Ek approach E uniformly
in Br, that is for any ε > 0 there exists k0, possibly depending on r and ε, such
that if k " k0 then Ek ∩ Br and Br \ Ek are contained, respectively, in an ε-
neighbourhood of E and of Rn \E.

We observe that in the first statement i) of Theorem 2 the convergence holds
true for almost any ball, since pathological sets may exist. Namely, one can construct
a set E whose boundary hits the boundary of a ball Br and then has a segment that lies
on it. Since in the definition of the classical perimeter one considers open balls, the
part of ∂E that coincides with ∂Br is not taken into account. On the other hand, the
integrals in the definition of the s-perimeter do not “feel” the difference between open
and closed balls, and therefore also the part of ∂E that coincides with ∂Br plays a role
in the interactions. This means that for such a set E and such a ball the convergence is
not true. Anyway, notice that one can slightly decrease or increase the radius of the ball
to obtain the convergence of the s-perimeter of E into Br±ε to its classical perimeter.

Theorem 2 was proved in [5] from a geometric point of view, while in [2] the
authors proved the convergence of the fractional perimeter to the classical perimeter
as s ↗ 1/2 in a Γ-convergence setting. In both the cases the authors obtained the
(locally uniformly) convergence of s-minimizers to classical minimizers.

3. Asymptotic of the s-perimeter when s↘ 0

In order to deal with the limit as s ↘ 0 of the functional in (1), we recall that the
fractional Sobolev space Hs(Rn) is defined as

Hs(Rn) :=
{
u ∈ L2(Rn) :

|u(x)−u(y)|
|x− y| n2+s

∈ L2(Rn×R
n)

}
.

1As usual, we denote by ωn−1 := H n−1(Sn−1) the surface of the (n−1)-dimensional sphere.
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This space is endowed with the norm

‖u‖Hs(Rn) :=
(∫

Rn
|u(x)|2dx+

∫
Rn

∫
Rn

|u(x)−u(y)|2

|x− y|n+2s
dxdy

)1/2
,

where the term

(3) [u]Hs(Rn) :=
(∫

Rn

∫
Rn

|u(x)−u(y)|2

|x− y|n+2s
dxdy

)1/2

is the so-called Gagliardo seminorm, see [10] for a basic introduction to the fractional
Sobolev spaces.

Now, a first result regarding the asymptotic of the s-perimeter when s↘ 0 is the
following:

THEOREM 3. (Theorem 3 in [15]) Suppose that u ∈ Hs0(Rn) for some s0 ∈
(0,1/2). Then,

(4) lim
s↘0

s
∫
Rn

∫
Rn

|u(x)−u(y)|2

|x− y|n+2s
dxdy= ωn−1

∫
Rn

|u(x)|2dx.

This means that the Gagliardo seminorm of u converges, up to a multiplicative
constant, to the L2-norm when s↘ 0.

A proof of Theorem 3 when u is in the Schwartz space of rapidly decaying
smooth functions goes as follows (see also Remark 4.3 in [10]). For these functions
the definition in (3) agrees, up to a multiplicative constant (depending on n and s), with
the Fourier definition

[u]Hs(Rn) = c(n,s)
∫
Rn

|ξ|2s|û(ξ)|2 dξ,

where û denotes the Fourier transform of u, see [10]. The normalising constant c(n,s)
is such that

lim
s↘0

c(n,s)s= ωn−1,

see Proposition 3.4 and Corollary 4.2 in [10]. Hence, applying the Plancherel Theorem,
one has

lim
s↘0

s [u]Hs(Rn) = lim
s↘0

c(n,s)s
∫
Rn

|ξ|2s|û(ξ)|2 dξ

= ωn−1
∫
Rn

|û(ξ)|2 dξ= ωn−1‖û‖L2(Rn) = ωn−1‖u‖L2(Rn),

which is (4).
As a particular case, one can take u := χE in (4), for some set E ⊆ Ω such that

Pers0(E,Ω)<+∞ (and so χE ∈Hs0(Rn)) for some s0 ∈ (0,1/2). Since E∩(CE) =∅,
from (1) one has that

Pers(E,Ω) = L (E ∩Ω,(CE)∩Ω)+L (E ∩Ω,(CE)∩ (CΩ)) = L (E,CE),
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and so

lim
s↘0

2s Pers(E,Ω) = lim
s↘0

2sL (E,CE)

= lim
s↘0

2s
∫
E

∫
CE

dxdy
|x− y|n+2s

= lim
s↘0

s
∫
Rn

∫
Rn

χE(x)−χE(y)
|x− y|n+2s

dxdy

= lim
s↘0

s [χE ]2Hs(Rn) = ωn−1‖χE‖2L2(Rn) = ωn−1|E|,

(5)

where |E| denotes the Lebesgue measure of E.
The general case was treated in [11]. Given a set E, possibly unbounded, the

authors introduced the following parameter

(6) α̃(E) := lim
s↘0

2s
ωn−1

∫
E\B1

dy
|y|n+2s

,

called the “weighted volume of E towards infinity”, and the normalized Lebesgue mea-
sureM (E) := ωn−1|E|. Then, the result proved in [11] is the following:

THEOREM 4. (Theorems 2.5 and 2.7 in [11]) Suppose that Pers0(E,Ω) < +∞
for some s0 ∈ (0,1/2), and that the limit in (6) exists. Then,

(7) lim
s↘0

2s Pers(E,Ω) = (1− α̃(E))M (E ∩Ω)+ α̃(E)M (Ω\E).

Also, if Pers0(E,Ω) < +∞ for some s0 ∈ (0,1/2) and |E ∩Ω| -= |Ω \E|, then
the existence of the limit in (6) is equivalent to the existence of the limit in (7).

Notice that α̃(E) ∈ [0,1] and therefore the limit in (7) is a convex combination
of the normalized Lebesgue measure of the sets E∩Ω andΩ\E. In particular, if E ⊆Ω
then α̃(E) = 0 (notice that E is bounded and recall Footnote 2) and so (7) boils down
to (5).

In some sense, (7) says that the s-perimeter “localizes” in Ω when s↘ 0, be-
cause it takes into account only the Lebesgue measure of two sets which are contained
in Ω. This is not completely true, since the parameter α̃(E) in the convex combination
takes into account the contribution of E coming from infinity. Hence, the nonlocal
character of the s-perimeter is preserved also in the limit, by means of the parameter
that interpolates the two Lebesgue measures which are set in Ω.

2Notice that in (6) one can take the integral over E \BR for any R> 0, instead of E \B1. Indeed
∫
BR\B1

dy
|y|n+2s

= ωn−1
∫ R

1

ρn−1 dρ
ρn+2s

=
ωn−1
2s

(1−R−2s),

and therefore
lim
s↘0

2s
ωn−1

∫
BR\B1

dy
|y|n+2s

= 0.
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In Theorem 4 the assumption of the existence of the limit in (6) cannot be re-
moved, since the limit in (6) (and hence the limit in (7)) may not exist. Indeed, in [11]
the authors provide an example of set for which such limit does not exist (see also Sec-
tion 1.1 in [21]). Roughly speaking, the idea is constructing a set which looks like a
cone of variable opening angle: one starts with a cone of small opening in an annulus,
then changes his mind and enlarges the opening of the cone in the subsequent annulus,
and so on, alternating cones of small and big opening angles in the subsequent annuli
(see Figure 2 where the set is grossly drawn). In this way, the parameter α̃(E) “de-
tects” the different openings and this creates an oscillation of the value of α̃(E) in the
different annuli. As a consequence, the limit in (6) does not exist.

Figure 2: An example for which the limit as s↘ 0 of the fractional perimeter does not
exist.

In Theorem 4 it is also required that the set E has finite s0-perimeter for some s0 ∈
(0,1/2). We point out that this assumption cannot be dropped in general, since there
are sets that do not satisfy it (and for them the limit of the functional in (1) as s↘ 0
does not make any sense), see the subsequent Section 4.

4. Example of set with infinite s-perimeter for any s ∈ (0,1/2)

In this section we give an example of sets E and Ω for which

Pers(E,Ω) = +∞ for any s ∈ (0,1/2).

For this, we take n" 1 and a real number β such that

(8) 0< β<
2s

n−2s
.

Notice that β is well defined, since n" 1 and s ∈ (0,1/2). Moreover, for any k" 1, we
consider

(9) ik :=
Cβ
kβ+1

,
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where 0<Cβ < 1 is a constant depending on β, such that the following holds true

+∞

∑
k=1

ik = 1.

For any k " 1, we set

rk := 1−
k

∑
j=1

i j.

Thanks to (9), we have that

(10) rk =
+∞

∑
j=k+1

i j "
Cβ
kβ

,

up to relabelingCβ.
Now, for any k " 1, we consider the annulus Ak of thickness ik. Notice that

each Ak can be covered by the union of balls Bik/2(x) of radius ik/2 and centred at
points lying on the sphere of radius rk+(ik/2). Namely,

Ak =
⋃

x∈∂Brk+(ik/2)

Bik/2(x).

Since, for any k " 1 and x ∈ ∂Brk+(ik/2), the radius of the ball Bik/2(x) is ik/2<
+∞, we can apply the Vitali’s covering Theorem (see e.g. [12]), obtaining that, for
any k" 1, there exists a countable subcollection of disjoint balls Bik/2(x j), j= 1, . . .Nk,
such that

(11) Ak =
⋃

x∈∂Brk+(ik/2)

Bik/2(x)⊆
Nk⋃
j=1

B5ik/2(x j).

We claim that, for any k " 1,

(12) Nk <+∞.

For this, notice that
Nk⋃
j=1

Bik/2(x j)⊆ Ak,

and therefore

(13) cn Nk ink = Nk|Bik/2(x j)|! |Ak|,

for a suitable positive constant cn depending on n, where |Bik/2(x j)| and |Ak| denote
the Lebesgue measures of Bik/2(x j) and Ak, respectively. Since |Ak| is finite, (13) im-
plies (12).
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Moreover, we claim that

(14) Nk "C
(
rk
ik

)n−1
,

for some constant C > 0 (only depending on n). To show this, we use the Binomial
Theorem and (11) to get

|B1|rn−1k ik ! |B1| [(rk+ ik)n− rnk ] = |Ak|!
Nk
∑
j=1

|B5ik/2(x j)|=C1Nk ink ,

for some C1 > 0 depending on the dimension, and this implies (14).
Notice that from (9), (10) and (14) we have

(15) Nk "Ckn−1,

up to renaming the constantC.
Let us make the following observation. We consider the unit ball B1 and a

smooth non-empty set S1 ⊂ B1. Notice that any smooth set would do the job, we will
take a smiley face for typographical convenience in Figure 3. Since the boundary of S1
is smooth and both S1 and B1 \S1 are not empty, from Lemma 11 in [5] we obtain that

0<C∗ :=
∫
S1

∫
B1\S1

dxdy
|x− y|n+2s

<+∞.

Hence, setting Bρ the ball of radius ρ and Sρ the scaled version of S1 by a factor ρ, for
any ρ> 0, we have

∫
Sρ

∫
Bρ\Sρ

dxdy
|x− y|n+2s

=
∫
S1

∫
B1\S1

ρ2ndx̃dỹ
ρn+2s|x̃− ỹ|n+2s

=ρn−2s
∫
S1

∫
B1\S1

dx̃dỹ
|x̃− ỹ|n+2s

=C∗ρ
n−2s,

(16)

where we have used the change of variables x̃= x/ρ and ỹ= y/ρ.

Now, in each annulus Ak we have Nk disjoint balls of radius ik/2, and in each of
these balls we insert a smiley face S jk, j = 1, . . . ,Nk. We define the set E as the union
of these smiley faces, that is

E :=
+∞⋃
k=1

Nk⋃
j=1

S jk
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Figure 3: The set E with the smiley faces.

(as depicted in Figure 3). Notice that E ⊂ B1, and therefore, using (16), (9), (15)
and (8), we get

Pers(E,B1) = L (E,CE)

"

+∞

∑
k=1

Nk
∑
j=1

L (S jk,Bik/2(x j)\S
j
k)

=
+∞

∑
k=1

Nk
∑
j=1

∫
S jk

∫
Bik/2(x j)\S

j
k

dxdy
|x− y|n+2s

= C2
+∞

∑
k=1

Nkin−2sk

" C3
+∞

∑
k=1

kn−1

k(1+β)(n−2s)

= C3
+∞

∑
k=1

1
kβ(n−2s)−2s+1

= +∞,

for suitable positive constants C2 and C3. This gives the desired result.

We mention that in [11] an example in one dimension of a set with infinite s-
perimeter for any s ∈ (0,1/2) was constructed (see Subsection 3.10 there).
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5. Regularity of s-minimal surfaces

One of the main problems considered in [4] is the one of the regularity of the s-
minimizers:

THEOREM 5. (Theorem 2.4 in [4]) If E is an s-minimizer in B1, then ∂E ∩B1/2
is a C1,α-hypersurface around each of its points, possibly except a closed set Σ of
finite (n−2)-Hausdorff dimension.

We observe that the boundary of E is supposed to have dimension n−1, and so
the fact that Σ can be at most an (n−2)-dimensional object implies that it is negligible
inside ∂E. Hence, Theorem 5 says that if E is an s-minimizer then its boundary is
smooth at “most of its points”.

Anyway, as far as we know, there are no examples of s-minimizers with a non-
empty singular set. One may be tempted to say that, for instance, the classical cone in
the plane

C := {(x,y) ∈R
2 : xy> 0}

is an s-minimizer, since it satisfies the Euler-Lagrange equation (2). But in fact, there
is an original idea of L. Caffarelli (explained in Section 1.2 of [21]) which shows that
the cone C is not s-minimal. Notice that this says that the s-minimality implies, but is
not equivalent to, the Euler-Lagrange equation (2).

Even though the regularity obtained in Theorem 5 is only C1,α, in [3] it was
proved by non trivial bootstrap arguments that one can improve it towards C∞.

Now, concerning the regularity of minimizers of the functional in (1), at the
moment, there are only other two results in two different directions: the first result
says that one can recover the classical minimal surface theory in any dimensions but
only when s is sufficiently close to 1/2, while the second result is valid for any s in the
range (0,1/2) but only in the plane.

In particular, starting from Theorem 2, in [6] the authors proved the following:

THEOREM 6. ([6]) For any n ∈ N there exists εn ∈ (0,1/2] such that if s ∈
((1/2)− εn,1/2) then s-minimal surfaces are “as regular as the classical minimal
surfaces”, that is

• if n! 7, then any s-minimal surface is locally C∞,

• if n = 8, then any s-minimal surface is locally C∞ except, at most, at countably
many isolated points,

• if n > 8, then any s-minimal set is locally C∞ outside a closed set Σ ⊂ ∂E with
finite (n−8)-Hausdorff dimension.

Although there are no examples of singular sets in any dimension and for any s∈
(0,1/2), as far as we know, Theorem 6 seems to be the only improvement of Theorem 5
about the regularity of s-minimal surfaces valid in any dimension (even if only for s
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close to 1/2). On the other hand, the proof of Theorem 6 is based on a compactness
argument, and therefore the value of the quantity εn is not explicit (we only know that
it is a universal constant that depends only on the dimension).

As we already said, the proof of Theorem 6 relies on the asymptotic of the
functional in (1) as s↗ 1/2. Although the proof is very technical and delicate, morally,
the idea is that, since the s-perimeter converges to the classical perimeter as s↗ 1/2,
the s-minimal surfaces inherit the regularity of the classical minimal surfaces when s
is sufficiently close to 1/2. For this, some care is needed in order to obtain uniform
regularity estimates in s, which can pass to the limit.

Concerning the second result that we mentioned about the regularity of
s-minimal surfaces, it is contained in [19] and states the following:

THEOREM 7. ([19]) Let n = 2. Suppose that R > r > 0 and that E is an s-
minimal set in BR, then (∂E)∩Br is a C∞-curve.

Also, if E is an s-minimal set in Bρ for every ρ> 0, then ∂E is a straight line.

Theorem 7 says that in the plane any s-minimal surface is smooth, and this is
exactly what happens in the classical case. In particular, as a byproduct, one obtains an
improvement of Theorem 5: the singular set Σ has finite (n−3)-Hausdorff dimension,
instead of n−2. Still, we do not know if this is optimal, see Theorem 6.

A consequence of the above result is also that in the plane global s-minimal sets
(i.e. s-minimal sets in any ball) are straight lines.

Now, it seems very difficult to obtain further information from the asymptotic
as s↘ 0, since for s close to 0 the minimizers of the s-perimeter seem to be somehow
related to the minimizers of the Lebesgue measure (see Theorem 4), which can have
very wild boundary.

On the other hand, in [7] the authors proved that when s is close to 0 all sym-
metric cones are unstable if the dimension n ! 6 and stable if n = 7. This tells us
that, when n ! 6, a symmetric cone is not an s-minimizer, but, still, we are not able
to conclude that the singular set Σ in Theorem 5 is empty, since the example of a non-
smooth s-minimizer can be a non symmetric cone.

We also mention a very recent paper [8], where the authors constructed an ex-
ample of surface that satisfies the equation in (2) for s sufficiently close to 1/2, that is
the so-called “nonlocal catenoid” (see Theorem 1 there).

6. The Bernstein problem

The regularity theory for minimal surfaces is related to the Bernstein problem: if the
graph of a function on Rn is a minimal surface in Rn+1, is it true that the function is
affine?

In the classical case, the result is true in dimension n! 8 and false when n" 9,
see e.g. [13].

In the nonlocal setting, there is only a very recent paper [14], where the authors
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were able to extend a result of De Giorgi for minimal surfaces (see [9]), showing that
Bernstein’s Theorem holds true in dimension n+ 1 if there are no singular s-minimal
cones in Rn.

For this, we recall that a s-minimal surface E is a “s-minimal graph” if it can
be written as a global graph in some direction. Namely, up to rotation, there exists a
function u :Rn →R such that

E := {(x, t) ∈R
n×R : t < u(x)}.

Then, we have the following:

THEOREM 8. (Theorem 1.2 in [14]) Let E := {(x, t) ∈ Rn×R : t < u(x)} be
a s-minimal graph, and suppose that there are no singular s-minimal cones inRn. Then
u is an affine function.

This means that if the only s-minimal cone in Rn is the half-space and E is
a s-minimal graph, then E is a half-space.

If n= 1 in Theorem 8 we obtain a particular case of Theorem 7.
If n = 2, since there are not s-minimal cones in the plane (see Theorem 7),

as a byproduct of the general result in Theorem 8 one obtains that s-minimal graphs
have C∞-boundary in R3. Unfortunately, this is not enough to further improve Theo-
rem 5, that is we cannot say that the singular set Σ has (n− 4)-Hausdorff dimension,
because of the assumption that E is a s-minimal graph.

On the other hand, combining Theorems 6 and 8 we have that, when s is suffi-
ciently close tp 1/2, Bernstein Theorem holds true up to dimension 8.

References

[1] N. ABATANGELO, E. VALDINOCI, A notion of nonlocal curvature, Numer. Funct. Anal.
Optim., 35 (2014), no. 7-9, 793–815.

[2] L. AMBROSIO, G. DE PHILIPPIS, L. MARTINAZZI, Γ-convergence of nonlocal perimeter
functionals, Manuscripta Math. 134 (2011), 377–403.

[3] B. BARRIOS, A. FIGALLI, E. VALDINOCI, Bootstrap regularity for integro-differential
operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa Cl.
Sci. (5) 13 (2014), no. 3, 609–639.

[4] L. CAFFARELLI, J.-M. ROQUEJOFFRE, O. SAVIN, Nonlocal minimal surfaces, Comm.
Pure Appl. Math. 63 (2010), 1111–1144.

[5] L. CAFFARELLI, E. VALDINOCI, Uniform estimates and limiting arguments for nonlocal
minimal surfaces, Calc. Var. Partial Differential Equations 41 (2011), no. 1–2, 203–240.

[6] L. CAFFARELLI, E. VALDINOCI, Regularity properties of nonlocal minimal surfaces via
limiting arguments, Adv. Math. 248 (2013), 843–871.

[7] J. DÁVILA, M. DEL PINO, J. WEI, Nonlocal minimal Lawson cones, Preprint (2013),
http://arxiv.org/abs/1302.0276

[8] J. DÁVILA, M. DEL PINO, J. WEI, Nonlocal s-minimal surfaces and Lawson cones,
Preprint (2014), http://arxiv.org/pdf/1402.4173.pdf



16 S. Dipierro

[9] E. DE GIORGI, Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa (3)
19 (1965), 79–85.

[10] E. DI NEZZA, G. PALATUCCI, E. VALDINOCI, Hitchhiker’s guide to the fractional
Sobolev spaces, Bull. Sci. math. 136 (2012), no. 5, 521–573.

[11] S. DIPIERRO, A. FIGALLI, G. PALATUCCI, E. VALDINOCI, Asymptotics of the s-
perimeter as s↘ 0, Discrete Contin. Dyn. Syst. 33 (2013), no. 7, 2777–2790.

[12] L. C. EVANS, R. F. GARIEPY, Measure Theory and Fine Properties of Functions, CRC
press (1992), pp. 27.

[13] A. FARINA, E. VALDINOCI, The state of the art for a conjecture of De Giorgi and related
problems, Recent progress on reaction-diffusion systems and viscosity solutions, World
Sci. Publ., Hackensack, NJ (2009).

[14] A. FIGALLI, E. VALDINOCI, Regularity and Bernstein-type results for nonlocal minimal
surfaces, J. Reine Angew. Math., DOI 10.1515/crelle-2015-0006.

[15] V. MAZ’YA, T. SHAPOSHNIKOVA, On the Bourgain, Brezis, and Mironescu theorem con-
cerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), 230–
238.

[16] G. PALATUCCI, O. SAVIN, E. VALDINOCI, Local and global minimizers for a variational
energy involving a fractional norm, Ann. Mat. Pura Appl. (4) 192 (2013), no. 4, 673–718.

[17] O. SAVIN, E. VALDINOCI, Density estimates for a variational model driven by the
Gagliardo norm, J. Math. Pures Appl. (9) 101 (2014), no. 1, 1–26.

[18] O. SAVIN, E. VALDINOCI, Γ-convergence for nonlocal phase transitions, Ann. Inst. H.
Poincaré Anal. Non Linéaire 29 (2012), 479–500.

[19] O. SAVIN, E. VALDINOCI, Regularity of nonlocal minimal cones in dimension 2, Calc.
Var. Partial Differential Equations 48 (2013), no. 1–2, 33–39.

[20] L. SILVESTRE, Regularity of the obstacle problem for a fractional power of the Laplace
operator, Ph.D. Thesis, University of Texas at Austin (2005).

[21] E. VALDINOCI, A fractional framework for perimeters and phase transitions, Milan J.
Math. 81 (2013), no. 1, 1–23.

[22] A. VISINTIN, Nonconvex functionals related to multiphase systems, SIAM J. Math. Anal.
21 (1990), 1281–1304.

[23] A. VISINTIN, Generalized coarea formula and fractal sets, Japan J. Industrial Appl. Math.
8 (1991), 175–201.

AMS Subject Classification: 28A75, 49Q05, 49Q20, 60G22

Serena DIPIERRO,
Maxwell Institute for Mathematical Science and School of Mathematics
University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road
Edinburgh EH9 3FD, UNITED KINGDOM
e-mail: serena.dipierro@ed.ac.uk

Lavoro pervenuto in redazione il 29.01.2015.


