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ON HEINZER-ROITMAN RINGS

Abstract. In this paper, we study commutative rings in which every regular maximal ideal is
finitely generated provided some of its power is 2-generated. This notion is raised by Heinzer
and Roitman in an integral domain [19, Question 3.1]. Roitman shows that coherent domains
satisfy this property in 2001. We investigate the transfer of this notion to direct products,
trivial ring extensions, pullbacks, and the amalgamation of rings. Our results generate new
families of examples of non-coherent rings (with zerodivisors) satisfy this condition.
Keywords: HR-ring, power of maximal ideal, trivial rings extension, amalgamated alge-

bra along an ideal.

1. Introduction

All rings in this paper are commutative with unity. First, we consider the following
question: Suppose that some power Mn of the maximal ideal M of a ring R is finitely
generated. Does it follow thatM is finitely generated?

This question is raised by Robert Gilmer in [14, page 74] and was mentioned in
a talk given by Robert Gilmer at the AMS meeting in Auburn, Alabama in November
1971 in an integral domain. It is also listed, for the case of a quasilocal integrally closed
domain, as Problem 8 in the questions list on pages 174-176 in the 1973 Notices of the
AMS from the problem session organized by Graham Evans at the January 1973 AMS
meeting in Dallas.

In 2000, W. Heinzer and M. Roitman consider the following question in an in-
tegral domain (see [19, Question 3.1]):

Question 1: Suppose that some power Mn of the regular maximal ideal M of a
ring R is 2-generated. Does it follow that M is finitely generated ?

A ring R is coherent if every finitely generated ideal of R is finitely presented;
equivalently, if (0 : a) and I ∩ J are finitely generated for every a ∈ R and any two
finitely generated ideals I and J of R. Examples of coherent rings are Noetherian rings,
Boolean algebras, von Neumann regular rings, and Prüfer/semihereditary rings. For
instance see [12, 21].

The answer to Question 1 for integral domains is negative, but it is positive for
quasilocal integral domains (see [8, 28]). Also, recall that Roitman shows that Ques-
tion 1 hold in every coherent domain (see [27, Theorem 1.8]). At this point, we make
the following definition:
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DEFINITION 1. A commutative ring R is called a Heinzer-Roitman ring (briefly
a HR-ring) if every regular maximal ideal m of R is finitely generated provided that
some power of m is 2-generated.

Let A be a ring and E an A−module. The trivial ring extension of A by E (also
called idealization of E over A) is the ring R := A∝ E whose underlying additive group
is A×E with multiplication given by (a,e)(a′,e′) = (aa′,ae′+ ea′).

Trivial ring extensions have been studied extensively. Considerable work, part
of is summarized in Glaz’s book [12] and Huckaba’s book [20], has been concerned
with trivial ring extension. These extensions have been useful for solving many open
problems and conjectures in both commutative and non-commutative ring theory. See
for instance [2, 12, 20, 21].

Let T be a domain and let K be a field which is a retract of T , that is T :=K+M
whereM is a maximal ideal of T . Each subringD ofK determines a subring R :=D+M
of T . This construction arises frequently in algebra, especially in connection with coun-
terexamples. The original of D+M construction involved a valuation domain T with
K := T/M, where M is the maximal ideal of T and K ⊂ T . A throughout account of
results about D+M construction can be find in [3, 4, 12].

Let A and B be two rings with unity, J be an ideal of B and let f : A→ B be a
ring homomorphism. In this setting, we can consider the following subring of A×B:

A ◃▹ f J := {(a, f (a)+ j) | a ∈ A, j ∈ J}

called the amalgamation of A and B along J with respect to f . See for instance [6, 7].

In this paper, we investigate the transfer of this notion to direct products, trivial
ring extensions, pullbacks, and the amalgamation of rings. Our results generate new
families of examples of non-coherent rings (with zerodivisors) satisfy this condition.

2. Main results

First, we will construct a wide class of HR-rings.

REMARK 1. Any total ring of quotients is a HR-ring.

Proof. Straightforward.

Now, we study the transfer of HR-property to direct product of rings.
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THEOREM 1. Let (Ri)i=1,...,n be a family of commutative rings. Then R =
∏i=n
i=1Ri is a HR-ring if and only if so is Ri for each i= 1, ...,n.

We need the following Lemma before proving Theorem 2.2.

LEMMA 1. [23, Lemma 2.5]
Let (Ri)i=1,2 be a family of rings and Ei an Ri-module for i = 1,2. Then E1∏E2 is
a finitely generated (resp., n-generated) R1∏R2-module if and only if Ei is a finitely
generated (resp., n-generated) Ri-module for i= 1,2.

Proof of Theorem 2.2.
By induction on n, it suffices to prove the assertion for n = 2. Assume that R1∏R2 is
a HR-ring and let M1 be a regular maximal ideal of R1 such that Mn

1 is a 2-generated
ideal of R1 for some positive integer n. Then,M :=M1×R2 is a regular maximal ideal
of R1∏R2 andMn :=Mn

1×Rn2 is a 2-generated ideal of R1∏R2 by Lemma 2.3. Hence,
M := M1×R2 is a finitely generated ideal of R1∏R2 since R1∏R2 is a HR-ring and
soM1 is a finitely generated ideal of R1 by Lemma 2.3. Therefore, R1 is a HR-ring.
The same argument shows that R2 is a HR-ring.
Conversely, assume that R1 and R2 are HR-rings and let M be a regular maximal ideal
of R1∏R2 such that Mn is 2-generated ideal of R1∏R2 for some positive integer n.
Since M := R1∏M2 or M :=M1∏R2, where Mi is a maximal ideal of Ri for i = 1,2,
the conclusion follows easily as the above argument and from Lemma 2.3.

Now, we study the transfer of the HR-property to trivial ring extension.

THEOREM 2. Let A be a ring, E an A−module and R := A ∝ E be the trivial
ring extension of A by E. Then:

1. Assume that A is an integral domain which is not a field, K = q f (A) the quotient
field of A, and E is a K−vector space. Then, R is a HR-ring if and only if so is
A.

2. Assume that (A,M) is a local ring, E is a non-zero A−module with ME = 0.
Then, R is a HR-ring.

We need the following lemma before proving this Theorem 2.

LEMMA 2. Let A be a ring, E an A−module, R := A ∝ E be the trivial ring ex-
tension of A by E, I be an ideal of A and F be a submodule of E such that IE ⊆F. Then,

1. (I ∝ F)n = In ∝ (In−1F) for every positive integer n.
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2. If I and F are finitely generated, then I ∝ F is a finitely generated ideal of R.

3. Assume that A is an integral domain which is not a field, K = q f (A), E is a
K−vector space, and let I be a nonzero ideal of A. Then I ∝ E is a finitely
generated (resp., n-generated) ideal of R if and only if I is a finitely generated
(resp., n-generated) ideal of A.

Proof. (1) It is a particular case of [20, Theorem 25.1].
(2) Assume that I := ∑i=ni=1Axi is a finitely generated ideal of A and F := ∑i=mi=1 Aei is a
finitely generated A-module. Then, it is clear that I ∝ F =∑i=ni=1R(xi,0)+∑i=mi=1 R(0,ei),
as desired.
(3) By [21, Lemma 3.3] and this completes the proof.

Proof of Theorem 2.4.

(1) Assume that A is an integral domain which is not a field, K = q f (A), and
E is a K−vector space. Assume that R is a HR-ring and let m be a nonzero maxi-
mal ideal of A such that mn is a 2-generated ideal of A for some positive integer n.
Hence, (m ∝ E)n = mn ∝ E is a 2-generated ideal of R by Lemma 2.5(3) and so m ∝ E
is a finitely generated ideal of R since R is a HR-ring and m ∝ E is a regular maximal
ideal of R. Therefore, m is a finitely generated ideal of A and A is aHR-ring, as desired.

Conversely, assume that A is a HR-ring and let M := m ∝ E be a regular maxi-
mal ideal of R such that (m ∝ E)n is a 2-generated ideal of R for some positive integer
n, where m is a maximal ideal of A. Since (m ∝ E)n = mn ∝ E is a 2-generated ideal
of R, then mn is a 2-generated ideal of A and so m is finitely generated since A is a
HR-ring. Therefore,M :=m∝ E is a finitely generated ideal of R by Lemma 2.5(3), as
desired.

(2) Assume that (A,M) is a local ring, E is a non-zero A−module withME = 0.
Then, R is a HR-ring by Remark 1 since it is a total ring of quotients (by [21, Proof of
Theorem 2.6(1)]) and this completes the proof of Theorem 2.

Theorem 2 enriches the literature with original examples of non-coherent HR-
rings.

EXAMPLE 1. Let A be a coherent domain which is not a field, K := q f (A), and
let R := A ∝ K be the trivial ring extension of A by K. Then:

1. R is a HR-ring by Theorem 2(3).

2. R is not coherent by [21, Theorem 2.8(1)].



On Heinzer-Roitman rings 239

The following Theorem develops a result on the transfer of the HR-property to
pullbacks, specially D+M-constructions.

THEOREM 3. Let T := K+M be a local domain, where K is a field and M is
the unique maximal ideal of T ; and R := D+M, where D is a subring of K. Then:

1. Assume that D is not a field. Then, R is a HR-ring if and only if so is D.

2. Assume that D is a field with [K : D] = ∞. Then, R is a HR-ring.

3. Assume that D is a field with [K :D]<∞. Then, R is a HR-ring provided so is T .

We need the following lemmas before proving Theorem 2.7.
Remark that a more general form of Lemma 2.8 below is proved by Cahen in [5,
Lemma 3, page 507].

LEMMA 3. Let T and R be as in Theorem 2.7. Then, every maximal ideal of R
contains M.

Proof. By [5, Lemma 3, page 507].

LEMMA 4. Let T , D, K, M, and R be as in Theorem 2.7. Assume that D is not
a field or D is a field and [K : D] = ∞. Then, for every positive integer n, Mn is never a
finitely generated ideal of R.

Proof. By [4, Lemma 1].

Proof of Theorem 2.7.
1) Assume that D is not a field. Then, any maximal ideal P of R has the form P :=
P0+M (=P0R) by Lemma 2.8, where P0 is a nonzero maximal ideal of D (since D is
not a field).
Assume that R is a HR-ring and let P0 be a nonzero maximal ideal of D such that Pn0
is 2-generated for some positive integer n. Then, P := P0+M (=P0R) is a maximal
ideal of R and Pn := (P0+M)n = Pn0 +M = Pn0R is a 2-generated ideal of R (since
P0M = P0KM = KM =M). Hence, P := P0+M is a finitely generated ideal of R since
R is a HR-ring and so P0 is a finitely generated ideal of D. Therefore, D is a HR-ring.
Conversely, assume that D is a HR-ring and let P := P0+M (=P0R) be a maximal ideal
of R such that Pn := (P0+M)n = Pn0 +M is a 2-generated ideal of R. Hence, Pn0 is a
2-generated ideal of D and so P0 is finitely generated since D is a HR-ring. Therefore,
P := P0R is a finitely generated ideal of R, as desired.
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2) Assume that D is a field and [K : D] = ∞. Then, M is the only maximal ideal
of R by Lemma 2.8. On the other hand, Mn is never a finitely generated ideal of R by
Lemma 2.9. Therefore, R is a HR-ring.

3) Assume that D is a field with [K :D]<∞. Then,M is the only maximal ideal
of R by Lemma 2.8.
Assume that T is a HR-ring and assume that Mn is a 2-generated ideal of R for some
positive integer n. Then,Mn is a 2-generated ideal of T and soM is a finitely generated
ideal of T since T is a HR-ring. Therefore, M is a finitely generated ideal of R since
T is a finitely generated R-module (by [10, Corollary (1.5)(4)]), as desired. And this
completes the proof of Theorem 2.7.

Theorem 2.7 enriches the literature with original examples of non-coherentHR-
rings.

EXAMPLE 2. Let R := Z+XR[[X ]] and T := R[[X ]]. Then:

1. R is a HR-ring by Theorem 2.7(1).

2. R is not coherent by [12, Theorem 5.2.3].

The last Theorem develops a result on the transfer of the P-property to amalga-
mation of rings A ◃▹ f J.

THEOREM 4. Let A be an integral domain, B be a ring, f : A→ B be a ring
homomorphism and J be a proper ideal of B such that J is a finitely generated ideal of
f (A)+ J and J ⊆ Rad(B). Then, A ◃▹ f J is a HR-ring provided so is A.

We need the following lemmas before proving this Theorem 2.11.

LEMMA 5. Let (A,B) be a pair of rings, f : A→ B be a ring homomorphism
and J be a proper ideal of B such that J ⊆ Rad(B). Then, Max(A ◃▹ f J) = {m ◃▹ f

J/m ∈Max(A)}.

Proof. By [9, Proposition 2.5(5)].

LEMMA 6. Let (A,B) be a pair of rings, f : A→ B be a ring homomorphism
and J be a proper ideal of B. Assume that J is a finitely generated ideal of f (A)+ J
and let I be a finitely generated ideal of A. Then, I ◃▹ f J is a finitely generated ideal of
A ◃▹ f J.
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Proof. Assume that I := ∑i=ni=1Axi is a finitely generated ideal of A, where xi ∈ I for
all i ∈ {1, .....n} and J := ∑i=mi=1 ( f (A)+ J)ei is a finitely generated ideal of f (A)+ J,
where ei ∈ J for all i ∈ {1, .....m}. It is clear that I ◃▹ f J = ∑i=ni=1(A ◃▹ f J)(xi, f (xi))+
∑i=mi=1 (A ◃▹ f J)(0,ei), as desired.

Proof of Theorem 2.11.
Assume that J⊆Rad(B), J is a finitely generated ideal of f (A)+J and letM :=m ◃▹ f J
be a regular maximal ideal of A ◃▹ f J (by Lemma 2.12) such that Mn(:= (m ◃▹ f J)n)
is a 2-generated ideal of A ◃▹ f J for some positive integer n. Hence, mn is a 2-
generated ideal of A and so m is finitely generated since A is a HR-domain. Therefore,
M :=m ◃▹ f J is a finitely generated ideal of A ◃▹ f J by Lemma 2.13, and this completes
the proof of Theorem 2.11.

Theorem 2.11 enriches the literature with original examples of non-coherent
HR-rings.

EXAMPLE 3. Let f : A → B be a ring homomorphism, where A is a non-
coherent HR-domain, and let J be a finitely generated proper ideal of f (A)+ J. Then:

1. A ◃▹ f J is a HR-ring by Theorem 2.11.

2. A ◃▹ f J is a non-coherent ring by [9, Proposition 4.14(1)].

Finally, we show that the hypothesis "J is a finitely generated ideal of f (A)+J"
cannot be removed in Theorem 2.11(1).

EXAMPLE 4. Let A := K be a field, B := K ∝ E be the trivial ring extension of
K by E (where E is a K-vector space with infinite rank), J := 0 ∝ E is the Jacobson
radical of B, and f : A→ B such that f (a) = (a,0). Then:

1. A ◃▹ f J is a non-HR-ring since (0 ◃▹ f J)2 = 0, 0 ◃▹ f J is a non finitely generated
ideal of A ◃▹ f J, and 0 ◃▹ f J is a maximal ideal of A ◃▹ f J.

2. A is a HR-ring since it is a field.
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