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SINGULAR INTEGRAL EQUATIONS IN THE DESIGN OF
INNOVATIVE AIRPLANE WING CONFIGURATIONS

Abstract. We present a short survey on the main mathematical results we have recently
obtained on the optimization of airplane Truss-Braced Wing configurations. These results
include a definition of the corresponding induced drag constrained minimization problem,
whence of the associated Euler-Lagrange system of Cauchy singular integral equations. For
the latter, we have proved the existence and uniqueness of its solution in proper weighted
Sobolev type spaces. Moreover, we have defined a simple and efficient numerical approach
for the system solution; an error estimate has also been derived.

1. Introduction

Traditional monoplane aircrafts have been used for many decades. Promising improve-
ments are represented by C-Wing, Box-Wing and Truss-Braced Wing (TBW) configu-
rations. See the figures reported below, that have been chosen from the many images
one can find in internet. Studies showed potential advantages in terms of fuel savings
and overall efficiency. These investigations have been carried out in relatively complex
multidisciplinary design and optimization computational frameworks and, thus, some
theoretical questions regarding the optimal conditions under which the induced drag is
minimized, need to be specifically addressed.

Figure 1: C-Wing aircraft [10]
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Figure 2: Box-Wing aircrafts [11],[2]

A few years ago Luciano Demasi started a project addressing open theoretical
questions on minimum induced drag conditions of Box-Wings (see Figure 2). The
work was motivated by the renovated aeronautical interest on the configuration initially
proposed by Prandtl a century ago and named by him Best Wing System for its superior
aerodynamic performance in terms of induced drag. The Box-Wing presented several
theoretical challenges and mathematical difficulties related to the closed path of the
lifting surface.

We recall that in the case of cruise speed, a three dimensional wing can be
replaced by a curve in the x z plane. Under this assumption, first in [3], and then in
[4] (see also [9]), it was then shown that the Box-Wing, and in general closed systems,
could be analyzed as limit case of a C-Wing (i.e. open wing; see Figure 1) whose
endpoints are brought close to each other in a limit process. It was also verified that
the optimal condition for a closed system can also be asymptotically obtained from a
couple of open disjoint wings when the two wings are brought close to each other until
they identify the path of the given closed wing.

The mathematical procedures finalized to the numerical solution of the problem
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Figure 3: Truss-Braced Wing aircrafts [12],[2]

Euler-Lagrange equations where then extended in [4, 5, 6] to more complex systems
such as multiwings. In this case, the Euler-Lagrange equations are reduced to a system
of Cauchy singular integral equations. This has been further examined in [13], where
the existence and uniqueness of its solution in proper weighted Sobolev type spaces
have been proved. Moreover a simple and efficient discrete collocation method for the
solution approximation has been defined and examined. In particular, its stability and
convergence have been proved, and an error estimate derived.

Since for more complex configurations, coinciding with the boundaries of multi-
ply connected regions, such as the Truss-Braced Wings (see Figure 3), we are not aware
of a procedure for deriving the corresponding Euler-Lagrange equations, in [7, 8, 13]
the authors have proposed a possible approach.

In this paper we present a short survey on the main mathematical and numeri-
cal results that have been recently obtained for TBW configurations (see, in particular,
[13]). These results include the proof of existence and uniqueness of the solution of the
associated induced drag constrained minimization problem for a system of open dis-
joint wings, the construction of an efficient numerical approach for the approximation
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Figure 4: TBW decomposition examples

of its solution, for which an error estimate has been derived, and a final definition of
the solution of the original TBW minimization problem.

2. The Drag Minimization Problem

As shown in [4], the drag minimization problem for a symmetric (with respect to the
z-axis) Box-Wing has a (optimal) solution, which is uniquely defined up to an arbitrary
constant. However, the contribution of the latter to the drag and to the associated lift is
null. In that same paper, it has also been shown by an intensive numerical testing, but
unfortunately not yet by a mathematical proof, that a symmetric Box-Wing configura-
tion can be considered as the “closure” of a symmetric C-Wing, in the sense that when
we “close”, at the north or south poles, the open wing we obtain the same minimum
drag. The corresponding optimal solutions differ by a constant, since in the case of
the open wing the zero endpoint condition is imposed. Note that the latter condition
implies that the corresponding optimal solution will then vanish at the wing closure
point.

In the above mentioned paper it has also been shown that a similar property
holds when a closed wing is defined as the closure of two symmetric (with respect to
the z-axis) open curves. In this case, being the problem solution symmetric with respect
to the z-axis, it will necessarily vanish at the two symmetric closure points.

Thus, a Box-Wing problem can always be approximated by that defined either
on a single (symmetric) open curve with its two endpoint close to each other, or on a
couple of (symmetric) open curves with their corresponding endpoints close to each
other. We recall that it is known that the solution behavior near each curve endpoints is
given by the square root of the distance of a curve point from the endpoint.

The TBW case has a more complex geometry, which does not allow to exam-
ine the associated minimization problem directly on it. To overcome this difficulty,
the above properties have suggested the authors of [7, 8] to decompose a (symmet-
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ric) TBW configuration into N symmetric open wings, close to each other, letting then
their distances tending to zero. Of course there are infinite many way of decomposing
a TBW into a finite number of open (symmetric) curves. For a sample of them, see
for example the case reported in Figure 4. Since a TBW does not have sharp edges,
these being smoothly rounded, the open curve defined by the chosen decomposition
are smooth. The intensive numerical testing performed in the above two papers seem
to confirm that the drag minimum does not depend on the chosen decomposition.

Because of the above remarks, here and in the following we consider the mul-
tiwing case, that is, the case of a system of N 1 symmetric disjoint open wings,
each defined by an open lifting line ℓk , k 1, . . . ,N , in the Cartesian y-z plane. The
value N 1 identifies a single C-Wing, a case discussed in [3, 4, 9]. We assume
that each curve ℓk has a parametric representation ψk t ψ1k t ψ2k t T , with
ψik Cm 1,1 for some m 2, and ψk t 0. We further assume that the functions
ψ1k t ,k 1, . . . ,N, are not all constant on 1,1 , that is, the lifting lines are not all
vertical segments, a nonsense case for an airplane multiwing system. Each curve has it
own arc length abscissas, denoted by

(2.1) ηk t
t

0
ψk s ds,

running from ηk 1 ak to ηk 1 ak for some positive real number ak.
A point on ℓk, where the aerodynamic forces are calculated, is denoted by rk

yk zk
T yk ηk zk ηk

T . The total lift L and the induced drag Dind, given
in terms of the ( unknown) circulations Γk on ℓk, are defined by:

(2.2) L L Γ
N

k 1

L Γk with L Γk ρ V
ak

ak

τyk ηk Γk ηk dηk

and

(2.3) Dind Dind Γ ρ
N

j 1

a j

a j

vn j η j Γ j η j dη j,

where Γ Γ j
N
j 1; ρ (density) and V (free stream velocity) are given positive

constants.
The quantity τyk ηk yk ηk is the projection on the y-axis of the unit vector

tangent to the lifting line ℓk, while

(2.4) vn j η j
1

4π

N

k 1

ak

ak

Γk ξk Yjk η j,ξk dξk, a j η j a j,

where

(2.5) Yjk η j,ξk
d

dη j
ln rk ξk r j η j .
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is the so-called normalwash associated with ℓ j.

The (constrained) wing minimization problem we have to solve then takes the
following form: minimize, in a suitable functional space, the functional Dind Γ , sub-
ject to the prescribed lift constraint

(2.6)
N

k 1

L Γk Lpres .

To solve this problem, we set

Γ0k t : Γk ηk t , r0k t : rk ηk t ψk t ,

(2.7) Y0 jk t,s :
d
dt

ln r0k s r0 j t , t,s 1,1

and

Γ0k t Γ ηk t ηk t , ψ1k t yk ηk t ηk t , Y0 jk t,s Yjk η j t ,ηk s η j t .

Condition (2.6) then take the new form

(2.8)
N

k 1

1

1
ψ1k t Γ0k t dt γ :

Lpres

ρ V
.

Moreover, we have

(2.9) Dind Dind Γ0
ρ
4π

N

j 1

1

1

N

k 1

1

1
Y0 jk t,s Γ0k s dsΓ0 j t dt,

where Γ0 Γ0k
N

k 1 is the new unknown of our (constrained) minimization prob-
lem.

In the following, a brief survey of the main theoretical results obtained in [13]
is presented.

3. Functional spaces and problem reformulation

Let ϕ t : 1 t2 and L2
ϕ be the real Hilbert space of all (classes of) quadratic

summable functions w.r.t. the weight ϕ t , equipped with the inner product

f ,g ϕ :
1

1
f t g t ϕ t dt

and the norm f ϕ f , f ϕ . By pϕ
n : n N0 we denote the system of orthonor-

mal, w.r.t. ϕ t , polynomials pϕ
n t of degree n with positive leading coefficient. Note
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that for the above weight function, these are the well-known normalized Chebyshev
polynomials of the second kind Un t .

Then we define the family of Sobolev-type spaces (see [1])

L2,r
ϕ L2,r

ϕ 1,1 ,r 0, L2,0
ϕ L2

ϕ

L2,r
ϕ : f L2

ϕ :
n 0

1 n 2r f , pϕ
n ϕ

2
,

with

f ,g ϕ,r
n 0

1 n 2r f , pϕ
n ϕ g, pϕ

n ϕ

and the norm f ϕ,r : f , f ϕ,r. The set L2,r
ϕ is a Hilbert space. We further define

V : f ϕu : u L2,1
ϕ ,

f ,g V : ϕ 1 f ,ϕ 1g ϕ,1 and f V : ϕ 1 f ϕ,1 .

LEMMA 1 (see [9]). For f V , we have f C 1,1 with f 1 0.

Setting fk
N

k 1 to identify the vector f1 . . . fN
T , the problem we aim

to solve can be written as follows, where, here and in the following, , denotes the
(standard) unweighted L2 inner product (i.e. , ϕ with ϕ 1).

(P) Find a function Γ0 Γ0k
N

k 1 VN, which minimizes the functional cf. (2.9)

F Γ0 :
N

j 1

1

1

N

k 1

1

1
Y0 jk t,s Γ0k s dsΓ0 j t dt

subject to cf. (2.8)
N

k 1

ψ1k,Γ0k γ ,

If we define

f,g N :
N

k 1

fk,gk , f fk
N

k 1 , g gk
N

k 1

and

(3.10) Af t :
1
π

N

k 1

1

1
Y0 jk t,s fk s ds

N

j 1

, 1 t 1,

then the problem can be reformulated as follows:

(P) Find a function Γ0 Γ0k
N

k 1 VN minimizing the functional F Γ0 : AΓ0,Γ0 N

on VN subject to ψ1,Γ0 N γ, with ψ1 ψ1k
N

k 1.
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4. The Euler-Lagrange Equation and its Properties

First we note that it can be easily shown (see [9], Lemma 3) that the kernel Y0 j j t,s
has the representation

(4.11) Y0 j j t,s
1

s t
Kj t,s ,

where the function Kj : 1,1 2 R is continuous together with its partial derivatives
i ℓKj t,s

ti sℓ
, i,ℓ N0, i ℓ m 2. The next lemma and theorem then follow.

LEMMA 2. The operator A : VN L2
ϕ

N is a linear and bounded one and,
consequently, Af, f N is well defined for all f VN. Furthermore, for all f VN, the
relation

(4.12) Af DBf

holds true, where

(4.13) Bf t :
N

k 1

1
π

1

1
ln r0k s r0 j t fk s ds

N

j 1

and where D is the operator of generalized differentiation.

The operator D : VN L2
ϕ

N defined by Df : D fk
N

k 1 is an isometrical

isomorphism, where f VN

N

k 1

fk
2
V

1
2

, f L2
ϕ N f, f ϕ,N , and f,g ϕ,N

N

k 1

fk,gk ϕ .

In the following, the symbol Θ will denote the trivial element of the linear space
under consideration.

THEOREM 1. The operator A : VN L2
ϕ

N is symmetric and positive defi-
nite, i.e. f,g VN, Af,g N f,Ag N and, f VN Θ , Af, f N 0.

For the given γ R , define the corresponding (affine) manifold

VN
γ : f fk

N
k 1 VN :

N

k 1

fk,ψ1k γ .

If we set Ψ1 ψ1k
N

k 1 and Ψ1 ψ1k
N

k 1 , then the following result holds.
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THEOREM 2. The element Γ0 VN
γ is a solution of Problem (P) if and only if

there is a β R such that

(4.14) AΓ0 βΨ1 .

This solution is unique, if it exists.

LEMMA 3. Equation (4.14) can be written equivalently as

(4.15) BΓ0 βΨ1 δ, Γ0 VN
γ , β R, δ RN .

Moreover, we have

(4.16) Bf A0f f VN ,

where

(4.17) A0f t :
N

k 1

1
π

1

1
Y0k j s, t fk s ds

N

j 1

S f t K0f t

with

S f t : 1
π

1

1

f j s ds
s t

N

j 1
, 1 t 1

(4.18) K0f t :
N

k 1

1
π

1

1
Kk j s, t fk s ds

N

j 1

and

(4.19) Kk j s, t :
Kj s, t : k j,

Y0k j s, t : k j.

Above and in the following, the symbol means that the integral is defined in
the Cauchy principal value sense.

Using the above results, the following theorem has then be proved.

THEOREM 3. Assume that ψik C3 1,1 , i 1,2 , k 1, . . . ,N . Then,

(a) the operator A0 : L2
ϕ 1

N L2
ϕ 1

N has a trivial null space, i.e.,

N A0 f L2
ϕ 1

N : A0f Θ Θ ;

If furthermore, the vector valued functions ψ1k t N
k 1 , are not constant on

1,1 , then:

(b) equation (4.15) possesses a unique solution Γ0 ,β,δ VN
γ R RN;

(c) Problem (P) is uniquely solvable.
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5. A Collocation-Quadrature Method

The previous Lemma 3 allows us to reduce the minimization problem we have to solve
to a system of N Cauchy integral equations (see (4.15)). Indeed, taking identity (4.16)
into account, system (4.15) can be rewritten in the new form

(5.20) A0f βΨ1 δ, f,β,δ VN
γ R RN

with (see (4.17))
A0 S K0 : L2

ϕ 1
N L2

ϕ 1
N

.

Its unique solution is denoted by f ,β ,δ .
To construct a numerical method for its solution, first we collocate our Cauchy

singular integral equations at the zeros of the n 1 -degree Chebyshev polynomial of
the first kind Tn 1 t

tℓn cos
2ℓ 1 π
2n 2

,ℓ 1, . . . ,n 1.

Then we consider the image space R Pn of the orthoprojection Pn : L2
ϕ 1

N

L2
ϕ 1

N defined by

Pnf
n 1

k 0

f j,Uk ϕUk

N

j 1

.

For fn f n
k

N
k 1 R Pn we have (see [9, Section 5]):

(5.21) S fn tℓn

n

i 1

ϕ sin

n 1
f n

j sin

sin tℓn

N

j 1

.

The discretization of the integrals defining K0fn tℓn (see (4.18)) and the con-
straint inner product fk,ψ1k , is performed by multiplying and dividing their inte-
grand functions by ϕ s , and then applying the n-point Gauss-Chebyshev rule of the
second kind, whose nodes and coefficients are given by sni cos iπ

n 1 and π
n 1 ϕ sni

2,
i 1, . . . ,n, respectively. After this, we obtain the following approximations of K0fn tℓn :

(5.22) K 0
n fn tℓn :

1
n 1

N

k 1

n

i 1
ϕ sin Kk j sin, tℓn f n

k sin

N

j 1

and of the associated constraint:

(5.23)
π

n 1

N

k 1

n

i 1
ϕ sin ψ1k sin f n

k sin γ.
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Further, recalling definition (4.19) and identity (4.11), and taking into account rep-
resentations (5.21) and (5.22), we obtain the following discretization of A0fn tℓn
defined by (4.17):

S fn tℓn K 0
n fn tℓn

1
n 1

N

k 1

n

i 1
ϕ sin Y0k j sin, tℓn f n

k sin

N

j 1

,ℓ 1, ,n 1.

Thus, for every integer n 1, we have to find fn,βn,δn R Pn R RN such
that the equations

(5.24) S fn tℓn K 0
n fn tℓn βnΨ1 tℓn δn, ℓ 1, . . . ,n 1,

are satisfied together with condition (5.23).
Finally, by introducing the Lagrange interpolation operators

An Sn Kn Sn L1
n SPn Kn L1

n K 0
n Pn

L1
n g t

n 1

ℓ 1

Tn 1 t
t tℓn Tn 1 tℓn

g tℓn

L2
n g t

n

i 1

Un t
t sin Un sin

g sin .

the previous system can be written in the form

(5.25) Anfn βnL1
n Ψ1 δn, fn,βn,δn R Pn R RN

together with the constraint

(5.26)
N

k 1

L2
n ψ1k, f n

k γ .

Once the system unknowns fn sin , i 1, . . . ,n, together with βn and δn, have been
determined, we define the continuous approximant of f

fn t
n

i 1

ϕ t
ϕ sin

Un t
t sin Un sin

fn sin , 1 t 1.

For this collocation-quadrature method, the following convergence estimate is
a particular case of the more general one proved in [13].
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THEOREM 4. Assume ψik Cr 1,1 , i 1,2, k 1, . . . ,N, for some integer
r 3, γ 0. Then, for all sufficiently large n (say n n0), there exists a unique solution

fn ,βn ,δn R Pn R RN of (5.25), (5.26). Moreover, f ϕL2,r 2
ϕ

N
and

N

k 1

f n
k fk

2
ϕ 1 βn β 2

N

k 1

δn
k δk

2

1
2

cn2 r

with the constant c 0 independent of n.

For the corresponding algorithm and some numerical tests see [13].
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