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SOME RESULTS ON CUBIC AND QUARTIC
QUASI-INTERPOLATION OF OPTIMAL APPROXIMATION

ORDER ON TYPE-1 TRIANGULATIONS

Abstract. In this paper we summarize the results on new families of C1 quartic and cubic
quasi-interpolating splines on type-1 triangulations approximating regularly distributed data.
The splines are directly determined by setting their Bernstein-Bézier coefficients to appro-
priate combinations of the given data values instead of defining the approximating splines as
linear combinations of compactly supported bivariate spanning functions and do not use pre-
scribed derivatives at any point of the domain. The quasi-interpolation operators provided by
the proposed schemes reproduce cubic and quadratic polynomials and yield approximation
order four and three for smooth functions, respectively.

1. Introduction.

Spline quasi-interpolation is a simple procedure for constructing spline approxima-
tions of functions from their values of those of some derivatives at given points. The
quasi-interpolating splines obtained in this way produce a quasi-interpolation operator
defined on a space of functions S that is a linear and local map bounded in some rel-
evant norm, and, moreover it reproduces some nontrivial polynomial space. Usually,
S is the space spanned by the translates on a lattice of a nonnegative function with
compact support that provide a partition of unity, and B-splines and box splines are
very relevant choices [11, 12, 15, 17, 24, 29]. These functions have been used to define
quasi-interpolation operators with near-minimal infinity norm (see [4, 5, 2], [1, 3, 6, 20]
and [7, 8, 14, 21] for the construction in the univariate, bivariate and trivariate cases,
respectively). Other functions than B-splines and box splines have been used to de-
fine quasi-interpolants. For instance, quadratic Powell-Sabin splines on nonuniform
triangulations in [19] (see also [22, 23, 25]). In general, the operators are defined to
reproduce a space of polynomials, but it is also possible to reproduce the whole spline
space [18, 13].

A different approach has been adopted in a few papers for defining C1 quasi-
interpolating splines [26, 27, 28]. To our best knowledge, they are the unique ones in
the literature dealing with this methodology until the publication of [9, 10]. In [16],
the scheme presented in [28] is adapted to surfaces of varying geometric complexity,
where the tiling resolution can be locally defined.

The idea of the approach in [26, 27, 28] is to set all the Bernstein-Bézier (BB-)
coefficients [17] of the splines by using local portions of the data in such a way that the
C1-smoothness conditions are satisfied as well as the reproduction of the polynomials
up to an appropriate total degrees. In [26], this idea is used to define C1 quadratic
quasi-interpolating splines on a type-2 triangulation of a rectangular domain reproduc-
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ing quadratic polynomials. The paper [28] deals with the construction of C1 quartic
splines on a type-1 triangulation of the real plane, reproducing the space P3 of cubic
polynomials. Finally, in [27] C1 cubic quasi-interpolating splines on a type-6 tetra-
hedral partition of a rectangular, volumetric domain, are defined, and the associated
operator reproduces trilinear polynomials. In all cases only point evaluations are used.

In this paper, we summarize the results in [9, 10] obtained in analyzing the
construction proposed in [28]. New operators with optimal approximation orders, less
computational cost and smaller uniform norms are defined.

It is foreseeable that the analysis carried out in [9, 10] can be generalized to
obtain C2 quasi-interpolating splines, although the use of a symbolic software will be
even more necessary.

Here is an outline of the paper. In Section 2, we give some preliminaries on
the BB-form of C1-splines on type-1 triangulations and we introduce some useful no-
tations used throughout the paper. In Section 3 and 4, we define families of quartic and
cubic quasi-interpolating splines based on two different sets of points. We analyze the
general schemes, depending on a certain number of free parameters and we present the
results that some strategies provide in order to fix them. In all cases, the approximation
properties of the corresponding operators are discussed.

2. Notations and preliminaries

Let ∆h be the triangulation spanned by the vectors e1 : h,h and e2 : h, h ,
h 0. Its vertices vi, j : ie1 je2, i, j Z, define the two-dimensional lattice V :
vi, j : i, j Z . The plane is then divided into parallelograms

Pi, j : vi, j,vi, j 1,vi 1, j 1,vi 1, j .

Each parallelogram Pi, j is split into the triangles Ti, j : vi, j,vi 1, j 1,vi 1, j and Ti, j :
vi, j,vi 1, j 1,vi, j 1 by drawing the diagonal vi, j,vi 1, j 1 . The triangulation ∆h can

also be viewed as a collection of overlapping hexagons Hi, j centered at vi, j and obtained
as the union of all triangles around vi, j.

Given a function f , the quasi-interpolants Qd f to be defined belong to the spline
space

S 1
d ∆h : s C1 R2 : s T Pd , for all T ∆h ,

with d 3,4, where Pd stands for the space of polynomials of total order d 1. On
every triangle T : v1,v2,v3 ∆h, Qd f can be written in terms of the Bernstein poly-
nomials relative to T . More explicitly, Qd f T : k d cT

k BT
k for some coefficients cT

k ,
with k : k1,k2,k3 , k : k1 k2 k3, and BT

k : d!
k! bk, where b : b1,b2,b3 is the

vector of barycentric coordinates relative to T .
For a given ℓ 1, ξT

ℓ will denote the lattice of the domain points

ξT
k : k1v1 k2v2 k3v3 ℓ, k ℓ.

The BB-coefficients cT
k will be associated with the domain points ξT

k , and the surface
given by Qd f on T will be contained in the convex hull of the B-net ξT

k ,cT
k , k d .
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Figure 1: The points of D4 relative to Hi, j.

The union, without repetitions, of all domain points of each triangle in ∆h gives
rise to a set denoted by Dℓ. For the construction of Qd f we consider the subsets D2
and D3. The resulting quasi-interpolants will be denoted Qd,m f , m 2,3.

The proposed construction is based on partitions Dℓ
i, j, i, j Z of Dℓ, ℓ

2,3,4, where Dℓ
i, j is composed by 4, 9 and 16 domain points in the triangles defin-

ing Hi, j, respectively. More precisely,

D4
i, j : vi, j,u

1,1
i, j ,u1,0

i, j ,u0, 1
i, j ,u 1, 1

i, j ,u 1,0
i, j ,u0,1

i, j ,ei, j,

z1,1
i, j ,e1,0

i, j ,z1,0
i, j ,z0, 1

i, j ,z 1, 1
i, j ,z 1,0

i, j ,e0,1
i, j ,z0,1

i, j ,

D3
i, j : vi, j,w

1,1
i, j ,w1,0

i, j ,w0, 1
i,, j ,w 1, 1

i, j ,w 1,0
i, j ,w0,1

i, j , ti, j, ti, j ,

D2
i, j : vi, j,e

1,0
i, j ,e0,1

i, j ,e1,1
i, j ,

where ek,m
i, j is the midpoint of vi, j,vi k, j m ,

uk,m
i, j :

1
4

3vi, j vi k, j m , zk,m
i, j :

1
4

2vi, j vi k, j m vr,s ,

with vr,s the third vertex of vi, j,vi k, j m,vr,s ∆h counting counterclockwise, wk,m
i, j :

1
3 2vi, j vi k, j m , and ti, j and ti, j are the barycenters of Ti, j and Ti, j, respectively. It
holds Dℓ i, j Dℓ

i, j, ℓ 2,3,4. Figs. 1, 2 and 3 show the domain points in Dℓ,
ℓ 4,3,2, lying in the hexagon Hi, j, respectively.

Using the notations above, the restrictions of the quasi-interpolants Qd,m f to the
triangles Ti, j and Ti, j can be expressed in terms of the Bernstein polynomials of degree
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Figure 2: The points of D3 relative to Hi, j.

d. For x Ti, j (resp. Ti, j)

(2.1) Qd,m f x
p Ad

i, j

cd,m p BP b (resp. Qd,m f x
p Ad

i, j

cd,m p BP b ),

where Ad
i, j (resp. Ad

i, j) is the subset containing the domain points Dd
i, j Dd

i 1, j 1

Dd
i 1, j (resp. Dd

i, j Dd
i 1, j 1 Dd

i, j 1) lying in Ti, j (resp. Ti, j), P : P1,P2,P3
stands for the index k associated with p, and

BP b
d!

P1!P2!P3!
bP1

1 bP2
2 bP3

3 .

Figure 3: The points of D2 relative to Hi, j.
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Figure 4: Notation used for enumerate fi, j Dℓ and a general mask a in case ℓ 3
(left) and ℓ 2 (right).

3. C1 quartic quasi-interpolating splines

In this section, we construct two different quasi-interpolating splines Q4,m f S 1
4 ∆h ,

m 2,3, for a given function f C R2 , by assuming to know the values f v , v
Dm. They will be defined by setting their BB-coefficients on the triangles Ti, j and Ti, j.
Taking into account that ∆h is a uniform triangulation, it is sufficient to define the BB-
coefficients c p : c4,m p corresponding to the domain points p D4 denoted by the
letters v, u, e and z.

Let c vi, j : f vi, j . The BB-coefficients corresponding to the domain points
denoted by the letters u, e and z, are expressed as linear combination of the values
of f at the Nm domain points of Dm lying in Hi, j with coefficients defining masks
enumerated as in Fig. 4. The values of f involved in those expressions form the vector
fi, j Dm RNm , ordered as the masks, where N2 19 and N3 37.

So, we write c u1,1
i, j fi, j Dm ω, c e1,1

i, j fi, j Dm α, c z1,1
i, j fi, j Dm

β for masks ω,α,β RNm , where A B : n
k 1 AkBk, with n the cardinality of A and

B. The BB-coefficients associated with the other u-points (u1,0
i, j , u0, 1

i, j , u 1, 1
i, j , u 1,0

i, j ,
and u0,1

i, j ) are defined in a similar way but using the rotated versions of the mask ω.
The BB-coefficients associated with the other e, z-points are defined from the rotated
versions of α and β, respectively. The following results hold (see [9], in particular for
expressions providing the masks).

PROPOSITION 1. There exist infinitely many masks α,β and ω depending on
the fourteen parameters α0, α2, β j, j 1,2,3,7,8,9,10,11,12,19,20,21 , such that
the quasi-interpolation operator Q4,3 defined by Q4,3 f : Q4,3 f is exact on P3. If,
in addition to the exactness on P3, the minimization of errors associated with quartic
polynomials is required, then α0

10
21 and α2

27
56 , and the aforementioned param-

eters β j remain free. If the minimization of quasi-interpolation errors for quartic and
quintic polynomials are prescribed, then

β1 β2 β3 β7 β9 β11 0, β8
613
448

, β10
321
4480

,

β12
653
4480

, β19
1803
11200

, β20
5021
14000

, β21
7683
28000

.
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In all cases, for all triangle T ∆h there exist constants K̄ γ , independent on h, such
that for every f Cr 1 R2 , 0 r 3,

Dγ f Q4,3 f ,T K̄ γ hr 1 γ Dr 1 f ,ΩT
,

where ΩT stands for the union of the triangles in ∆h having a non-empty intersection
with T .

The same methodology allows to construct quasi-interpolating splines Q4,2 f
based on the values f v , v D2, and therefore using fewer points than Q4,3 f . Now,
c p will stand for the BB-coefficient c4,2 p . Thus, let c vi, j : f vi, j , c e1,1

i, j

fi, j D2 α, c z1,1
i, j fi, j D2 β and c u1,1

i, j fi, j D2 ω, with masks α, β and ω in

R19, and define the BB-coefficients to the remaining u-points as well as the e, z-points
by their corresponding rotated versions. We have the following result [10].

PROPOSITION 2. There exist infinitely many masks α,β and ω depending on the
three parameters β1, β2, β3 such that the quasi-interpolation operator Q4,2 defined by
Q4,2 f : Q4,2 f is exact on P3. The values of the mask α are α0 α7

1
3 , α1

2
3 ,

α2 α6 α8 α18
1
3 , α9 α17

1
6 , α j 0, j 3,4,5,10,11,12,13,14,15,16 ,

and the values of the masks β and ω satisfy the following conditions:

• β0
1
3 , β4

1
3 β1, β5

1
3 β2, β6 β3, β7

5
8

5
8 β1

3
8 β2

3
8 β3,

β8
7
6 β1 β2, β9

5
8

3
8 β1

5
8 β2

3
8 β3, β10

1
2 β2 β3, β11

3
8 β1

3
8 β2

5
8 β3, β12

1
2 β1 β3, β13

11
24

5
8 β1

3
8 β2

3
8 β3, β14

5
6 β1

β2, β15
11
24

3
8 β1

5
8 β2

3
8 β3, β16

1
2 β2 β3, β17

3
8 β1

3
8 β2

5
8 β3,

β18
1
2 β1 β3,

• ω0 1, ω1
2
3 β1 β2, ω2

1
3 β2 β3, ω3

1
3 β1 β3, ω4

2
3

β1 β2, ω5
1
3 β2 β3, ω6

1
3 β1 β3, ω7

11
12 β1 β2, ω8

4
3 β1 2β2 β3, ω9

11
24 β2 β3, ω10 β1 β2 2β3, ω11

11
24 β1 β3,

ω12
4
3 2β1 β2 β3, ω13

11
12 β1 β2, ω14

4
3 β1 2β2 β3,

ω15
11
24 β2 β3, ω16 β1 β2 2β3, ω17

11
24 β1 β3, ω18

4
3

2β1 β2 β3.
Moreover, the error estimates in Proposition 1 hold. If β1 β2 and β3 0, then
the upper bound max α 1 , β 1 , ω 1 max 18

k 0 αk , 18
k 0 βk , 18

k 0 ωk

to the uniform norm of the operator Q4,2 is minimized for all β1
13
36 , 41

84 , and

for these values Q4,2 3.

The quasi-interpolation scheme defined [28] is exact on P3, and its uniform
norm is equal to 10. The new operator Q4,2 is also exact on P3, but its norm is equal to
3. Moreover, the computational cost is almost halved taking into account that the BB-
coefficients of the quasi-interpolants Q4,2 f are computed from masks in R19 instead of
R37.
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4. C1 cubic quasi-interpolating splines

The methodology used in the previous section will provide C1-cubic quasi-interpolating
Q3,m f splines from the values f v , v Dm in such a way that the associated operator
Q3,m is exact on P2. Now the BB-coefficients associated with the domain points vi, j,
w1,1

i, j , w1,0
i, j , w0, 1

i, j , w 1, 1
i, j , w 1,0

i, j , w0,1
i, j , ti, j, ti, j 1, ti 1, j 1, ti 1, j 1, ti 1, j and ti, j must

be properly defined. However, there are some differences between the cubic and the
quartic cases. First of all, Q3,m f will not interpolate f at the vertices, and therefore a
new mask to define c3,m vi, j must be used. Moreover, the BB-coefficients c3,m p for
p w1,0

i, j ,w0, 1
i, j ,w 1, 1

i, j ,w 1,0
i, j ,w0,1

i, j cannot be determined using the rotated masks of

the one defining c3,m w1,1
i, j . Therefore, in the cubic case and based on D2, we look

for masks α, β, β, and γk, 0 k 5, in R19 such that

c3,2 vi, j fi, j D2 α, c3,2 ti, j fi, j D2 β, c3,2 ti, j fi, j D2 β

and

c3,2 w1,1
i, j fi, j D2 γ0, c3,2 w1,0

i, j fi, j D2 γ1, c3,2 w0, 1
i, j fi, j D2 γ2,

c3,2 w 1, 1
i, j fi, j D2 γ3, c3,2 w 1,0

i, j fi, j D2 γ4, c3,2 w0,1
i, j fi, j D2 γ5.

The following result holds [10],

PROPOSITION 3. There exist unique masks α, β, β, and γk, 0 k 5, given in
Table 4.1, such that the quasi-interpolation operator Q3,2 : C R2 S1

3 ∆h defined
as Q3,2 f : Q3,2 f from the quasi-interpolating splines Q3,2 f provided by those masks
is exact on P2 . Moreover,

Q3,2 max α 1 , β 1 , γ 1 , ωk 1 ,0 k 5
13
3

.

For an arbitrary triangle T ∆h, let ΩT be the union of the triangles in ∆ having a
non-empty intersection with T . Then, there exist constants K̄ γ , independent on h, such
that for every f Cr 1 R2 , 0 r 2,

Dγ f Q3,2 f
,T K̄ γ hr 1 γ Dr 1 f ,ΩT

,

for all 0 γ r, γ γ1,γ2 .

Following the same logical scheme, it is possible to construct quasi-interpolation
operators Q3,3 based on masks in D3. There are infinitely many masks such that Q3,3
is exact on P3 and provides C1 quasi-interpolating splines Q3,3 f . They depend on the
values of the components γ0,0 and γ2,0 of the masks γ0 and γ2 relative to the domain
points w1,1

i, j and w0, 1
i, j , respectively [10]. The standard upper bound to the infinity norm

of the operator Q3,3 given by the maximum of the 1-norms of the masks attains its max-
imum value (that it is equal to 5) at all points lying in the triangle with vertices 1,0 ,

7
6 ,0 and 7

6 ,1 .
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ℓ 18α 18β 18β 9γ0 18γ1 18γ2 9γ3 18γ4 18γ5
0 10 17 17 9 14 6 1 6 14
1 0 0 0 0 0 0 0 0 0
2 8 24 8 8 16 8 0 0 8
3 8 8 0 4 16 16 4 0 0
4 0 0 0 0 0 0 0 0 0
5 8 0 8 4 0 0 4 16 16
6 8 8 24 8 8 0 0 8 16
7 0 1 1 0 0 0 0 0 0
8 0 8 0 0 0 0 0 0 0
9 1 7 1 1 2 1 0 0 1
10 0 0 0 0 0 0 0 0 0
11 5 4 0 2 9 10 3 1 0
12 8 0 0 0 8 16 8 8 0
13 8 0 0 0 4 12 8 12 4
14 8 0 0 0 0 8 8 16 8
15 5 0 4 2 0 1 3 10 9
16 0 0 0 0 0 0 0 0 0
17 1 1 7 1 1 0 0 1 1
18 0 0 8 0 0 0 0 0 0

Table 4.1: The masks in Proposition 3.
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