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L. Battaglia

GROUND STATE SOLUTIONS FOR A NONLINEAR
CHOQUARD EQUATION

Abstract. We discuss the existence of ground state solutions for the Choquard equation

∆u u Iα F u F u in RN .

We prove the existence of solutions under general hypotheses, investigating in particular the
case of a homogeneous nonlinearity F u u p

p . The cases N 2 and N 3 are treated dif-
ferently in some steps. The solutions are found through a variational mountain-pass strategy.
The results presented are contained in the papers [8, 2].

1. Introduction

We investigate the existence of solutions for nonlinear Choquard equations of the form

(1) ∆u u Iα F u F u in RN ,

where ∆ is the standard Euclidean laplacian, indicates the convolution, F C1 R,R
is a smooth nonlinearity and Iα : RN R is, for α 0,N , the Riesz potential:

(2) Iα x :
Γ N α

2

Γ α
2 π N

2 2α

1
x N α .

Problem (1) can be seen as a non-local counterpart of the very well-known scalar
field equation

(3) ∆u u G u in RN ,

which can be formally recovered from (1) by letting α go to 0 and setting G F2

2 .
Problem (3) has been widely studied since many years. General existence results were
provided in [4] when N 3 and [3] (when N 2) under mild hypotheses on G.
Anyway, the argument from both [4] and [3] does not seem to be suitable to attack
problem (3): roughly speaking, the authors use a constrained minimization technique
and then a dilation to get rid of the Lagrangian multiplier, which does not work in our
case because of the scaling properties of the Riesz potential (2).

We study the problem (1) variationally: its solutions are critical points of the
following energy functional on H1 RN :

(4) I u
1
2 RN

∇u 2 u 2 1
2 RN

Iα F u F u .

In particular, we look for solutions at a mountain-pass level b defined by

(5) b : inf
γ Γ

sup
t 0,1

I γ t ,
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with
Γ : γ C 0,1 ,H1 RN ; γ 0 0, I γ 1 0 .

In particular, we by-pass the issue of Palais-Smale sequences by a scaling trick in-
troduced in [5], which basically allows us to consider Palais-Smale sequences also
asymptotically satisfying the Pohožaev identity

(6) P u :
N 2

2 RN
∇u 2 N

2
u 2 N α

2 RN
Iα F u F u 0,

for which convergence is easier to be proved.
We can show existence of solutions under general hypotheses, in the same spirit of
[4, 3]. In the particular yet very important case of a power-type nonlinearity F u u p

p
such hypotheses are equivalent to 1 α

N p N α
N 2 , which in [7] is shown to be also a

necessary condition. This shows that the hypotheses we make are somehow natural.
We also show that the mountain-pass type solution is also a ground state, namely an
energy-minimizing solution: it satisfies

(7) I u c : inf I v : v H1 RN 0 solves (1) .

We first show the existence of mountain-pass solutions in Section 2 and then in Section
3 we prove that they are actually ground states. Such results were originally presented
in [8] for the dimension N 3 and in [2] for the case N 2.

2. Existence of mountain-pass solutions

We show here existence of a solution for (1) under general hypotheses on F .
First of all, we want to exclude the trivial case of an identically vanishing F :

F0 There exists s0 R such that F s0 0.

Then, we also need some growth assumptions which give a well-posed variational for-
mulation, namely a energy functional I being well-defined on H1 RN . Such assump-
tions are different depending whether the dimension is two or it is greater, since the
limiting-case embeddings in Sobolev spaces are different: in the higher-dimensional
case, we impose a power-type growth whereas in R2 we require one of exponential
type:

N 3 F1 There exists C 0 such that F s C s
α
N s

α 2
N 2 for any s 0

N 2 F1 For any θ 0 there exists Cθ 0 such that F s Cθ min 1, s
α
2 eθ s 2

for any s 0.

It is not hard to see that F1 , combined with Sobolev and Hardy-Littlewood-Sobolev
inequality, implies the finiteness of the term RN Iα F u F u , hence the well-posedness
and smoothness of the functional I defined by (4). In dimension two we need, in place
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of Sobolev’s inequality, a special form of the Moser-Trudinger inequality on the whole
plane, which was given in [1]:

(8) β 0,4π Cβ 0 such that
R2

∇u 2 1
R2

min 1,u2 eβu2
Cβ

R2
u 2

The last hypotheses we need is a sort of sub-criticality with respect to the critical power
in Hardy-Littlewood-Sobolev inequality. Again, we state the condition differently de-
pending on the dimension, since in dimension 2 there is no critical Sobolev exponent:

N 3 F2 lims 0
F s

s 1 α
N

lims
F s

s
N α
N 2

0

N 2 F2 lims 0
F s

s 1 α
N

0

Precisely, the result we present is the following:

THEOREM 1. Assume F satisfies F0 , F1 , F2 if N 3 and F0 , F1 , F2 if
N 2. Then, the problem (1) has a non-trivial solution u H1 RN 0 .

We start by showing the existence of a Pohožaev-Palais-Smale sequence. We
argue as in [5] to get the asymptotical Pohožaev identity.

LEMMA 1. Assume F satisfies F0 , F1 (or, in case N 2, F0 , F1 ). Then,
there exists a sequence un n N in H1 RN such that:

I un n
b I un n

0 in H1 RN P un n
0

Proof. We divide the proof in three steps: first we show that the mountain-pass level
(5) is not degenerate and then we apply a variant of the mountain-pass principle.

Step 1: b 0 We suffice to show that Γ , namely that there exists some
u0 H1 RN with I u0 0.
By F0 , we can choose s0 such that F s0 0, therefore if we take
a smooth v0 approximating s01B1 we easily get RN Iα F v0 F v0
0. If now we consider vt v0 t , we get

(9) I vt
tN 2

2 RN
∇v0

2 tN

2 RN
v0

2 tN α

2 RN
Iα F v0 F v0 ,

which is negative for large t, so we can take u0 vt with t 1.

Step 2: b We need to show that for any γ Γ there exists tγ such that I γ tγ
ε 0.
If RN ∇u 2 u 2 δ 1, then by assumption F2 and H-L-S
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and Sobolev’s inequality we get

RN
Iα F u F u C

RN
∇u 2

N α
N 2

RN
u 2

1 α
N

1
4 RN

∇u 2 u 2 ,

which means I u 1
4 RN ∇u 2 u 2 , and the same can be

proved similarly when N 2.
Now, for any fixed γ Γ we can take tγ such that R2 ∇γ tγ 2 γ tγ 2

δ and we get I γ tγ δ
4 : ε.

Step 3: Conclusion Consider the functional I : R H1 RN R defined by

I σ,v : I v e σ e N 2 σ

2 RN
∇v 2 eNσ

2 RN
v 2

e N α σ

2 RN
Iα F v F v .

By applying to I the standard min-max principle (see [9] for in-
stance) we get a sequence σn,vn n N with I σn,vn n

b and

I σn,vn n
0, which is equivalent to what the Lemma re-

quired.

To prove Theorem 1 we need to show the convergence of the Pohožaev-Palais-
Smale sequence we just found. Here we need the sub-criticality assumption F2 , F2

LEMMA 2. Assume F satisfies F1 , F2 (or, in case N 2, F1 , F2 ) and
un n N satisfies

I un is bounded I un n
0 in H1 RN P un n

0.

Then, up to subsequences,

• either un n
0 strongly in H1 RN

• or un xn n
u weakly for some xn n N in RN and u H1 RN 0 .

Proof. Assume the first alternative does not occur. Then, we show it weakly converges
to some u 0.

Step 1: un n N is bounded It follows by just writing

α 2
2 N α RN

∇un
2 α

2 N α RN
un

2 I un
P un

N α n
b
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Step 2: supx RN B1 x un
p 1

C By using the asymptotic Pohožaev identity it is not
hard to see that infn RN Iα F un F un 0. More-

over, F2 implies, for any ε 0, p 2, 2N
N 2 ,

F s
2N

N α ε s 2 s
2N

N 2 Cε s p,

therefore, by the following inequality from [6]

RN
un

p C
RN

∇un
2 un

2 sup
x RN B1 x

un
p

1 2
p

,

we get

sup
x RN B1 x

un
p

1 2
p 1

C
RN un

p

RN ∇un 2 un 2

1
Cε RN

F un
2N

N α ε
RN

u 2 u
2N

N 2

1
Cε RN

Iα F un F un

N
N α

Cε
RN

∇un
2 un

2 1
C

.

and a similar estimate holds true in the case N 2.

Step 3: un xn converges We choose xn such that liminfn B1
un xn

p

0, its weak limit (which exists because Step 1 en-
sures boundedness) must be some u 0.
By Sobolev embeddings, one can show that Iα
F un F un n

Iα F u F u in Lp
loc RN .

This easily yields that u solves (1)

Proof of Theorem 1. By Lemma 1, I admits a Pohožaev-Palais-Smale sequence un n N
at the energy level b. We apply Lemma 2 to the latter sequence: if the first alternative
occurred, then we would have I un n

I 0 0, contradicting Lemma 2. There-
fore, the second alternative must occur and in particular u 0 solves (1).

We conclude this section by showing that Theorem 1 is actually sharp in the case
of a power nonlinearity F u u p

p ; in other words, we give a non-existence result for
all the values p not matching the assumptions of Theorem 1. To show non-existence,
we use a Pohožaev identity, which is a classical property of solutions of (1).

PROPOSITION 1. Any solution u of (1) satisfies the Pohožaev identity (6).

THEOREM 2. If F u u p

p then problem (1) admits a non-trivial solution if

and only if p 1 α
N , N α

N 2 , with the latter condition to be read as p 1 α
2 if

N 2.
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Proof. If p 1 α
N , N α

N 2 then one can easily see that F u u p

p satisfies F0 , F1 , F2 ,
hence the existence of non-trivial solutions follows from Theorem 1.
Conversely, assume p is outside that range and u solves (1), By testing both sides of
against u we get

RN
∇u 2 u 2

RN
Iα u p u p.

Moreover, u satisfies the Pohožaev identity (6), which has the form

N 2
2 RN

∇u 2 N
2 RN

u 2 N α
2p RN

Iα u p u p 0.

A linear combination of the two formulas gives

N 2
2

N α
2p RN

∇u 2 N
2

N α
2p

u 2,

which implies u 0 if p 1 α
N or p N α

N 2 .

3. From solutions to ground states

In the last part of this paper we show that the mountain pass solutions given by Theorem
1 are actually energy-minimizing, in the sense of (7).

THEOREM 3. The mountain-pass solution found in Theorem 1 is actually a
ground state, namely its energy level is given by (7).

The previous Theorem can be easily proved by constructing, for any solution v
of (1), a path γv Γ which attains its maximum energy on v.

LEMMA 3. Assume F satisfies F1 and v H1 RN 0 solves (1). Then,
there exists a path γv Γ such that:

γ 0 0 γv
1
2

v I γv t I v for any t
1
2

I γv t 0

Proof. Fix a non-trivial solution v of (1) and consider the path γv : 0, H1 RN

defined by γv t v t if t 0
0 if t 0 .

Along the path, the energy is given by (9), which is negative for t 1. Moreover, due
to the Pohožaev identity (6) we can also write

I γv t
tN 2

2
N 2

2 N α
tN α

RN
∇u 2 tN

2
N

2 N α
tN α

RN
u 2,

which has its maximum in t 1. Therefore, up to a rescaling of t, this path has all the
required properties.
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Anyway, being

RN
∇γv t 2 γv t 2 tN 2

RN
∇v 2 tN

RN
v 2,

γv is continuous at t 0 only if N 3, so in the case N 2 we need a modification for
t close to 0.

If N 2 we take γv t
v t if t t0
t
t0

v t0
if t t0

for some suitable t0 1. We only

need to verify that I γv t I γv 1 for t t0.
Using the assumption F1 and Moser-Trudinger’s (8) and Hardy-Littlewood-Sobolev
inequalities we get

R2
Iα F γv t F γv t C R2 γv t 2

R2 ∇γv t 2

1 α
2

Ct2 α
0

R2
v 2

1 α
2
,

therefore using again Pohožaev identity we get, for t0 small enough,

I γv t
1
2 R2

∇v 2 t2
0
2 R2

v 2 Ct2 α
0

R2
v 2

1 α
2

I v
t2
0
2

α
2 2 α R2

v 2 Ct2 α
0

R2
v 2

1 α
2

I v

and the proof is complete.

Proof of Theorem 3. Let u be the mountain-pass solution found in Theorem 1. By
the lower-semicontinuity of the norm we find I u b, whereas the definition (7) of
ground state yields I u c.
Now, take another solution v H1 RN 0 and apply Lemma 3: we get

I v sup
t 0,1

I γv t inf
γ Γ

sup
t 0,1

I γ t b.

Being v arbitrary, we get c b, hence c I u b c, therefore I u b c.
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