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FLOW IN SOILS WITH HYSTERESIS

Abstract. Hysteresis in single–porosity flow through homogeneous unsaturated medium and
in double–porosity model of Darcian flows through two distinct pore systems both treated as
homogeneous media is here illustrated. Darcy’s law and equation of continuity lead to non-
linear diffusion equation for single–porosity flow and to two coupled systems of nonlinear
partial differential equations for double–porosity model. The effects of hysteresis in the rela-
tion between pressure and water content are represented by Preisach hysteresis operator. The
existence results of the initial–boundary–value problems for both models with soil–moisture
Preisach hysteresis term are summarized here.

1. Introduction

Unsaturated fluid flow through porous media is an important topic in hydrology, agron-
omy and soil physics. Fluid movement in unsaturated soil is subject to hysteresis. The
soil–moisture hysteresis is observed in cycles of wetting–drying processes in soil. Thus
hysteretic effects are in the relation between the volumetric water content and the pres-
sure and are modeled by Preisach operator. Phenomenon of hysteresis has been inves-
tigated by different authors and for distinct applications. Already in 1930, Haines [12]
had postulated that drying occurs at a higher value of pressure as the narrower section
of the pores governs this process, while wetting happens at a lower pressure value orig-
inated by the wider section of the pores. This phenomenon has also been explained
in these terms by using the concept of a "pore domain". The simplest version of the
domain theory is the so called independent domain theory, where a domain consists of
a unique pore of a given geometry acting independently from others, i.e., pores behave
as if each one was directly connected to the outer boundary sample. This theory was
conceived by Everett [7, 8, 9]. The independent domain model, which is essentially the
Preisach model, was adopted by Poulovassilis [23], Mualem [20] and Parlange [22].

Concerning the single–porosity flow equation with excluded hysteresis relation,
in [25], the authors proved the existence of a strong solution. There are papers devoted
to this equation taking into consideration the hysteresis behaviour [2, 3, 14, 19]. In [2]
existence result with hysteresis operator of Preisach type is established. Paper [3] deals
with existence and asymptotic behaviour of solution. In paper [19] the wellposedness
of the problem is shown. In [14] the existence of the solution to the single–porosity
model of water flow with Preisach hysteresis operator was proved.

In [1], the author proved the global existence of weak solutions to the double–
porosity (dual) model with mixed Dirichlet–Neumann boundary conditions. The ex-
istence and uniqueness of the solution to the dual water flow through porous media
without hysteresis and with unilateral boundary conditions were obtained in [4]. In
[15], the authors proved the existence of the solution to the model including dual ap-
proach, hysteresis as well as the unilateral boundary conditions.

The paper is organized as follows. In Section 2, we briefly review some basic
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definitions in the unsaturated flow and recall some basic results concerning the hystere-
sis operators. In Section 3 we introduce the equations representing single–porosity and
double–porosity flows through porous media. The existence of weak solutions to the
model equations are summed up in Section 4.

2. Preliminaries

2.1. Soil structure. Soil–moisture hysteresis

A soil is a porous medium which consists of particles of varying sizes. These particles
join together and the spacings among them are known as pore spaces (or voids), as
shown in Figure 1.

Figure 1: Schematic picture of the microstructure of a porous medium. Pore spaces
can be either filled, partially filled or empty depending on the pressure head.

The soil is saturated if the pore spaces are completely filled with water. We
call the water motion in this situation saturated flow. In the unsaturated case there are
voids filled with air and the flow is said to be unsaturated. However, partially saturated
zones may occur when all pores within them are filled with water. Then the interfaces
between the saturated and unsaturated regions of the soil become free boundaries. The
flow is termed saturated–unsaturated.

Water movement in unsaturated soil is subject to hysteresis, although its effects
are often masked by heterogeneities. The hysteretic effect may be attributed to several
factors [5, 13]:

1) the effects of nonhomogeneous pore size distribution, often referred as "ink–
bottle effect",

2) entrapped air, which refers to the formation of closed air bubbles during wetting,
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3) capillary condensation, which is related to adsorbed water films on the surfaces
of fine–grained particles,

4) contact angle hysteresis, which is related to the difference between drying and
wetting contact angles at the solid–water interface.

It was shown experimentally that there is hysteresis in the relationship between
soil pressure and water content, see [12, 21, 24]. The hysteretic effect is observed in
wetting–drying processes, i.e., is evident in the soil–water characteristic curve.

We can consider pore spaces as capillary tubes. The bulge in the centre of the
tube can be considered as the pore. Now each pore is connected to a neighbouring pore
by means of a pore throat with narrow end of the capillary tube (Figure 2). When an
empty tube is placed into a water bath, water will rise up to a point above the waist
of the tube until the water reaches its equilibrium state (wetting process). Likewise
when a tube filled with water is placed into the same water bath, the water level will
be moving down towards the waist until the water reaches its equilibrium state (drying
process).

Figure 2: Simple model of the pore spaces represented by capillary tubes.

2.2. Hysteresis operators

The play operator

Now we briefly recall definition and properties of the play operator, the simplest ex-
ample of continuous hysteresis operator. Let r > 0 be a given parameter. For a given
input function u ∈ C([0,T ]) and initial condition x0r ∈ [−r,r], we define the output
ξ := Pr[x0r ,u] ∈C([0,T ])∩BV (0,T ) of the play operator

Pr : [−r,r]×C([0,T ])→C([0,T ])∩BV (0,T )
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as the solution of the variational inequality in Stieltjes integral form
∫ T

0
[u(t)−ξ(t)− y(t)]dξ(t)! 0, ∀y ∈C([0,T ]), max

0!t!T
|y(t)|" r,

|u(t)−ξ(t)|" r, ∀t ∈ [0,T ],
ξ(0) = u(0)− x0r .(1)

In order to model a more complex hysteresis behavior, we consider the whole family
of play operators Pr parametrized by r > 0, which can be interpreted as a memory
variable. More precisely, following [16, Section II.2], we introduce the configuration
space as well as its subspaces

(2) Λ :=
{
λ ∈W 1,∞(0,∞);

∣∣∣
dλ(r)
dr

∣∣∣" 1 a.e. in (0,∞)
}
,

(3) ΛK := {λ ∈ Λ;λ(r) = 0 for r ! K}, Λ0 :=
⋃
K>0

ΛK .

The functions λ ∈ Λ are called memory configurations. For a given λ ∈ Λ, we define
the initial condition x0r by formula x0r :=Qr(u(0)−λ(r)), where Qr :R→ [−r,r] is the
projection

Qr(x) := sign(x)min{r, |x|}=min{r,max{−r,x}}.

This implies that the initial configuration of the play system depends on λ and on u(0).
So we can introduce the following more convenient notation

(4) pr[λ,u] := Pr[x0r ,u],

for any λ ∈ Λ, u ∈C([0,T ]) and r > 0.
The reason for introducing the space Λ is that for every fixed t ∈ [0,T ] and

λ ∈ Λ, the state mapping r→ pr[λ,u](t) belongs to Λ.
In [18], the play operator is definied in the space GR(0,T ) of right–continuous

regulated functions. This is the space of functions u : [0,T ]→ R which admits the left
limit u(t−) at each point t > 0 and the right limit u(t+) exists and coincides with u(t)
at each point t ! 0. The space GR(0,T ) is endowed with the norm

(5) ‖u‖[0,T ] = sup{|u(τ)|;τ ∈ [0,T ]} for u ∈ GR(0,T ),

hence GR(0,T ) is a Banach space. By [18, Theorem 2.1 and Proposition 2.4], this is
Lipschitz continuous in the sense that

(6) |pr[λ,u](t)− pr[µ,v](t)|"max{|λ(r)−µ(r)|,‖u− v‖[0,T ]}

for any λ,µ∈ Λ, u,v ∈ GR(0,T ) and t ∈ [0,T ]. For step functions u ∈ GR(0,T ) of the
form

(7) u(t) =
m

∑
n=1

un−1m χ[tn−1,tn)(t)+ummχ{T}(t),
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where 0= t0 < t1 < .. . tm = T is a given division of [0,T ], we have in particular

(8) pr[λ,u](t) =
m

∑
n=1

ξn−1m (r)χ[tn−1,tn)(t)+ξmm(r)χ{T}(t),

where χω(t) is the characteristic function of a set ω⊂ [0,T ], and

(9) ξ0m(r) = P[λ,u0m](r), ξnm(r) = P[ξn−1m ,unm](r),

with P : Λ×R→ Λ defined as

(10) P[λ,v](r) =max{v− r,min{v+ r,λ(r)}}.

The Preisach operator

Now we briefly recall definition and some basic properties of the Preisach operator. Let
us introduce the Preisach half–plane, defined as

(11) R
2
+ := {(r,v) ∈ R

2 : r > 0}

and assume that a function ψ ∈ L1loc(R
2
+) (the Preisach density) is given with the fol-

lowing property.

ASSUMPTION 1. There exist β1 ∈ L1loc(0,∞), such that

0" ψ(r,v)" β1(r) for a.e. (r,v) ∈ R2+.

We put

(12) b1(K) :=
∫ K

0
β1(r)dr for K > 0, g(r,v) :=

∫ v

0
ψ(r,x)dx for (r,v) ∈ R2+

and define the Preisach operator as follows.

DEFINITION 1. Let ψ ∈ L1loc(R
2
+) be given and let g be as in (12). Then the

Preisach operatorW :Λ0×GR(0,T )→GR(0,T ) generated by the function g is defined
by the formula

(13) W [λ,u](t) :=
∫ ∞

0
g(r, pr[λ,u](t))dr =

∫ ∞

0

∫ pr [λ,u](t)

0
ψ(r,x)dxdr

for λ ∈ Λ0, u ∈ GR(0,T ) and t ∈ [0,T ].

As a counterpart of [16, Section II.3, Proposition 3.11], we have the following

PROPOSITION 1. Let Assumption 1 be satisfied and let K > 0 be given. Then
for every λ,µ∈ ΛK and u,v ∈ GR(0,T ) such that ‖u‖[0,T ],‖v‖[0,T ] " K, the Preisach
operator (13) satisfies

‖W [λ,u]−W [µ,v]‖[0,T ] "
∫ K

0
|λ(r)−µ(r)|β1(r)dr+b1(K)‖u− v‖[0,T ] ∀t ∈ [0,T ].
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We finally quote the Hilpert inequality which will be used to establish the
uniqueness of the solution.

PROPOSITION 2. Let W be a Preisach operator (13) satisfying Assumption
1. For given u1,u2 ∈ W 1,1(0,T ), λ1,λ2 ∈ Λ0 put ξir := pr[λ,u], wi := W [λi,ui] =∫ ∞
0 g(r,ξir)dr, i= 1,2. Then for a.e. t ∈ (0,T ) we have

(14)
d
dt
(w1(t)−w2(t)) H(u1(t)−u2(t))!

d
dt

∞∫

0

(g(r,ξ1r (t))−g(r,ξ2r (t))+ dr,

where H is the Heaviside function.

In our equation, both the input function and the initial memory configuration
depend on the space variable x. If λ(x, ·) belongs to Λ0 and u(x, ·) belongs to C([0,T ])
for (almost) every x, then we can define

(15) W [λ,u](x, t) :=
∫ ∞

0
g(r, pr[λ(x, ·),u(x, ·)](t))dr.

In the following we will often write W (u) instead of W [λ,u] for brevity or when λ is
clear from the context.

We conclude this subsection with the convexification of the Preisach operator,
i.e., that in a certain region, the convexity of the loops is satisfied (see [16, Section II.4,
Proposition 4.22]).

Let R> 0 be fixed, set

DR := {(r,v) ∈ R
2
+ : |v|+ r " R}.

In addition to Assumption 1 we prescribe the following conditions.

ASSUMPTION 2.

1. ∂ψ
∂v ∈ L∞loc(R

2
+);

2. AR := inf{ψ(r,v);(r,v) ∈ DR}> 0.

Furthermore, denote

CR := sup
{∣∣∣∣

∂
∂v
ψ(r,v)

∣∣∣∣ ;(r,v) ∈ DR

}
.

Taking possibly a smaller R> 0, if necessary, we may assume that

(16) KR :=
1
2
AR−RCR > 0.

We modify the density ψ outside DR and set

(17) ψR(r,v) =






ψ(r,v) if (r,v) ∈ DR,
ψ(r,−R+ r) if v<−R+ r, r " R,
ψ(r,R− r) if v> R− r, r " R,
ψ(R,0) if r > R.
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We define the convexified Preisach operator WR by the formula

(18) WR[λ,u](t) =
∫ ∞

0

∫ pr [λ,u](t)

0
ψR(r,v)dvdr

for λ ∈ Λ0 and u ∈W 1,1(0,T ). It has the property that all increasing trajectories of WR
are convex and all decreasing trajectories are concave, see [6]. This plays an important
role in higher order energy inequalities.

2.3. Kirchhoff transformation

We apply the Kirchhoff transformation:

K : p )→ u :=
p∫

0

k̃(s)ds.

Since k̃(s) is positive, this transformation is one–to–one with K −1 Lipschitz continu-
ous. We introduce a new variable, u := K (p) and define

(19) ∇u= ∇K (p) = k̃(p)∇p,

(20) k(u) = k̃(K −1(u)),

(21) θ= W̃ [λ,K −1(u)].

REMARK 1. By [17, Theorem 4.17], the mapping u )→ W̃ [λ,K −1(u)] is again
a Preisach operator, W [λ, ·] = W̃ [λ,K −1(·)].

3. Model formulation

We assume that the porous medium is rigid, homogeneous and isotropic, that the fluid
(water) is inviscid and incompressible. Let Ω be a bounded domain in Rn, n = 1, 2
or 3, with a Lipschitz boundary ∂Ω, representing the region occupied by the porous
medium, see Figure 3. The boundary of Ω is divided into three parts, namely Γ1 the
impervious part, Γ2 the part in contact with water and Γ3 the part in contact with open
air. For a positive T we denote Q = Ω× (0,T ), S1 = Γ1× (0,T ), S2 = Γ2× (0,T ),
S3 = Γ3× (0,T ), ST = ∂Ω× (0,T ).

3.1. Single–porosity model

The law by which water flow through porous media can be described was found by
Darcy experimentally. The law yields the following relation between the flux q of
water inside the porous medium, pressure p and hydraulic conductivity k̃

(22) q=−k̃∇(p+ρgz),
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Figure 3: A porous dam with two reservoirs.

where z is upward oriented unit vertical vector, g is the gravity acceleration and ρ is the
density of the water. Combining the Darcy’s law with the equation of continuity, we
obtain the equation

(23) ∂tθ−∇ · [̃k∇(p+ρgz)] = f ,

where f is water source term ( f > 0), or sink term ( f < 0) and θ is volumetric water
content (or simply soil moisture). The lowest value that θ can take is θr, the resid-
ual moisture content, which is the quantity that remains in a soil after any drainage
imposed by the gravitational forced has ceased, and θs is the saturation volumetric
moisture content. When the soil matrix is perfectly dried then θ = 0, when the ma-
trix is fully saturated with water, then θ = θs < 1 and finally for in–between states
the matrix contains both air and water. Hence θ is bounded between θr and θs, i.e.,
0< θr " θ" θs < 1.

The constitutive relation between the volumetric water content θ and the pres-
sure p is typically represented by a relation of the form

(24) θ(x, t) ∈ h(p)(x, t),

where h : R→ [0,1] is a maximal monotone graph as in Figure 4.
The relation (24) is oversimplified. Porous media exhibit hysteresis for cycle

of soil wetting–drying process. Hysteretic behaviour means that at any point x from
the flow domain and any instant t, the soil moisture depends not only on the pressure,
but also on the initial value of the soil moisture and on the previous evolution of the
pressure at the same point.

Instead of relation (24) the hysteretic relation between volumetric water content
θ and the pressure p is taken into account, i.e., θ(x, t) = W (p)(x, t), see Figure 5.
Hysteresis is here represented by the Preisach operator.



Flow and hysteresis 65

Figure 4: Water content versus pressure
constitutive relation without hysteresis.

Figure 5: Water content versus pressure
constitutive relation with hysteresis.

Suitable boundary conditions to equation (23) on the three boundary sets are
considered:

−k̃∇(p+ρgz) ·ν= 0 on S1,(25)
p= p̂ on S2,(26)






p" 0
−k̃∇(p+ρgz) ·ν! 0

p[−k̃∇(p+ρgz)] ·ν= 0
on S3.(27)

Here, ν denotes the outward normal unit vector. The condition (25) means that there
is no flux through the impervious part. This condition may be replaced by a nonzero
flux condition, for example −k̃∇(p+ρgz) ·ν= µ(p− p̃), where µ> 0 is constant and
p̃ is prescribed outer pressure. Hence, if the outer pressure p̃ is higher than the inner
pressure p, the fluid flows in and vice versa. The condition (26) is Dirichlet boundary
condition, i.e., the case where p is prescribed equal to p̂ and p̂ is non–negative function
defined on S2. If p̂ = 0, i.e., p = 0, the boundary is considered to be fully saturated.
The condition (27) says that because of capillary force the pressure p is negative. In
this case there is no flow across this part of the boundary. On the other hand where the
pressure vanishes on S3 water can only flow outward.

3.2. Dual porosity model

Flow in structured porous media is frequently described using dual porosity models.
Such an approach assumes that the medium consists of two distinct pore homogeneous
systems with separate hydraulic properties, the network of fractures and the matrix pore
system. Variably saturated flow is considered for both, the fractures and the matrix
pore system. The transfer of water across the fracture–matrix interface is described
macroscopically using a first–order coupling term [10]. Darcian water flow in the dual
porosity medium is governed by the following system of equations [10, 11]

(28)





(θ1)t =

(
k̃1(p1)(p1)z

)

z
+ [̃k1(p1)]z−αw

(p1−p2)
ω +q1,

(θ2)t =
(
k̃2(p2)(p2)z

)

z
+ [̃k2(p2)]z+αw

(p1−p2)
1−ω +q2,
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where the subscript 1 and 2, respectively, denotes the subsystem of fractures and matrix
blocks, respectively, ω is a volume fraction, q1 and q2 are sink terms, αw is the first
order mass transfer coefficient, k̃1 and k̃2 are unsaturated hydraulic conductivities, z
is a position coordinate measured vertically upwards. In (28) we assume a hysteretic
relation described by the Preisach operator, i.e. θi(z, t) =Wi[λi, pi](z, t), where i= 1,2.
Boundary conditions are determined analogously to the case of single–porosity model,
i.e, boundary conditions of Dirichlet type (z= 0)

(29) pi = 0

in the case of the fully–saturated boundary (water table). In the case of unsaturated–
saturated flows, the unilateral boundary conditions (z= !, !> 0) are prescribed

(30)






pi " 0,
k̃i(pi)(pi+ z)z " 0,

pi
[
k̃i(pi)(pi+ z)z

]
= 0.

If the boundary is unsaturated, (30) yields a no flow boundary condition, and in the
saturated case it acts as the Dirichlet boundary of a zero pressure head.

4. Existence results

4.1. Single–porosity flow

Applying the Kirchhoff transformation to the equation (23) without sink term and using
notation (19)–(21), we obtain the following equation

(31) ∂tθ= ∇ · [∇u+ k(u)ρgz].

The paper [14] discusses equation (31) without gravity term, i.e,

(32) ∂tθ= ∇ ·∇u,

and with the nonzero flux boundary condition

(33) ∇u ·ν= ũ,

on ∂Ω, ũ ∈ L∞(∂Ω× (0,T )) is a given outer pressure.
The following problem is solved.

PROBLEM 1. Let us consider a Preisach hysteresis operator w := W [λ,u] and
let u0 ∈ L2(Ω), λ : Ω→ Λ be given initial data. We search for a function u such that
u(x,0) = u0(x) a.e. in Ω and for any φ ∈ H1(Ω), and for a.e. t ∈ (0,T ) we have

(34)
∫
Ω

∂w
∂t

φdx+
∫
Ω
∇u∇φdx=

∫
∂Ω
ũφdσ
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The result is stated as follows.

THEOREM 1. Let us assume operator W be the Preisach hysteresis operator
introduced in (15) and satisfying Assumptions 1 and 2. And let R > 0 be fixed as in
Subsection 2.2. Let K ∈ [0,R] and λ :Ω→ΛK be given. Moreover ũ∈ L∞(∂Ω×(0,T )),
ũt ∈ L2(∂Ω× (0,T )), u0 ∈ H1(Ω), w0 ∈ L2(Ω) and compatibility condition∫

Ω
∇u0(x)∇φ(x)dx−

∫
∂Ω
ũ(x,0)φ(x)dσ= 0

holds for every φ∈H1(Ω). Set α :=max{‖u0‖H1(Ω),‖ũ‖L∞(∂Ω×(0,T )),‖ũt‖L2(∂Ω×(0,T ))}.
Then there exists a constant β> 0 such that if α" β, then Problem 1 has a unique so-
lution such that

u ∈C0(Q),
ut ∈ L2(0,T ;V∗),

where V∗ := {u ∈V :
∫
Ω u= 0} is the space of functions with null average in Ω.

Proof. Existence of a solution is proved via time discretization, derivation of a priori
estimates and using suitable energy inequalities, see [14]. To prove uniqueness we
suppose that Problem 1 has two solutions u1, u2. We write equation (34) first for u1,
then for u2. We substract the two equations and test by φ= Hm(u1−u2), where Hm is
an approximation of the Heaviside function defined as

Hm(ε) =






1, ε! m,
ε
m , 0< ε< m,
0, ε" 0.

We obtain∫
Ω
∂t(w1−w2)Hm(u1−u2)dx+

∫
Ω
∇(u1−u2)∇Hm(u1−u2)dx= 0.

Since Hm is nondecreasing, we have∫
Ω
∇(u1−u2)∇Hm(u1−u2)dx! 0,

thus ∫
Ω
∂t(w1−w2)Hm(u1−u2)dx" 0.

Now let us pass to the limit for m→ 0 to obtain
∫
Ω
∂t(w1−w2)H(u1−u2)dx" 0.

By Proposition 2 we have

d
dt

∫
Ω

∞∫

0

(g(r,ξ1r (t))−g(r,ξ2r (t))+ drdx" 0.
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Interchanging the roles of u1 and u2 we conclude that

0!
d
dt

∫
Ω

∞∫

0

(g(r,ξ1r (t))−g(r,ξ2r (t))+ drdx+
d
dt

∫
Ω

∞∫

0

(g(r,ξ1r (t))−g(r,ξ2r (t))− drdx

=
d
dt

∫
Ω

∞∫

0

|g(r,ξ1r (t))−g(r,ξ2r (t)|drdx.

Thus, the uniqueness of the weak solution follows, i.e., u1 = u2.

4.2. Dual porosity flow

Let T > 0 and ! > 0 be the fixed values, Ω = (0,!), Q = Ω× (0,T ). Applying the
Kirchhoff transformation to the system (28)–(30), the resulting system we are going to
solve consists of the following equations (i= 1,2):

(wi)t − (ui)zz− [ki(ui)]z = Fi(u)+qi in Q,(35)
ui(0, t) = 0 in (0,T )(36)

and

(37)






ui " 0
(ui)z+ ki(ui)" 0

ui [(ui)z+ ki(ui)] = 0

∣∣∣∣∣∣
z=!

in (0,T ),

where

ki(ui) = k̃i(κ−1i (ui)),(38)

F1(u1,u2) =−αw
κ−12 (u2)−κ−11 (u1)

ω
,(39)

F2(u1,u2) = αw
κ−12 (u2)−κ−11 (u1)

1−ω
,(40)

wi = W̃i[λi,κ
−1
i (ui)](41)

and u = [u1,u2]. Here we suppose that all functions in (35)–(37) are smooth enough.
We set ck the Lipschitz constant of k = [k1,k2] and cF the Lipschitz constant of F =
[F1,F2]. Let us define the closed and convex set

(42) K :=
{
v ∈ V; v j(!)" 0, j = 1,2

}
,

where V be a closure of the space
{
v ∈C∞(Ω)2; v(0) = 0

}
in the norm ofW 1,2(Ω)2.

The following existence result was stated and proved in [15]:
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DEFINITION 2. A vector function u∈ L2((0,T );K ), such that ut ∈ L2((0,T );V),
is a variational solution to the system (35)–(37) iff

(43)
∫ T

0
〈wt ,ϕ−u〉dt+

∫
Q
uz · (ϕ−u)z dQ+

2

∑
i=1

∫
Q
ki(ui)(ϕi−ui)z dQ

!

∫
Q
F(u) · (ϕ−u) dQ+

∫
Q
q(z, t) · (ϕ−u) dQ

holds for all ϕ ∈ L2((0,T );K ), u(0) = u0 and w(0) = w0 a.e. in Ω.

THEOREM 2. Let us assume wi(z, t) = Wi[λi,hi](z, t) is the Preisach hysteresis
operator of the form (15) and satisfying Assumptions 1 and 2. And let R> 0 be fixed as
in Subsection 2.2. Let K ∈ [0,R] and λ :Ω→ΛK be given. Moreover q1,q2 ∈ W 1,2(Q),
u0 ∈ V and the following compatibility condition

(44)
∫
Ω
u0z (z) · (v(z))z dz+

2

∑
i=1

∫
Ω
ki(u0i (z))(vi(z))z dz

−
∫
Ω
F(u0(z)) ·v(z) dz+

∫
Ω
q(z,0) ·v(z) dz= 0

holds for every v ∈ V. Set γ := max{‖u0‖V,‖q‖L2(Q)2 ,‖qt‖L2(Q)2 ,cF ,cK}. Then there
exists γ1 > 0, such that provided γ " γ1 there exists the variational solution
u ∈ L2((0,T );K ) to the system (35)–(37), such that ut ∈ L2((0,T );V).
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