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THE X-RAY TRANSFORM ON 2-STEP NILPOTENT LIE
GROUPS OF HIGHER RANK

Abstract. We prove injectivity and a support theorem for the X-ray transform on 2-step
nilpotent Lie groups with many totally geodesic 2-dimensional flats. The result follows from
a general reduction principle for manifolds with uniformly escaping geodesics.
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1. Background

The X-ray transform of a sufficiently rapidly decreasing continuous function f on the
Euclidean plane R2 is a function X f defined on the set of all straight lines via integra-
tion along these lines. More precisely, if ξ is a straight line, given by a point x ξ and
a unit vector θ R2 such that ξ x Rθ, then

X f ξ X f x,θ f x sθ ds.

It is natural to ask about injectivity of this transform and, if yes, for an explicit inversion
formula. If f x O x 2 ε for some ε 0, the function f can be recovered via
the following inversion formula, going back to J. Radon [18] in 1917:

(1) f x
1
π 0

Fx t
t

dt,

where Fx t is the mean value of X f ξ over all lines ξ at distance t from x:

Fx t
1

2π S1
X f x tθ ,θ dθ,

where x,y y, x . Zalcman [29] gave an example of a non-trivial function f
C R2 with f x O x 2 and X f ξ 0 for all lines ξ R2 and, therefore, the
decay condition for the inversion formula is optimal.

Under stronger decay conditions, it is possible to prove the following support
theorem (see [5, Thm. 2.1] or [7, Thm. I.2.6]):

THEOREM 1.1 (Support Theorem). Let R 0 and f C R2 with f x O x k

for all k N. Assume that X f ξ 0 for all lines ξ with d ξ,0 R. Then we have
f x 0 for all x R.

Again, the stronger decay condition is needed here by a counterexample of D.J.
Newman given in Weiss [26] (see also [7, Rmk. I.2.9]). The Euclidean X-ray transform
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plays a prominent role in medical imaging techniques like the CT and PET (see, e.g.,
[12]).

The X-ray transform can naturally be generalized to other complete, simply
connected Riemannian manifolds, by replacing straight lines by complete geodesics.
Radon mentioned in [18] that there is an analogous inversion formula in the (real)
hyperbolic plane H2, where the denominator in the integral of (1) has to be replaced
by sinh t (see also [7, Thm. III.1.12(ii)]). There is also an analogue of the support
theorem for the hyperbolic space (see [7, Thm. III.1.6]), valid for functions f satisfying
f x O e kd x0,x for all k N and x0 Hn.

In the case of a continuous function f on a closed Riemannian manifold X , the
domain of X f is the set of all closed geodesics. Continuous functions f can only be
recovered from their X-ray transform X f if the union of all closed geodesics is dense
in X . But this condition is not sufficient as the following simple example of the two-
sphere S2 shows. Every even continuous function f on S2 (i.e., f x f x ) can be
recovered by its integrals over all great circles. This fact and a solution similar to (1)
goes back to Minkowski 1911 and Funk 1913 (see [7, Section II.4.A] and the references
therein). But, on the other hand, it is easy to see that X f vanishes for all odd functions,
so the restriction to even functions is essential. For injectivity and support theorems
of the X-ray transform on compact symmetric spaces X other than Sn see, e.g., [7,
Section IV.1]. Injectivity properties of the extended X-ray transform for symmetric
k-tensors on closed manifolds (with respect to the solenoidal part) play an important
role in connection with spectral rigidity (see [4]) and were proved for closed manifolds
with Anosov geodesic flows (see [3, Thms 1.1 and 1.3] for k 0,1) or strictly negative
curvature (see [2] for arbitrary k N).

Another class of manifolds for which the X-ray transform and its extension
to symmetric k-tensors has been studied are simple manifolds, i.e., manifolds X with
strictly convex boundary and without conjugate points (see [23]). An application is the
boundary rigidity problem, i.e., whether it is possible to reconstruct the metric of X
(modulo isometries fixing the boundary) from the knowledge of the distance function
between points on the boundary X . Solenoidal injectivity is known for k 0,1 for
all simple manifolds (see [13] and [1]), and for all k N for surfaces [16] and for
negatively curved manifolds [15]. There are also support type theorem for the X-ray
transform on simple manifolds (see [10, 11] and [25] and the references therein). A
very recommendable survey with a list of open problems is [17].

2. A reduction principle for manifolds with uniformly escaping geodesics

In this article, we will only consider complete Riemannian manifolds X whose geodesics
escape in the sense of e.g. [27], [28], [9], in a uniform way. Simply connected man-
ifolds without conjugate points have this property, but we like to stress that the main
examples in this article will be manifolds with conjugate points. Geodesics will always
be parametrized by arc length.

DEFINITION 2.1. A Riemannian manifold X has uniformly escaping geodesics
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if for each r R0 there is P r R0 such that for every geodesic γ : R X and every
t P r , we have d γ t ,γ 0 r. We call P an escape function of X.

The smallest such function P,

P r : sup t 0 geodesic γ : R X ,d γ 0 ,γ t r

is thus required to be finite for all r. After time P r every geodesic has left a closed
ball Br p of radius r R0 around its center p X . The function P increases and
satisfies P r r. Note that P may not be continuous.

Manifolds with this property must be simply connected and non-compact. As
mentioned earlier, simply connected Riemannian manifolds without conjugate points
have this property with escape function P r r.

The class of compactly supported continuous functions on such a manifold is
preserved under restriction to totally geodesic immersed submanifolds. Thus if f is a
compactly supported continuous function on X , say supp f Br p for some p X
and r 0, and φ : Y X a totally geodesic isometric immersion, then f has compact
support on Y and supp f φ BY

P r p . In particular, this holds for geodesics (as 1-
dimensional immersions) and the integral of f over any geodesic in X is thus defined.

Before we formulate the reduction principle, let us first fix some notation. The
unit tangent bundle of X is denoted by SX . For a Riemannian manifold X let Cc X be
the space of all continuous functions f : X C with compact support. By G X we
denote the set of (unparametrized oriented) geodesics, i.e.

G X γ R γ : R X geodesic

The X-ray transform of f Cc X is the function X f : G X C with

X f L
L

f f γ t dt

if L γ R and γ a unit speed geodesic.

DEFINITION 2.2. Let r0 0 and σ : r0, R0 be a function. We say that
the σ-support theorem holds on X if for p X and f Cc X , r r0, we have that
X f G X Bσ r p 0 implies f X Br p 0. We say that X has a support theorem if this
holds for a function σ with limr σ r .

REMARK 2.1. If X has a σ-support theorem, then X has a support theorem for
all smaller functions as well. Moreover, we can always modify σ : r0, R0 to be
monotone non-decreasing. If r0 0, i.e., σ : R0 R0 , the σ-support theorem implies
injectivity of the X-ray transform.

Then we have the following reduction principle.

THEOREM 2.1. Let X be a complete, Riemannian manifold which has uniformly
escaping geodesics with escape function P.
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(i) Assume there exists, for every x X, a closed totally geodesic immersed subman-
ifold Y X through x such that the X-ray transform on Y is injective. Then the
X-ray transform on X is also injective.

(ii) Let µ : r0, R0 be a function with µ P 0 . Assume there exists, for every
v SX, a closed totally geodesic immersed submanifold Y X with v SY such
that the µ-support theorem holds on Y . Then a σ-support theorem holds on X for
any function σ : r0, R0 with P σ r µ r for all r r0. In particular,
we can choose σ to be unbounded if µ is unbounded.

Proof. (i) is obviously true by restriction since all geodesics in Y are also geodesics in
X .

For (ii), let f Cc X and r r0. We fix a point p X and let Yp be a set of
closed totally geodesic immersed submanifolds Y with µ-support theorem and so that
each geodesic through p lies in one of the Y Yp.

We then have
f X BX

r p 0

if
Y Yp : f Y BY

r p 0,

since, by assumption, each geodesic in X is contained in some Y . Now, by the µ-support
theorem in Y Yp, we have

f Y BY
r p 0

if
X f G Y BY

µ r p 0.

Since X has uniformly escaping geodesics property, this is guaranteed if

X f G X BX
s p 0

for any s 0 with P s µ r . Thus X has a σ-support theorem for any function
σ : r0, R0 satisfying P σ r µ r . If the escape function P : R0 R0 is
left-continuous, i.e. lims r P s P r , we can choose σ r sup s 0 P s
µ r .

3. Applications of the reduction principle

In this section we demonstrate that many interesting examples can be derived by the
reduction principle from R2 and H2. The X-ray transform on the euclidean and on
the hyperbolic plane is injective and both have a µ-support theorem with µ r r. This
follows directly from the euclidean or hyperbolic version of Radon’s classical inversion
formula (1), or Theorem 1.1.
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If X X1 X2 is the product of two Riemannian manifolds of positive dimension with
uniformly escaping geodesics, with escape functions P1 and P2 respectively, then X has
uniformly escaping geodesics with function P satisfying

max P1 r ,P2 r P r sup P1 r1 2 P2 r2 2 r2
1 r2

2 r2 P1 r P2 r .

Each vector v S X1 X2 lies in a 2-flat F X1 X2, i.e. a totally geodesic immersed
flat submanifold. By the reduction principle, the σ-support theorem holds on X1 X2
for any function σ with P σ r r for all r P 0 , .

The reduction principle can also be applied to symmetric spaces of noncompact
type. These spaces have no conjugate points and each of their geodesics is contained in
a flat of dimension at least 2 if their rank is at least 2. In non-compact rank-1 symmetric
spaces each geodesic is contained in a real hyperbolic plane. Therefore, the reduction
principle yields injectivity of the X-ray transform and a support theorem with σ r r
([6], also [7, Cor. IV.2.1]).

Another interesting family are noncompact harmonic manifolds, which do not
have conjugate points. Prominent examples in this family are Damek-Ricci spaces. In
[21], Rouviere used the fact that each geodesic of a Damek-Ricci space is contained
in a totally geodesic complex hyperbolic plane CH2 to obtain a support theorem with
σ r r for Damek Ricci spaces.

The main result in this article is about injectivity of the X-ray transform and
a support theorem for a certain class of 2-step nilpotent Lie groups with a left invari-
ant metric and higher rank introduced in [22]. By[14] these spaces have conjugate
points. Therefore, the methods of [10] do not immediately apply to these spaces. The
spaces in [22] differ also significantly from Heisenberg-type groups which do not even
infinitesimally have higher rank.

3.1. 2-step nilpotent Lie groups have uniformly escaping
geodesics.

The Lie algebra of a 2-step nilpotent Lie algebra n splits orthogonally as n h z,
z n,n the commutator and h z its orthogonal complement. We can thus view
z so h as a vectorspace of skew symmetric endomorphisms of h. We have

h,k z zh k

for h,k h, z z. We show that 2-step nilpotent Lie groups have uniformly escaping
geodesics, hence the X-ray transform for all functions with compact support is defined.

THEOREM 3.1. Let N be a simply connected 2-step nilpotent Lie group with
Lie algebra n z h, z so h . Then N has uniformly escaping geodesics with a
continuous escape function P.
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Proof. We will prove that for each r R0 there is P r R such that every geodesic
γ with γ 0 e (the neutral element of N) we have that d γ t ,e r implies t P r .

We denote by expn : n N the exponential map of the Lie group. Since N is
simply connected nilpotent this is a diffeomorphism. In particular, expn 1 Br e
Bn

ρ r 0 for some increasing continuous function ρ r : R0 R0 with ρ 0 0. We
will show that there is P r such that for every geodesic γ in N with γ 0 e, the curve
expn 1 γ has left Bn

ρ r 0 after time P r .
From [8] for a geodesic γ t expn z t h t with z t z, h t h, γ 0

z0 h0, we have
h t z0h t ,

z t z0
1
2

h t ,h t ,

which we need to solve subject to the initial conditions

γ 0 expn z 0 h 0 e hence z 0 0 h 0 ,

γ 0 z0 h0 z 0 h 0 ,

so that z0
2 h0

2 1. The solution to the first equation is

h t etz0 1 z 1
0 h0.

Note that this is well defined even if z0 is not invertible. Inserting this into the second
equation gives

z t z0
1
2

etz0 1 z 1
0 h0,etz0h0 .

Taking the scalar product of this with z0 gives

z t z0 z0
2 1

2
z0 etz0 1 z 1

0 h0,etz0 h0

z0
2 1

2
z0 etz0 1 z 1

0 h0 etz0 h0

z0
2 1

2
h0

2 1
2

h0 etz0 h0 ,

since etz0 is orthogonal. In order to compute z t z0 , we integrate,

z t z0 t z0
2 t

2
h0

2 1
2

h0 1 etz0 z 1
0 h0 .

It follows that

z t tz0
t h0

2 h0 1 etz0 z 1
0 h0

2 z0 2 z0 w t
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with w t z perpendicular to z0. Hence, in the norm of n, we can estimate

z t h t 2 etz0 1 z 1
0 h0

2 1
4 z0 2 2 z0

2t t h0
2 h0 1 etz0 z 1

0 h0
2
.

We split h λ RE z0, iλ into the eigenspaces of z0 and let hmax E z0, iλ be the
largest component of h0, iλ the corresponding eigenvalue. Thus hmax

2 1
dim h h0

2.
Disregarding all other components, we estimate

z t h t 2 eitλ 1
iλ

2

hmax
2 1

4 z0 2 2 z0
2t t hmax

2 Re
1 eitλ

iλ
hmax

2
2

2 2cos λt
λ2 hmax

2 1
4 z0 2 2 z0

2t t
sin tλ

λ
hmax

2
2

z0
2t2 hmax

2 2 2cos λt
λ2 t t

sin λt
λ

hmax
2

4 z0 2 t
sin λt

λ

2
.

We now consider the cases:

z0
2 1

2 : Then z t h t 2 1
2 t2.

If z0
2 1

2 , then h0
2 1 z0

2 1
2 , hence hmax

2 1
2dim h . We can therefore

estimate

z t h t 2 1
2dim h

2 2cos λt
λ2 t t

sin λt
λ

1
4dim h

t
sin λt

λ

2
.

If λ 0 the bracket evaluates to t2, hence z t h t 2 1
2dim h t2.

If 0 t π
2λ then cos λt 1 1

π λt 2. The other two summands are always nonneg-
ative. Hence in this case,

z t h t 2 t2

πdim h
.

If t π
2λ then t sin λt

λ 1 2
π t. Observing that the rightmost and the leftmost

summand are nonnegative, we get in this case that

z t h t 2 π 2 t2

2πdim h
.

Thus we have shown that

z t h t 2 t2 min
1
2
,

1
πdim h

,
π 2

2πdim h
t2 π 2

2πdim h
.

Thus the curve expn 1 γ t z t h t has left Bn
ρ r 0 after time t P r :

ρ r 2πdim h
π 2 .
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3.2. X-ray transform on certain 2-step nilpotent Lie groups

Let h R2q Cq and z tq 1 su q so 2q be the Lie algebra of the maximal
torus of SU q and consider the 2-step nilpotent Lie group Nq with Lie algebra nq
z h tq R2q endowed with a left invariant metric. In [22], it was shown that for
every q N, q 3, the Lie group Nq has the property that each geodesic is contained in
a totally geodesic immersed 2-dimensional flat submanifold. The reduction principle,
Theorem 3.1, and the continuity of P immediately yield

THEOREM 3.2. The X-ray transform on Nq is injective and has a support theo-
rem.

Acknowledgements: We are grateful to G. Paternain and G. Knieper for helpful
comments and relevant references.
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