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S. Barbero, U. Cerruti, N. Murru

ON POLYNOMIAL SOLUTIONS OF THE DIOPHANTINE
EQUATION (X +Y −1)2 = WXY

Abstract. In this paper we consider a particular class of polynomials arising from the solu-
tions of the Diophantine equation (x+y−1)2 = wxy. We highlight some interesting aspects,
describing their relationship with many iportant integer sequences and pointing out their con-
nection with Dickson and Chebyshev polynomials. We also study their coefficients finding a
new identity involving Catalan numbers and proving that they are a Riordan array.

1. A class of polynomials related to integer sequences, Dickson and Chebyshev
polynomials

In [1], the authors solved the Diophantine equation

(1) (x+ y−1)2 = wxy,

where w is a given positive integer and x,y are unknown numbers, whose values are to
be sought in the set of positive integers.
In particular, (x,y) is a solution of the Diophantine equation (1) if and only if (x,y) =
(um+1(w),um(w)), for a given m ∈ N, where (un(w))+∞

n=0 is the following linear recur-
rent sequence:

(2)

{
u0(w) = 0, u1(w) = 1, u2(w) = w
un(w) = (w−1)un−1(w)− (w−1)un−2(w)+un−3(w) ∀n≥ 3.

This polynomial sequence is very interesting. Indeed, for several values of w, the
polynomial sequence (un(w)) coincides with some well–known and studied integer
sequences. For example, for w = 4, (un(4)) = n2, that is the sequence A000290
in OEIS [7]. When w = 5, (un(5)) is the sequence of the alternate Lucas numbers
minus 2 (see sequence A004146 in OEIS). If w = 9, (un(9)) = F2

2n, where (Fn) is
the sequence of the Fibonacci numbers. For w = 4, ...,20, the sequence (un(w)) ap-
pears in OEIS [7]. In Table 1, we summarize sequences un(w) for different values of w.

In the following, we prove that polynomials un(w) are related to some well–
known and studied polynomials like Chebyshev polynomials of the first and second
kind, respectively Tn(x) and Un(x) (see, e.g., [5]), and Dickson polynomials Dn(x) and
En(x) = Un

( x
2
)

(see, e.g., [3]).
Here we define Tn(x) and Un(x) as the n–th element of the linear recurrent sequence
(Tn(x))+∞

n=0 and (Un(x))+∞
n=0 with characteristic polynomial t2−2xt + 1 and initial con-

ditions T0(x) = 1, T1(x) = x and U0(x) = 1, U1(x) = 2x, respectively.
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6 S. Barbero, U. Cerruti, N. Murru

w (un(w))+∞
n=0 OEIS reference

4 0,1,4,9,16,25, ... A000290=(n2)+∞
n=0,

5 0,1,5,16,45,121, ... A004146=Alternate Lucas numbers - 2
6 0,1,6,25,96,361, ... A092184
7 0,1,7,36,175,841, ... A054493 (shifted by one)
8 0,1,8,49,288,1681, ... A001108
9 0,1,9,64,441,3025, ... A049684=F2

2n (Fn Fibonacci numbers)
10 0,1,10,81,640,5041, ..., A095004 (shifted by one)
11 0,1,11,100,891,7921, ..., A098296
12 0,1,12,121,1200,11881, ... A098297
13 0,1,13,144,1573,17161, ... A098298
14 0,1,14,169,2016,24025, ... A098299
15 0,1,15,196,2535,32761, ... A098300
16 0,1,16,225,3136,43681, ... A098301
17 0,1,17,256,3825,57121, ... A098302
18 0,1,18,289,4608,73441, ... A098303
19 0,1,19,324,5491,93025, ... A098304
20 0,1,20,361,6480,116281, ... A049683=(L6n−2)/16 (Ln Lucas numbers)

Table 1.1: Sequence un(w) for different values of w

We recall that Dickson polynomials are defined as follows:

Dn(x) =
%n/2&

∑
i=0

n
n− i

(
n− i

i

)
(−1)ixn−2i

and

En(x) =
%n/2&

∑
i=0

(
n− i

i

)
(−1)ixn−2i.

We also recall that for Dickson polynomials the following identities hold

(3) Dn
(
x+ x−1)= xn + x−n, En

(
x+ x−1)=

xn+1− x−(n+1)

x− x−1

THEOREM 1. We have

(4) un(w) =
Dn(w−2)−2

w−4
= 2

Tn(w−2
2 )−1

w−4
, ∀n≥ 0

and in particular for all n≥ 1

(5) u2n(w) = wE2
n−1(w−2) = wU2

n−1

(
w−2

2

)

u2n−1(w) = (En−1(w−2)+En−2(w−2))2 =

=
(

Un−1

(
w−2

2

)
+Un−2

(
w−2

2

))2(6)
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Proof. The recurrence relation described in (2) clearly shows that the characteristic
polynomial of (un(w)) is

x3− (w−1)x2 +(w−1)x−1 = (x−1)(x2− (w−2)x+1)

whose zeros are x1 = 1 and x2,3 = w−2±
√

w2−4w
2 . If we set x2 = ζ we easily observe

that x3 = ζ−1 so that ζ + ζ−1 = w− 2 and ζ− ζ−1 =
√

w2−4w. Moreover, using the
initial conditions in (2), with standard tecniques we find the following closed form for
every element of (un(w))

(7) un(w) =
ζn +ζ−n−2

w−4
=

ζn +ζ−n−2
ζ+ζ−1−2

. Thanks to the first identity in (3) it is straightforward to observe that

(8) un(w) =
Dn(ζ+ζ−1)−2

w−4
=

Dn(w−2)−2
w−4

.

Since x2− (w− 2)x + 1 is the characteristic polynomial of the sequence (Tn
(w−2

2
)
),

with roots x2 = ζ and x3 = ζ−1, and the initial conditions are T0
(w−2

2
)
= 1, T1

(w−2
2
)
=

w−2
2 we obtain

(9) Tn

(
w−2

2

)
=

ζn +ζ−n

2
=

Dn(ζ+ζ−1)
2

=
Dn(w−2)

2
Thus substituting (9) in (8) we prove equality (4). Now considering the equality (7)
and the second identity in (3) we have

u2n(w) =
ζ2n +ζ−2n−2

ζ+ζ−1−2
=

(ζn−ζ−n)2

(ζ−ζ−1)2
(ζ−ζ−1)2

ζ+ζ−1−2
= w(En−1(w−2))2,

which proves (5), and

(10) u2n−1(w) =
ζ2n−1 +ζ−2n+1−2

ζ+ζ−1−2
=

(ζ2n−1 +ζ−2n+1−2)(ζ+ζ−1 +2)
(ζ−ζ−1)2

where we use the identity

(ζ−ζ−1)2 = w(w−4) = (ζ+ζ−1 +2)(ζ+ζ−1−2).

An easy calculation shows that

(ζ2n−1 +ζ−2n+1−2)(ζ+ζ−1 +2) =
(

ζn−ζ−n +ζn−1−ζ−(n−1)
)2

and substituting in (10) we find

u2n−1(w) =

(
ζn−ζ−n +ζn−1−ζ−(n−1)

)2

(ζ−ζ−1)2 =

=

(
ζn−ζ−n

ζ−ζ−1 +
ζn−1−ζ−(n−1)

ζ−ζ−1

)2

=

= (En−1(w−2)+En−2(w−2))2 ,
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proving (6). ()

As a consequence of (4) we highlight the following relation, where we posed
w−2

2 = x

(11) Tn(x) = 2Dn(2x) = un(2x+2) · (x−1)+1

The coefficients of polynomials un(w) are particularly interesting and we ex-
plicitly determine them in the following

THEOREM 2. For any integer n≥ 1, we have

un(w) =
n

∑
k=0

dn(k)wk,

where

dn(k) =
n−k−1

∑
i=0

(−1)i
(

i+2k
2k

)
, ∀0≤ k < n

and dn(n) = 0.

Proof. The theorem can be proved by induction. For n = 1, we have u1(w) = 1 and
d1(0)w0 +d1(1)w = 1. Similarly, it is straightforward to check the theorem when n = 2
and n = 3.
Now, let us suppose that the thesis holds for any integer less or equal than n, for a given
integer n. We have

un+1(w) = (w−1)un(w)− (w−1)un−1(w)+un−2(w) =

= (w−1)
n

∑
k=0

dn(k)wk− (w−1)
n−1

∑
k=0

dn−1(k)wk +
n−2

∑
k=0

dn−2(k)wk.

Observing that

dn(k) = dn−1(k)+(−1)n−k−1
(

n+ k−1
2k

)

we obtain

un+1(w) = (w−1)
n

∑
k=0

dn(k)wk− (w−1)
n−1

∑
k=0

(
dn(k)− (−1)n−k−1

(
n+ k−1

2k

))
wk +

+
n−2

∑
k=0

dn−2(k)wk =

= (w−1)
n−1

∑
k=0

(−1)n−k−1
(

n+ k−1
2k

)
wk +

n−2

∑
k=0

(
dn+1(k)− (−1)n−k

(
n+ k

2k

)
+

−(−1)n−k−1
(

n+ k−1
2k

)
− (−1)n−k−2

(
n+ k−2

2k

))
wk.
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Thus we have to prove that

(12) (w−1)
n−1

∑
k=0

(−1)n−k−1
(

n+ k−1
2k

)
wk

+
n−2

∑
k=0

(
(−1)n−k−1

(
n+ k

2k

)
− (−1)n−k−1

(
n+ k−1

2k

)
− (−1)n−k−2

(
n+ k−2

2k

))
wk

−wn +2(n−1)wn−1 = 0

in order to prove that

un+1(w) =
n+1

∑
k=0

dn+1(k)wk.

The left member of equation (12) is equal to

n−3

∑
k=0

(−1)n−k−1
(

n+ k−1
2k

)
wk+1−

n−2

∑
k=0

(−1)n−k−1
(

n+ k−1
2k

)
wk+

+
n−2

∑
k=0

(
(−1)n−k−1

(
n+ k

2k

)
− (−1)n−k−1

(
n+ k−1

2k

)
− (−1)n−k−2

(
n+ k−2

2k

))
wk =

=
n−2

∑
k=1

(−1)n−k
((

n+ k−2
2k−2

)
+2
(

n+ k−1
2k

)
−
(

n+ k
2k

)
−
(

n+ k−2
2k

))
wk

and using the property of binomial coefficients
(

n
k

)
=
(

n−1
k

)
+
(

n−1
k−1

)

it is easy to check that
(

n+ k−2
2k−2

)
+2
(

n+ k−1
2k

)
−
(

n+ k
2k

)
−
(

n+ k−2
2k

)
= 0.

()

Thanks to previous theorems and relation (11) we find the following expression
for Chebyshev polynomials

Tn(x) = 1+(x−1)
n

∑
k=0

dn(k)(2x+2)k, ∀n≥ 1,

and an analogous one for Dickson polynomials

Dn(x) =
1
4

(
2+(x−2)

n

∑
k=0

dn(k)(x+2)k

)
, ∀n≥ 1.

In the following section, we see that coefficients dn(k) allow us to determine a
new identity for Catalan numbers and they can be used to obtain a Riordan array.
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2. Catalan numbers and Riordan array

Catalan numbers are very famous and interesting, deeply studied for their significance
in combinatorics. In the beautiful book of Stanley [8] many combinatorial interpreta-
tions and identities involving Catalan numbers can be found. We whish to point out
another new identity involving Catalan numbers and the coefficients dn(k) studied in
the previous section.

THEOREM 3. For any positive integer n, we have

n

∑
k=0

dn(k)Ck = 1,

where (Ck)+∞
k=0 is the sequence of the Catalan numbers (A000108 in OEIS)

Proof. Since
∫ 1

−1

Tn(x)√
1− x2

dx = 0,

by Theorem 1, we have

∫ 1

−1

un(2x+2)(x−1)+1
√

1− x2
dx = 0.

Posing y = 2x+2, we obtain

∫ 4

0

(
un(y)(y−4)+1

2

)
1

√
y(4− y)

dy = 0

and consequenlty
∫ 4

0

un(y)(y−4)
2
√

y(4− y)
dy =−π,

n

∑
k=0

∫ 4

0

dn(k)yk(4− y)
√

y(4− y)
dy = 2π.

Moreover, it is well–known that

∫ 4

0

yk(4− y)
√

y(4− y)
= 2πCk,

thus
n

∑
k=0

dn(k)Ck = 1.

()
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Catalan numbers can be arranged in order to define a Riordan array. We recall
that a Riordan array is an infinite lower triangular matrix, where the k–th column is a
sequence having ordinary generating function of the form f (x)g(x)k, see [6]. Catalan

numbers are used to generate a particular Riordan array defined by f (x) =
1−
√

1−4x
2x

and g(x) =
1−
√

1−4x
2

, see [4]. Thus, considering the previous relation between Cata-
lan numbers and the coefficients of polynomials un(w), we can suppose that also dn(k)
may generate a Riordan array. Indeed, in the following theorem, we prove that the

sequence (dn(k))+∞
n=0 define a Riordan array where f (x) =

x
1− x2 and g(x) =

x
(1+ x)2.

THEOREM 4. Given an integer k the ordinary generating function of the se-
quence (dn(k))+∞

n=0 is

x
1− x2 ·

xk

(1+ x)2k

Proof. The ordinary generating function of the sequence (dn(k))+∞
n=0 is

+∞

∑
n=0

dn(k)xn =
+∞

∑
n=k+1

n−k−1

∑
i=0

(−1)i
(

i+2k
2k

)
xn,

where in the right member the first sum starts from k + 1, since for n < k + 1 the
coefficients dn(k) are not defined. If we pose n− k− 1 = m, the ordinary generating
function becomes

+∞

∑
m=0

m

∑
i=0

(−1)i
(

i+2k
2k

)
xm+k+1 = xk+1

+∞

∑
m=0

m

∑
i=0

(−1)i
(

i+2k
2k

)
xm =

= xk+1
+∞

∑
i=0

(−1)i
(

i+2k
2k

)
xi

+∞

∑
m=i

xm−i = xk+1
+∞

∑
i=0

(
i+2k

2k

)
(−x)i

+∞

∑
h=0

xh.

Considering that

1
(1− z)n+1 =

+∞

∑
i=0

(
i+n

n

)
zi,

(see, e.g., [2] pag. 199) we finally have that the ordinary generating function is

xk+1

1− x
·

1
(1− (−x))2k+1 =

x
1− x2 ·

xk

(1+ x)2k.

()
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Thus the following matrix is a Riordan array




1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
1 −2 1 0 0 · · ·
0 4 −4 1 0 · · ·
1 −6 11 −6 1 · · ·
...

...
...

...
...

. . .





where the k–th column is the sequence (dn(k)).
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F. Battistoni

DISCRIMINANTS OF NUMBER FIELDS AND SURJECTIVITY
OF TRACE HOMOMORPHISM ON RINGS OF INTEGERS

Abstract. In this note we give a brief survey of the most elementary criteria used to determine
the surjectivity of the trace operator on the ring of integers of a number field K. Furthermore,
we introduce an easy to state yet unknown surjectivity criterion depending only on the prime
factorization of the degree n of K and on the squarefree part of the discriminant dK .

1. Preliminaries and trace homomorphism

Let K be a number field of degree n ∈ N over the field Q of rational numbers. It is
known that, for n > 1, there is not a canonical way to embed K in the field C of complex
numbers; nonetheless, the field K admits exactly n embeddings σ1, . . . ,σn : K→ C.
By the Primitive Element Theorem (Theorem 5.1 of [6]) we know that any number
field K has the form Q(α) for some algebraic number α ∈ K, and if p(x) ∈ Z[x] is the
minimum polynomial of α, then there is a bijection between the embeddings σ1, . . . ,σn
of K and the complex roots of p(x).

Given β ∈ K, define its trace as the number Tr(β) := ∑n
i=1 σi(β). By its very

definition, the trace is an algebraic number which is invariant for the action of the
n embeddings of K, and thus it is a rational number. This allows to define the trace
function

Tr : K→Q
which is immediately seen to be an homomorphism of Q-vector spaces.

If K = Q(α) and p(x) := xn + a1xn−1 + · · · + an−1x + an ∈ Q[x] is the minimum
polynomial of α, then Tr(α) = −a1; this follows immediately from the fact that p(x)
splits as ∏n

i=1(x−σi(α)) in any algebraic closure of K (Corollary 3.12 of [3]).

Let OK be the ring of integers of K, i.e. the subring of the algebraic integers
contained in K. If α ∈ OK , then not only Tr(α) is a rational number but it is also an
algebraic integer, and so Tr(α) ∈ Z. The restricted map

Tr : OK → Z

is an homomorphism of abelian groups.

The ring of integers OK satisfies the following two important properties:

– Any non-zero ideal I ⊂ OK can be written in a unique way as a finite product of
prime ideals of OK (Theorem 3.14, Chapter I of [2]);

13



14 F. Battistoni

– If K has degree n, then (OK ,+) is a free abelian group of rank n (Theorem 1,
Chapter I of [4]).

2. Surjectivity of trace operator

Given a number field K of degree n, it is very easy to see that the trace map is a
surjective homomorphism: in fact, Tr(1) = n and so, given a/b ∈ Q, the element
a/(nb) is such that Tr(a/(nb)) = a/(nb) ·Tr(1) = a/b.
Actually, this proves that considering the subfield Q⊂K is enough to yield a surjection.

Does this surjectivity hold also for the restricted map Tr : OK → Z? Surely the
trick of dividing by the degree n of the number field no longer works, because given
α ∈ OK the element α/n may not be in OK .
In fact, it is very easy to provide an example of number field for which the trace
restricted to the ring of integers is not surjective: consider the field K = Q(

√
2), which

has minimum polynomial p(x) := x2 − 2. The ring of integers OK is then equal to
Z[
√

2] (Propostions 1.32 and 1.33, Chapter II of [1]), i.e. any algebraic integer in K
has the form a+b

√
2 with a,b ∈ Z. Being Tr(m) = 2m for any m ∈ Z and Tr(

√
2) = 0

because of p(x), then the trace of any element of OK is an even rational integer, and so
the restricted trace map is not surjective.
The above considerations imply that the restricted trace is not surjective for any
quadratic number field Q(

√
d) with d ∈ Z squarefree and d ≡ 2,3 mod 4 (this last

assumption is needed to ensure that the ring of integers is equal to Z[
√

d]).

One could wonder if there exist any criteria, different from explicitly studying
the trace map, to determine whether the restricted trace homomorphism is surjective.
A first try comes from looking at the minimum polynomial of the number field.

PROPOSITION 1. Let K be a number field with minimum polynomial p(x) :=
xn + a1xn−1 + · · ·+ an−1x + an ∈ Z[x]. If a1 = ±1, then the trace map Tr : OK → Z is
surjective.

Proof. p(x) being a monic irreducible polynomial with integer coefficients, there exists
α ∈ OK root of p(x) such that Tr(α) = −a1 = ∓1. Then, for every m ∈ Z it is m =
Tr(mα) or m = Tr(−mα) depending on the sign of Tr(α). ()

What can be said for number fields K which are defined by polynomials with coeffi-
cient a1 /= ±1 and such that it seems not possible to produce elements α ∈ OK with
Tr(α) = ±1 by hands only? One can get further information thanks to the concept of
ramification, which is naturally related to the trace homomorphism: this is the subject
of the next section.
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3. Discriminants and ramification

Let K be a number field and let OK be its ring of integers. Given a prime number p∈Z,
the ideal pOK is not necessarily prime but has a factorization

pOK = pe1
1 · · ·per

r

where the pi’s are prime ideals in OK and ei ∈ N for every i = 1, . . . ,r. The prime
number p is said to be ramified in K if ei > 1 for some index i.

It is a classical problem in Number Theory to detect the prime numbers ramify-
ing in a number field K: its solution depends mainly on the folllowing concepts.
Let α1 . . . ,αn ∈ OK be independent Z-generators of OK as abelian group. The
discriminant of K is defined as

dK := (det(σi(α j))n
i, j=1)

2 = det(Tr(αiα j))n
i, j=1.

One gets dK ∈ Z because of the last equality, and it is obvious from the definition
that the value of dK does not change by considering a new system β1, . . . ,βn of Z-
independent generators for OK .
The importance of the discriminant for the study of the ramified primes relies in the
following proposition:

PROPOSITION 2. A prime number p ramifies in K if and only if p divides dK.

Proof. See Corollary III.2.12 of [8]. ()

The prime numbers may ramify with different behaviours: the following
distinction will be useful to provide criteria for the study of the restricted trace
homomorphism.
Let p be a rational prime number ramifying in K and let pOK = pe1

1 · · ·per
r be its

prime ideal factorization in OK . Then p is said to be wildly ramified if there exists
i ∈ {1, . . . ,r} such that p divides ei; otherwise p is said to be tamely ramified.
A number field K is said to be tame if every ramified prime number is tamely ramified,
otherwise K is said to be wild.

The last tool needed is the concept of different ideal.
Consider the set ÔK := {α∈K : Tr(α ·OK)⊂Z}. The set DK := {β∈K : β · ÔK ⊂OK}
is called the different ideal of K (or simply the different of K); it is an abelian group
with respect to the sum.

LEMMA 1. The different DK satifies the following properties:

– DK is an ideal of OK;

– If p wildly ramifies in K, pOK = pe1
1 · · ·per

r and there exists i ∈ {1, . . . ,r} such
that p divides ei, then pi is a factor of DK with exponent at least ei;
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– If p tamely ramifies in K and pOK = pe1
1 · · ·per

r , then for any i ∈ {1, . . . ,r} the
number ei−1 is the exact exponent of the prime pi as factor of DK;

– The size of the quotient ring OK/DK is equal to |dK |.

Proof. These results are all proved in Section 4.2 of [7]. ()

The distinction between tame and wild number fields and the concept of dif-
ferent ideal have proved to be important in determining the surjectivity of the trace
homomorphism restricted to the ring of integers.

THEOREM 1. Let K be a tame number field. Then Tr : OK → Z is surjective.

Proof. See Corollary 5, Section 4.2 of [7]. The different ideal has a main role in the
setting of the proof. ()

One can get an interesting Corollary, from which the surjectivity of the restricted
trace can be recovered by looking only at the factorization of the discriminant.

COROLLARY 1. Let K be a number field with squarefree discriminant dK. Then
Tr : OK → Z is surjective.

Proof. If dK = ±p1 · · · pr is squarefree, then DK = p1 · · ·pr where the size of every
quotient ring OK/pi is equal to pi. This implies that, for any fixed factor pi of the
discriminant, pi is the unique factor of piOK which has exponent greater than 1, and
the value of this exponent is precisely equal to 2. Thus, any odd pi is tamely ramified.
If 2 divides dK and Q is the factor of 2OK dividing DK , then either 2 wildly ramifies
with the exponent of Q being 1, or 2 tamely ramifies with the exponent of Q being 2,
and both these options are absurd.
Thus K is a tame number field, and from Theorem 1 the surjectivity on the trace over
the ring of integers follows. ()

4. A weaker discriminant criterion

Theorem 1 of the previous section proves the surjectivity of the restricted trace for a
wide class of number fields, and it also yields a good sufficient criterion depending
only on the factorization of the discriminant dK .
The goal of this section is to present a simple, yet new, criterion for the surjectivity
which not only relies on the factorization of dK , but has the advantage to give a positive
answer also for some wild number fields.

THEOREM 2. Let K be a number field of degree n and assume that, for every
prime number p dividing n, the number p2 does not divide dK. Then Tr : OK → Z is
surjective.
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Proof. Let T0(K) := {α ∈ OK : Tr(OK) = 0} be the kernel of the restricted trace
homomorphism. The structure theorem of free abelian groups (Theorem 7.3, Chapter
I of [5]) implies that T0(K) is a free abelian group too, its rank being equal to n−1.
The set Tr(OK) is an ideal in Z. Let t be the positive generator of this ideal. Since
n = Tr(1) one gets that t divides n.

The previous considerations imply that the ring of integers admits a decomposi-
tion OK = T0(K)⊕Zγ as free abelian group, where γ ∈ OK is such that Tr(γ) = t. Let
α1, . . . ,αn−1 be a Z-basis for T0(K): then α1, . . . ,αn−1,γ is a Z-basis for OK and so the
discriminant dK can be computed by means of this basis.
Let MK denote the matrix





σ1(α1) · · · σn(α1)
· · · · · · · · ·

σ1(αn−1) · · · σn(αn−1)
σ1(γ) · · · σn(γ)



 .

Since its determinant does not change by replacing the last column with the sum of
every other column, we get that

detMK = det





σ1(α1) · · · σn−1(α1) Tr(α1)
· · · · · · · · · · · ·

σ1(αn−1) · · · σn−1(αn−1) Tr(αn−1)
σ1(γ) · · · σn−1(γ) Tr(γ)





= det





σ1(α1) · · · σn−1(α1) 0
· · · · · · · · · · · ·

σ1(αn−1) · · · σn−1(αn−1) 0
σ1(γ) · · · σn−1(γ) t



 .

Consider now the minor given by the first n−1 rows and the first n−1 columns:

NK :=




σ1(α1) · · · σn−1(α1)
· · · · · · · · ·

σ1(αn−1) · · · σn−1(αn−1)



 .

Applying any σi which is not the identity embedding on K, one sees that a column of
NK is now formed by elements σn(α j) with j = 1, . . . ,n−1, while the other columns are
permutations of the remaining columns. But for every j ∈ {1, . . . ,n−1} it is σn(α j) =
−∑n−1

i=1 σi(α j): this implies that detNK is invariant for the action of the embeddings σi,
up to a possible change of sign due to the permutation of the columns.
Thus it is enough to take the square of detNK to get an algebraic integer invariant for
any embeddings σi, i.e. a rational integer, and so dK = (detMK)2 = (detNK)2 · t2 =
C · t2, with C ∈ Z. In other words, it is dK/t2 ∈ Z.
Finally, from the above considerations and the fact that t divides n, the hypothesis of
the Theorem force t = 1, and so the trace Tr : OK → Z must be surjective. ()
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An example of wild number field for which the surjectivity of the restricted
trace is not evident without Theorem 2 is given by the cubic field K defined by the
polynomial x3 + x− 6. In fact, its discriminant is equal to −22 · 61, so the primes 61
and 2 both ramify. A computation with the computer algebra package PARI/GP [9]
shows that the prime 2 wildly ramifies, thus the extension is not tame and Theorem 1
or Corollary 1 do not apply. However, Tr : OK → Z is surjective, by Theorem 2.

Some final considerations arise looking back at the quadratic fields studied in
Section 2: in fact, these are wild fields for which the trace on the ring of integers is not
surjective. Moreover, their discriminant is always divided by 4 = 22, and thus they do
not satisfy the hypotheses needed for the sufficient criterion introduced by Theorem 2.
This suggests a possible conjecture for the complete characterization of the surjectivity
of the trace map on the ring of integers:
Given a number field K, then Tr : OK → Z is not surjective if and only if K is wild and
does not satisfy the hypotheses of Theorem 2.
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LEAST COMMON MULTIPLE OF
POLYNOMIAL SEQUENCES

Abstract. We collect some results and problems about the quantity

L f (n) := lcm( f (1), f (2), . . . , f (n)),

where f is a polynomial with integer coefficients and lcm denotes the least common multiple.

1. Introduction

For each positive integer n, let us define

L(n) := lcm(1,2, . . . ,n),

that is, the lowest common multiple of the first n positive integers. It is not difficult to
show that

logL(n) = ψ(n) := ∑
p≤n

log p,

where ψ denotes the first Chebyshev function, and p runs over all primes numbers
not exceeding n. Hence, bounds for L(n) are directly related to bounds for ψ(n) and,
consequently, to estimates for the prime counting function π(n). In particular, since the
Prime Number Theorem is equivalent to ψ(n)∼ n as n→+∞, we have

logL(n)∼ n.

In 1936 Gelfond and Shnirelman, proposed a new elementary and clever method for
deriving a lower bound for the prime counting function π(x) (see Gelfond’s editorial
remarks in the 1944 edition of Chebyshev’s Collected Works [15, pag. 287–288]).
In 1982 the Gelfond-Shnirelman method was rediscovered and developed by Nair [16,
17]. Their method was actually based on estimating L(n), and in its simplest form [16]
it gives

n log2≤ logL(n)≤ n log4,

for every n≥ 9, which in turn implies

(log2+o(1))
n

logn
≤ π(n)≤ (log4+o(1))

n
logn

,

after some manipulations. Later, it was proved [18] that the Gelfond-Shnirelman-Nair
method can give lower bound in the form

π(n)≥C
n

logn
,

21
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only for constants C less than 0.87, which is quite far from what is expected by the
Prime Number Theorem. (A possible way around this problem has been considered
in [13, 14, 19].)

Moving from this initial connection with estimates for π(n) and the Prime Num-
ber Theorem, several authors have considered bounds and asymptotic for the following
generalization of L(n) to polynomials. For every polynomial f ∈ Z[x], let us define

L f (n) := lcm( f (1), f (2), . . . , f (n)).

In the next section we collect some results on L f (n).

2. Products of linear polynomials

Stenger [12] used the Prime Number Theorem for arithmetic progressions to show the
following asymptotic estimate for linear polynomials:

THEOREM 1. For any linear polynomial f (x) = ax+b ∈ Z[x], we have

logL f (n)∼ n
q

ϕ(q) ∑
1≤r≤q
(q,r)=1

1
r
,

as n→+∞, where q = a/(a,b) and ϕ denotes the Euler’s totient function.

Hong, Qian, and Tan [6] extended this result to polynomials f which are the
product of linear polynomials, showing that an asymptotic of the form logL f (n)∼ A f n
holds as n→+∞, where A f > 0 is a constant depending only on f .

Moreover, effective lower bounds for L f (n) when f is a linear polynomial have
been proved by Hong and Feng [3], Hong and Kominers [4], Hong, Tan and Wu [7],
Hong and Yang [8], and Oon [9],

3. Quadratic polynomials

Cilleruelo [2, Theorem 1] considered irreducible quadratic polynomials and proved the
following result:

THEOREM 2. For any irreducible quadratic polynomial with integer coeffi-
cients f (x) = ax2 +bx+ c, we have

logL f (n) = n logn+B f n+o(n),
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where

B f := γ−1−2log2−∑
p

(d/p) log p
p−1

+
1

ϕ(q) ∑
1≤r≤q
(r,q)=1

log
(

1+
r
q

)

+ loga+ ∑
p|2aD

log p

(
1+(d/p)

p−1
−∑

k≥1

s( f , pk)
pk

)
,

and γ is the Euler–Mascheroni constant, D = b2−4ac = d!2, where d is a fundamental
discriminant, (d/p) is the Kronecker symbol, q = a/(a,b) and s( f , pk) is the number
of solutions of f (x)≡ 0 (mod pk).

Rué, Šarka, and Zumalacárregui [11, Theorem 1.1] provided a more precise
error term for the particular polynomial f (x) = x2 +1,

THEOREM 3. Let f (x) = x2 +1. For any θ < 4/9 we have

logL f (n) = n logn+B f n+Oθ

(
n

(logn)θ

)
.

4. Higher degree polynomials

Regarding general irreducible polynomials, Cilleruelo [2] formulated the following
conjecture.

CONJECTURE 1. If f (x) ∈ Z[x] is an irreducible polynomial of degree d ≥ 2,
then

logL f (n)∼ (d−1)n logn,

as n→+∞.

Except for the result of Theorem 2, no other case of Conjecture 1 is known to
date. It can be proved (see [10, p. 2]) that for any irreducible f of degree d ≥ 3, we
have

n logn2 logL f (n)≤ (1+o(1))(d−1)n logn.

Also, Rudnick and Zehavi [10, Theorem 1.2] proved the following result, which estab-
lished Conjecture 1 for almost all shifts of a fixed polynomial, in a range of n depending
on the range of shifts.

THEOREM 4. Let f (x) ∈ Z[x] be a monic polynomial of degree d ≥ 3. Then, as
T →+∞, we have that for all a ∈ Z with |a|≤ T , but a set of cardinality o(T ), it holds

logL f (x)−a(n)∼ (d−1)n logn

uniformly for T 1/(d−1) < n < T/ logT .
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Regarding lower bounds for L f (n), Hong and Qian [5, Lemma 3.1] proved the
following:

THEOREM 5. Let f (x)∈Z[x] be a polynomial of degree d ≥ 1 and with leading
coefficient ad. Then for all integers 1≤ m≤ n, we have

lcm( f (m), f (m+1), . . . , f (n))≥ 1
(n−m)!

n

∏
k=m

∣∣∣∣
f (k)
ad

∣∣∣∣
1/d

.

Shparlinski [1] suggested to study a bivariate version of L f (n), posing the fol-
lowing problem:

PROBLEM 1. Given a polynomial f ∈ Z[x,y], obtain an asymptotic formula for

log lcm{ f (m,n) : 1≤ m,n≤ N}

with a power saving in the error term.
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F. Caldarola

ON THE MAXIMAL FINITE IWASAWA SUBMODULE IN
ZP-EXTENSIONS AND CAPITULATION OF IDEALS

Abstract. For Zp-extensions of a number fields the properties of stabilization and capit-
ulation of ideal classes are of great interest and are also related to very important aspects
and problems such as Greenberg’s conjecture. In [3] these properties are deeply investigated
from the point of view of the maximum finite submodule of the Iwasawa module and new
invariants and parameters are introduced to give precise characterizations of these phenom-
ena. In this article we will discuss some bounds that control the increment of the index that
measures the capitulation delay in the tower and moreover we will prove how some results on
the capitulation kernels in [3] have to be considered optimal. Finally, we will also give some
further applications and examples that emphasize the cases of false (or failed) stabilization
in this context.

1. Introduction.

Iwasawa’s theory in the last half century has been one of the richest areas of research
in number theory. In this paper we will consider some basic objects of the theory such
as Zp-extensions and the Iwasawa module with particular emphasis on its maximum
finite submodule, in relation to the problems of capitulation and stabilization, typical
of this context.

Let p be a prime number, k a number field and K/k a Zp-extension of k. Let
moreover L = L(K) be the maximal abelian unramified pro-p extension of K (in a fixed
algebraic closure of Q) and we also pose Γ := Gal(K/k) and X(K) := Gal(L(K)/K).
We denote by kn the n-th layer of K/k and by An = A(kn) the p-part of the ideal class
group of kn. For any m ≥ n ≥ 0 we write Nm,n : Am → An and in,m : An → Am for the
natural maps induced by the norm and the inclusion of ideals, and we also consider the
limits

(1) lim
←−
n

An and A = A(K) := lim
−→
n

An

obtained via the Nm,n and the in,m maps, respectively. By class field theory, the first
limit in (1) is canonically isomorphic to X(K) 4 lim

←−
Gal(L(kn)/kn), where L(kn) (or

Ln for short) is the maximal abelian unramified p-extension of kn. Let

Zp[[Γ]] := lim
←−
n

Zp[Γ/Γpn
] 4 lim

←−
n

Zp[Gal(kn/k)]

be the Iwasawa algebra (completed group ring) associated to K/k, which is isomorphic
to the formal power series ring Λ := Zp[[T ]] via the noncanonical isomorphism

(2) Zp[[Γ]] 4−→ Zp[[T ]], γ 5→ T +1,

27



28 F. Caldarola

where γ is a topological generator of Γ. Since Zp[[Γ]] acts in a natural way, via conju-
gation, on X(K), then it becomes a Λ-module through the isomorphism given in (2).
With this structure, X(K) (also denoted by X(K/k) or simply X) is usually referred to
as the Iwasawa module of K/k and, although to have been extensively studied by a lot
of authors in the last sixty years, many problems of crucial importance remain open
today (the interested reader can see [10] for the state-of-the-art and/or [16, 19, 22, 27]
for some introductory references on the matter).

A classical problem concerns capitulation of ideals and ideal classes going
up along the intermediate fields of the tower K/k. More precisely, denoting by
Hn,m, n ≤ m, the kernel of in,m : An → Am, we say that [a] ∈ An capitulates in Am if
[a] ∈ Hn,m (or, equivalently, a becomes principal in km). From the beginning of the
theory the groups Hn,m and Hn :=

⋃
m≥n Hn,m = Ker(in : An → A) have been related,

for example, to the finiteness of the module X(K) (see, e.g., [9, 11, 13, 14, 20, 23]),
but the phenomenon remains of a wild nature in general. In [3] the authors provide a
description of the Hn,m (named relative capitulation kernels) and of the Hn (named ab-
solute capitulation kernels) in terms of the maximal finite submodule D = D(K/k) of
X(K/k), obtaining isomorphisms with quotients of suitable submodules of D, finding
some formulas for their order, and investigating their properties of stabilization both
for orders and for p-ranks. For these purposes, in particular, two new functions h(n)
and ρ(n) are introduced: the former is more technical and is linked to the vanishing
of some submodules of D (see Definition 4 for a precise definition), while the second
measures when the last ideal in An capitulates going up along the tower K/kn.

In this paper we want to deepen the researches concerning the functions h(n)
and ρ(n) and, in particular, we want to find bounds that allow to control their growth
and therefore the so-called capitulation delay, especially in the lower levels that are po-
tentially much more irregular. We also construct some examples in which we compute
the explicit values of the mentioned invariants and parameters and then, generalizing
such constructions, we give a method useful to show how some central results of [3]
can be said to be optimal and some of the previous bounds sharp. Finally, even some
emerging evidences of false, or failed, stabilization are discussed.

As regards the organization of the paper, it can be divided into two parts com-
prising two sections each. In Section 2 we give an overview of few known classical
results about stabilization and capitulation in Zp-extensions, instead in Section 3 we
will describe some of the main developments contained in the recent work [3] and
necessary for the sequel. The second part, consisting of Section 4 and 5, contains the
original results we referred to above. In particular, Section 4 deals with the bounds
for h(m)−h(n) and ρ(m)−ρ(n) (m ≥ n), instead Section 5 draws the method for the
optimality of results and sharpness of the bounds.

Lastly a notational remark: by convenience we include also zero in the set N of
natural numbers.
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2. A brief overview of classical results.

The literature object of this section is placed from the beginning of the theory until the
1990s. We divide it into two subsections for stabilization and capitulation, respectively.

2.1. Stabilization.

The term “stabilization” has the expected obvious meaning: given a sequence of finite
Zp-modules or p-groups {Mn }n∈N, we say that their orders stabilize at an index q ∈ N
if |Mn| = |Mq| for all n ≥ q. In the same way, we say that their p-ranks∗ stabilize at
q′ ∈ N if rkp(Mn) = rkp(Mq′) for all n≥ q′.

Stabilization is quite natural in Iwasawa theory even if there are not many results
in this direction. We have stabilization theorems for {|An|}n∈N and for {rkp(An)}n∈N
but not much else. Usually Iwasawa modules tend to stabilize at the very first level in
which they do not grow (i.e., if we have no growth from n to n+1, we are not going to
have any growth at all from n on).

Let n0 = n0(K/k) be the minimal n≥ 0 such that every prime which ramifies in
the extension K/kn is totally ramified. References for stabilization and for the follow-
ing theorems are [1, 8, 18].

THEOREM 1. ([8, Theorem 1(1)]) If |An| = |An+1| for some n≥ n0, then Am 4
An 4 X for all m≥ n.

THEOREM 2. ([8, Theorem 1(2)]) If rkp(An) = rkp(An+1) for some n≥ n0, then
rkp(Am) = rkp(An) = rkp(X) for all m≥ n (and hence µ(K/k) = 0).

2.2. Capitulation.

For any finitely generated Λ-module X we have an exact sequence of Λ-modules

(3) 0→ D(X)→ X
ϕ−→ E(X)→ B(X)→ 0

where ϕ is a pseudo-isomorphism, E(X) an elementary Λ-module and D(X), B(X) are
finite (see [3, Section 2] or [5, Chapter VII], [22, Chapter V], [27, Chapter 13] for more
details). D(X) is the maximal finite submodule of X and when X = X(K/k) for some
Zp-extension K/k, we also call D(K/k) the maximal finite Iwasawa module of K/k,
and we shall often simply write D to denote it in the following. We moreover recall
that X is said pseudo-null if E(X) = 0 in (3), or equivalently if X = D(X).

The capitulation kernels Hn,m and Hn are very important in Iwasawa theory, for
example because of the following proposition which links them to Greenberg’s con-
jecture which predicts the finiteness, or equivalently the pseudo-nullity, of X(kcyc/k)
whenever k is a totally real number field (and kcyc its cyclotomic Zp-extension).

∗For any finitely generated Zp-module A, we obviously define its p-rank as rkp(A) := dimFp (A/pA).
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PROPOSITION 1. ([11, Proposition 2]) We have that λ(K/k) = µ(K/k) = 0 if
and only if Hn = An for every n≥ 0.

Let s = s(K/k) be the number of ramified prime ideals in K/kn0 . In the follow-
ing theorem the statement is not exactly the original one appearing in [11], but it can
be easily derived from it because the proof only uses the hypothesis s(K/k) = 1.

THEOREM 3. ([11, Theorem 1]) Let n0 = 0 and s(K/k) = 1 (i.e., there is only
one prime in k which ramifies in K), then X is pseudo-null if and only if H0 = A0.

A very important remark is that, in the previous theorem, the hypothesis n0 = 0
can be easily suppressed. This has been showed by J. Minardi and we write down it
separately.

COROLLARY 1. ([21, Proposition 1.B]) Assume s = 1, then X is pseudo-null if
and only if H0 = A0.

COROLLARY 2. ([21, pag. 6, Corollary]) If there is only one prime p in k
dividing p and the class of some power of p generates the whole A0 , then X(K/k) is
pseudo-null for every Zp-extension K/k.

The statement (a) of the next theorem provides a stronger result and it was
proved by T. Fukuda in 1994 in a very elegant way. Indeed Theorem 4 (a) gives the
layer km for which X 4 Am, but there is a price to pay: with this kind of proof the
hypothesis n0 = 0 acquires a crucial role and it cannot be removed anymore.

THEOREM 4. ([8, Theorem 2]) Let s(K/k) = 1 and n0(K/k) = 0.

(a) If H0,n = A0 for some n≥ 1, then |Am| = |An| = |X | for all m≥ n.

(b) If |An+1| = |An| for some n≥ 0 and the exponent of An is pt , then Hn,n+t = An.

We conclude this section recalling

THEOREM 5. ([23, Theorem]) Let n0(K/k) = 0, then X(K/k) is pseudo-null if
and only if kerN1,0 ⊆ H1.

Not much more was known about the Hn,m’s before [3], in particular regarding
their orders and their stabilization properties. For example, Iwasawa himself proved
that Hn,m is bounded by |D| · |B(X)| · |An0 | independently from n and m (see e.g. [16] or
[22]), M. Ozaki showed in [23] a relation between the Hn’s and the submodule D of X ,
and M. Grandet and J.F. Jaulent considered capitulation in the special case µ = 0 in [9].
Other documents related to these themes are [2, 13, 14, 18, 20, 21, 24, 26], while [7],
although referring to a very different context, also draws inspiration from the vertical
structures of Iwasawa’s theory.

In the next section we will briefly summarize the description of the capitulation
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kernels provided in [3] by going deeper into the study of the module D.

3. Recent developments.

The results obtained in [3] can be grouped into two families: the first concerns the
behaviour of the capitulation kernels (see Subsection 3.1), the second instead provides
a series of new equivalent conditions, which often involve capitulation kernels, for the
vanishing of the Iwasawa invariants µ and λ, and therefore for the finiteness of X(K/k)
(see Subsection 3.2).

3.1. The behaviour of the capitulation kernels.

Focusing the attention on the sequence of the absolute capitulation kernels

(4) Hn0 , Hn0+1, Hn0+2, . . .

and on the chain of the relative capitulation ones (at the level n)

(5) Hn,n+1 ⊆ Hn,n+2 ⊆ Hn,n+3 ⊆ . . . ,

it is natural to ask, first of all, for growing and stabilization both for the sequence of the
orders and for the sequence of the p-ranks arising from (4) and (5). To answer to these
questions, [3] begins with the introduction of some Λ-submodules of D as in Definition
2. But first we need a further piece of notation because, recalling the isomorphism in
(2) which will be read as an identification in the following, there are some elements in
Λ = Zp[[T ]] which play an important role in the study of the class groups An.

DEFINITION 1. For every m≥ n≥ 0, we set

– ωn := γ pn −1 = (1+T )pn −1,

– νn,m := 1+ γ pn + γ2pn + . . .+ γ pm−pn

= ωm
ωn

= (1+T )pm−1
(1+T )pn−1 = 1+(1+T )pn + . . .+((1+T )pn)pm−n−1.

For simplicity we write νn in place of ν0,n: hence νn = 1 + γ + γ2 + . . . +

γ pn−1 = ωn
ω0

= (1+T )pn−1
T and νn,m = νm

νn
as well.

DEFINITION 2. We put

(a) for all m≥ n≥ 0, Dn,m := νn,mD;

(b) for all n≥ n0 , Dn := D∩Yn.

It is important, also for future use, to notice that the Dn have a good behaviour
with respect to the usual Iwasawa relations, in the sense of the following
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LEMMA 1. For all m≥ n≥ n0 , we have νn,mDn = Dm = Dn,m∩Ym .

For a proof see [3, Lemma 3.2]. Then, two new invariants for K/k are intro-
duced as follows.

DEFINITION 3. We set

(a) r = r(K/k) := min{z≥ n0 : Dz = 0}, and

(b) r̃ = r̃(K/k) := min{z≥ n0 : Dz ⊆ pD}.

Using Lemma 1 and Nakayama’s Lemma, it is immediate to see that r(K/k)
and r̃(K/k) are always finite (nonnegative) integers.

Now we provide an isomorphism for the kernels Hn,m in terms of the finite
module D which leads to the formulas of Corollary 3 (a) and (b). For the proofs of the
following results see [3, Section 3].

THEOREM 6. For all m≥ n≥ n0 there are the following isomorphisms

(6) Hn,m 4 Ker{νn,m : D/Dn −→ D/Dm}

and

(7) Hn 4 D+Yn/Yn 4 D/Dn.

Moreover, if m≥ n≥ r(K/k), Hn,m 4D[pm−n] (where D[pm−n] is the submodule of the
pm−n-torsion elements of D).

COROLLARY 3. For all m≥ n≥ n0 we have

(a) |Hn,m| =
|D| · |Dm|
|Dn| · |Dn,m|

;

(b) |Hn,m| = |D+Yn/Dn,m +Ym| ·
|An|
|Am|

;

(c) if D /= 0 and n ≥ n0, then in : An→ A is injective if and only if n = n0 and D is
contained in Yn0 .

COROLLARY 4. For any Zp-extension K/k, the following are equivalent:

(a) X does not contain any nontrivial finite submodule;

(b) Hn0+1 = 0;

(c) in,m : An→ Am are injective for all m≥ n≥ n0.

An example for (a) is provided by the minus part of the Iwasawa module for
the Zp-cyclotomic extension of a CM field (see [27, Propositions 13.26 and 13.28]);
similar results can be derived from [23]. The following corollary instead generalizes
[8, Proposition].
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COROLLARY 5. Let K/k be a Zp-extension, assume that An /= 0 and in,m is
injective for some m > n≥ n0. Then |Am|≥ pm−n|An|.

As customary for Iwasawa modules, the Hn’s verify some stabilization results.

THEOREM 7. Assume n≥ n0:

(a) if |Hn|=|Hn+1|, then Hm 4 Hn 4 D for all m≥ n. In particular

(8) |Hn0 | < |Hn0+1| < .. . < |Hr| = |Hr+1| = . . . = |D|;

(b) if rkp(Hn) = rkp(Hn+1), then rkp(Hm) = rkp(Hn) = rkp(D) for all m ≥ n. In
particular

(9) rkp(Hn0) < rkp(Hn0+1) < .. . < rkp(Hr̃) = rkp(Hr̃+1) = . . . = rkp(D).

From Theorem 7, we have r = min{z≥ n0 : Hz = Hz+1} and r̃ = min{z≥ n0 :
rkp(Hz) = rkp(Hz+1)}, so these two invariants indicate also the stabilization of orders
and p-ranks of the Hn’s. To study instead the stabilization of the Hn,m’s and the delay of
capitulation, we need to define an intrinsic parameter h(n) and an extrinsic one ρ(n),
as follows.

DEFINITION 4. For any n≥ 0 we set

(a) h(n) := min{z≥ n : Dn,z = 0};

(b) ρ(n) := min{z≥ n : Hn,z = Hz};

(c) ρ̃(n) := min{z≥ n : rkp(Hn,z) = rkp(Hn)}.

REMARK 1.

(i) If n≥ n0, the previous results imply ρ(n) = min{z≥ n : Dn,z = Dz}.

(ii) If n≥ n0, then n≤ ρ̃(n)≤ ρ(n)≤ h(n).

PROPOSITION 2. Let δ,ε ∈ N such that |D| = pδ and pε is the exponent of D
(i.e., the minimum positive integer t for which tD = 0). Then

(a) for every n≥ 0, we have h(n)−n≤ δ and, for every n≥ δ−1, h(n)−n = ε;

(b) h(n)−n = ε holds, also, for all n ! r.

In the future we will continue to use δ and ε with the same meaning as in the
previous proposition. Now we observe how the relative capitulation kernels Hn,m have
a rather irregular and therefore more interesting behaviour, as shown by the following
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THEOREM 8.

(a) If n0 ≤ n < r, then we have

1 = |Hn,n|≤ |Hn,n+1|≤ |Hn,n+2|≤ . . . ≤ |Hn,r|
= |Hn,r| < |Hn,r+1| < |Hn,r+2| < .. . < |Hn,h(n)|(10)

= |Hn,h(n)| = |Hn,h(n)+1| = |Hn,h(n)+2| = . . . = |D/Dn|.

(b) If n≥ r, then |Hn,m| = |D|/|Dn,m| for all m≥ n and

1 = |Hn,n| < |Hn,n+1| < .. . < |Hn,h(n)| = |Hn,h(n)+1| = . . . = |D|.

The three-line layout used in (10) with the last elements of the first two lines
repeated on the next line, should help to better visualize what happens. If, for instance,
h(n) = r, then the middle row disappears and we could have the stabilization of the
order of the Hn,m’s even before arriving at the invariant r(K/k). If, instead, h(n) /=
r and the first line of (10) shows signs of equality, then we are faced with a “false
stabilization” (which is something unusual and therefore very interesting in Iwasawa
theory) as we will also see in Example 1 of Section 5.†

We close this subsection by collecting, for future use, some useful facts and
consequences of what we have seen so far in the following

PROPOSITION 3.

(a) If n≥ n0 and h(n) /= r, then ρ(n) = h(n). Moreover if n≥ r, then ρ(n) = h(n) =
n+ ε.

(b) For all n≥ n0, ρ(n)−n≤ δ.

(c) Let D /= 0 and r ≥ δ. If r > n0 + 1 or r = n0 + 1 and D ! Yn0 , then ρ(r− 1) =
r−1+ ε.

We finally notice that for other cases of false stabilization in a rather different
context (non-abelian Iwasawa theory), the interested reader can see [4, Subsection 2.1].

3.2. Equivalent conditions to µ(K/k) = 0 and/or λ(K/k) = 0.

As recalled in Section 2, the following conditions, found by different authors in the
last 30 years of the last century, are equivalent to the finiteness of the Iwasawa module
X(K/k):

(i) An = An+1 for some n≥ n0;

(ii) Hn = An for all n≥ 0;
†See moreover the discussion immediately after the proof of Proposition 5.
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(iii) Hn = An for some n≥ n0 +1;

(iv) Ker(Nn,n−1)⊆ Hn for some n≥ n0 +1.

Note that condition (iv) is equivalent at all to Ozaki’s Theorem 5‡ and condition (iii)
can be also viewed as a particular case of (iv) itself. Theorem 9 gives instead some new
conditions: see [3, Section 4] for the proof and for other similar results.

THEOREM 9. The conditions below are equivalent to µ(K/k) = λ(K/k) = 0:

(a) Im(in,m) = Im(in−1,m) for some m≥ n≥ n0 +1;

(b) Ker(Nm,n) = Ker(Nm,n−1) for some m≥ n≥ n0 +1;

(c) rkp(Hn) = rkp(An) = rkp(An+1) for some n≥ n0.

Note in particular as condition (c) is rather unexpected. It seems in fact the first
statement that relates, or better, interprets the finiteness of the Iwasawa module X(K/k)
as equality not of orders like in Theorem 1, but of p-ranks.

The sequence of p-ranks
{

rkp(An)
}

n is classically linked only to the µ-invariant
(e.g., it is bounded if and only if µ = 0, see [27, Proposition 13.23]) and has the property
of stabilization expressed in Theorem 2. The following theorem, instead, provides new
insights in this direction: see [3, Theorem 4.4] for the proof and also [3, Subsections
4.1–4.3] for other properties regarding p-ranks.

THEOREM 10. The following conditions are equivalent to µ(K/k) = 0:

(a) rkp(Ker(Nm,n)) = rkp(Ker(Nm+1,n)) for some m≥ n≥ n0;

(b) rkp(Ker(Nm,n)) = rkp(Ker(Nm,n−1)) for some m≥ n≥ n0 +1;

(c) rkp(Coker(in,m)) = rkp(Coker(in,m+1)) for some m≥ n≥ n0;

(d) rkp(Coker(in,m)) = rkp(Coker(in−1,m)) for some m≥ n≥ n0 +1;

(e) rkp(Coker(in,m)) = rkp(Am) for some m≥ n≥ n0 +1.

4. Bounds for ρ(m)−ρ(n).

By definition we have that the last ideal in Hn capitulates exactly in Aρ(n), hence ρ(n)−
n measures how much complete capitulation is delayed in the tower. We have already
given estimates for ρ(n)−n in Proposition 3, and now we are going to provide bounds
for the rate of growth of the sequence

{
ρ(n)

}
n∈N, i.e., for ρ(m)−ρ(n) when m≥ n. By

Proposition 3 (a) we know that ρ(n) = n+ε for any n≥ r, hence for any m≥ n≥ r one
has ρ(m)−ρ(n) = m−n. But since in Iwasawa theory explicit computations are usually

‡It is enough, in fact, to consider the extension K/kn.
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possible only at very low levels,§ it is more important to find bounds that hold in general
and in particular for the layers n between n0(K/k) and r(K/k). Hence, considering
such indices, to avoid trivialities we assume X /= 0 (while D = 0 is permitted even if
no proofs would be needed in that case).

We begin with some estimates on the growth of the parameter h(n) defined for
all n ≥ 0. The easiest one follows from h(m) ≤ m + δ = m + logp(|D|) (Proposition 2
(a)) which yields

(11) h(m)−h(n) ≤ logp(|D|)+m−n

(if D /= 0 one can add -1 on the right side). The following results improve this bound
and lead to an estimate for ρ(m)−ρ(n). They can all be formulated (and proved) in
terms of the Dn’s (which provide sharper bounds), but in the main statements we prefer
to use the An’s which are more convenient for computations in explicit examples.

PROPOSITION 4. For all m > n≥ 0 we have

(12) h(m)−h(n)≤ logp

(
|D|

|Dn,m|

)
+max{0,m−h(n)}.

Proof. Using Lemma 1, if h(n) ≥ m then νn,mDm,h(n) = νn,mνm,h(n)D = νn,h(n)D = 0.
Hence |Dm,h(n)| ≤

|D|
|Dn,m| . Now note that νh(n),h(m)Dm,h(n) = Dm,h(m) = 0, so, by

Nakayama’s Lemma and the minimality of h(m), we have |Dm,h(n)| ≥ ph(m)−h(n).
Therefore

h(m)−h(n)≤ logp

(
|D|

|Dn,m|

)
.

But if m > h(n), then Dn,m = 0 and we write h(m)− h(n) = h(m)−m +(m− h(n)).
Thus we also have

h(m)−h(n)≤ logp(|D|)+m−h(n) = logp

(
|D|

|Dn,m|

)
+m−h(n),

and the thesis is proved. ()

Note that if h(n)≥ m, then the last term in (12) (i.e., max{0,m−h(n)} ) disap-
pears: this certainly happens, for example, when m = n+1.

THEOREM 11. For all m≥ n≥ n0 we have

(a) h(m)−h(n) ≤ logp

(
|Am|
|An|

)
+ logp(|Hn,m|)+m−n;

(b) h(m)−h(n) ≤ logp

(
|Am|
|An|

)
+

m−n

∑
i=1

logp(|Hn+i−1,n+i|).

§See, for example, the methods used in [18] to determine the Iwasawa module for the cyclotomic Z3-
extension of a real quadratic field of conductor less than 104 (and not congruent to 1 mod 3): all the machin-
ery uses the very first layers of an extension and results of stabilization similar to those seen in Subsection
2.1.
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Proof. For the first inequality we use Proposition 4 and Corollary 3 (a), which yield

h(m)−h(n) ≤ logp

(
|D|

|Dn,m|

)
+m−n = logp

(
|Dn|
|Dm|

)
+ logp(|Hn,m|)+m−n.

Moreover note that we can embed Dn/Dm into Yn/Ym and |Yn/Ym| = |Am|/|An|.
For the inequality (b), if D /= 0, take any i ∈ {1, . . . ,m−n} and use (12) to get

h(n+ i)−h(n+ i−1) ≤ logp

(
|D|

|Dn+i−1,n+i|

)

(note that if D /= 0 then h(n+ i−1)≥ n+ i). Summing up, one finds

h(m)−h(n) ≤
m−n

∑
i=1

logp

(
|D|

|Dn+i−1,n+i|

)
= logp

(
|D|m−n

∏m−n
i=1 |Dn+i−1,n+i|

)
.

Using again Corollary 3 (a), we have

logp

(
|D|m−n

∏m−n
i=1 |Dn+i−1,n+i|

)
= logp

(
m−n

∏
i=1

|Hn+i−1,n+i| ·
|Dn+i−1|
|Dn+i|

)

= logp

(
|Dn|
|Dm|

)
+ logp

(
m−n

∏
i=1

|Hn+i−1,n+i|
)

= logp

(
|Dn|
|Dm|

)
+

m−n

∑
i=1

logp(|Hn+i−1,n+i|),

and since we have already seen that |Dn/Dm| ≤ |Am|/|An|, then the proof of (b) is
complete. ()

Now we use the previous results to achieve the bounds for ρ(m)−ρ(n) when
m≥ n≥ n0. The easiest one, coming from (11), is

(13) ρ(m)−ρ(n) ≤ δ+m−n,

and it is easy to realize that this bound is actually reached in very special cases.

COROLLARY 6. For all m≥ n≥ n0, we have

(a) ρ(m)−ρ(n) ≤ logp

(
|D|

|Dn,m|

)
+max{0,m−h(n)}+(h(n)−ρ(n));

(b) ρ(m)−ρ(n) ≤ logp

(
|Am|
|An|

)
+ logp(|Hn,m|)+m−n+max{0,r−ρ(n)};

(c) ρ(m)−ρ(n) ≤ logp

(
|Am|
|An|

)
+

m−n

∑
i=1

logp(|Hn+i−1,n+i|)+max{0,r−ρ(n)}.
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Proof. Just note that ρ(m)−ρ(n)≤ h(m)−ρ(n) = h(m)−h(n)+h(n)−ρ(n) and use
the bounds of Proposition 4 and Theorem 11. ()

The purpose of Corollary 6 is to find bounds that are as independent as possible
from the knowledge of the module D, as done in (b) and (c). Between these two
last bounds, there is not one always better than the other, but it is more convenient
to use one or the other depending on the case (this, for instance, can be easily seen
with techniques similar to those of the next Section 5). On the contrary, instead, the
comparison between other bounds is often clear as the following remark, by way of
example, shows.

REMARK 2. The bound given in Corollary 6 (a) is always better or equal to
the one given in (13). The proof is an easy computation for which we have only to
distinguish the following four cases: (1) n≥ r, (2) n < r, m≤ h(n) and m≥ r, (3) n < r
and m ≥ h(n), (4) m < r. We prove (1) as an example: we have logp

(
|D|

|Dn,m|

)
≤ δ,

h(n) = ρ(n) = n+ ε and max{0,m−h(n)} = max{0,m−n− ε}. Then

logp

(
|D|

|Dn,m|

)
+max{0,m−h(n)}+h(n)−ρ(n)

≤
{

δ+m−h(n) if m≥ h(n)
δ if m < h(n)

≤ δ+m−n.

The proofs of the other cases are similar.

5. Optimal results.

In this section we first give two examples in which we compute explicitly the values of
the parameters and the invariants defined in the previous sections. Then, improving the
methodologies used to construct such examples, we will show in what sense some of
the results previously obtained can be considered optimal. We will therefore consider,
by way of example, one of the most articulate statements like that of Theorem 8, and
we will demonstrate how it is optimal, that is, not improvable from the point of view
of the algebra of Λ-modules and, assuming Assumption 1, also in an absolute sense.

In the next examples we will use a result proved by M. Ozaki in [25]: for every
prime p and every finite Λ-module D there exists a totally real field k whose cyclotomic
Zp-extension has Iwasawa module isomorphic to D (see in particular [25, Theorem 1]).

EXAMPLE 1. Taking D4 Λ/(pu,T ), by [25, Theorem 1] there exists at least a
field k and a Zp-extension K/k that provides X(K/k) 4 D. Moreover there exists u0
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such that 0≤ u0 ≤ u and D0 = pu0D. An easy calculation shows that

|Hn,m| =






1 if 0≤ n≤ m≤ u−u0
pm−u+u0 if n≤ u−u0 and u−u0 < m≤ n+u
pm−n if n > u−u0 and n≤ m≤ n+u
pu if n > u−u0 and m > n+u .

Furthermore we can easily see that our invariants and parameters take the following
values: r(K/k) = u−u0, r̃(K/k) = 0, and for any n≥ 0

h(n) = ρ(n) = n+u and ρ̃(n) = max{n+1, u−u0 +1}.

In particular, if n≤ u−u0, the chain of inequalities in Theorem 8 (a) becomes

1 = |Hn,n| = . . . = |Hn,u−u0 | < .. . < |Hn,n+u| = |Hn,n+u+1| = . . . = |Hn|,

and whenever n < u−u0 < n + u, we face a phenomenon of false, or failed, stabiliza-
tion.

EXAMPLE 2. Let v ≥ 1 and D 4 Λ/(p,T v). Thus, by using [25, Theorem 1],
there exists a number field k whose cyclotomic Zp-extension provides X(kcyc/k)4 D,
n0(kcyc/k) = 0 and Y0(kcyc/k) = 0 (possibly starting with some large layer). By a short
computation one can check that, for all m≥ n≥ 0, we have

|Hn,m| =
{

ppm−pn if m≤ %logp(v+ pn−1)&
pv if m > %logp(v+ pn−1)&

and

rkp(Hn,m) =
{

pm− pn if m≤ %logp(v+ pn−1)&
v if m > %logp(v+ pn−1)& ,

where %a& is the floor of a ∈ R. Our invariants and parameters take moreover the
following values: r(kcyc/k) = 0, r̃(kcyc/k) = 0, and for any n≥ 0

h(n) = ρ(n) = %logp(v+ pn−1)&+1 and ρ̃(n) = %logp(v+ pn−1)&+1.

As seen in the previous examples, for an explicit computation of all our param-
eters we need to know, in addition to X , the module Y0 as well. There are easy cases
in which Y0 = X or Y0 = T X , depending also on the class group of k and on the num-
ber (and behaviour) of the primes of k above p, but in general Ozaki’s results give no
information about them. Going deeper in this direction we can show in what sense
results like Theorem 8 can be considered optimal; it is also convenient to state the fol-
lowing assumption that can be considered as a conjecture generalizing Ozaki’s results
and similar others.

ASSUMPTION 1. Let Γ be a (multiplicative) topological group isomorphic to
Zp and let D0 ⊆ D be two finite Zp[[Γ]]-modules. Then there exists a number field k
and a Zp-extension K/k with n0(K/k) = 0, such that
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– the Iwasawa module X(K/k) is isomorphic to D and

– the submodule Y0(K/k) is isomorphic to D0,

via the isomorphism induced by Γ4 Gal(K/k).

The following proposition provides a strategy (and the explicit modules) to
closely analyze the thesis of Theorem 8.

PROPOSITION 5. Assuming Assumption 1, then for any h′ ≥ r′ ≥ 0 and any
finite sequence of nonnegative integers {ti}1≤i≤h′ such that

(14) tr′+1 ≥ tr′+2 ≥ . . .≥ th′ ≥ 1,

there exist a number field k and a Zp-extension K/k such that

n0(K/k) = 0, r(K/k) = r′, h(0) = h′,
|H0,i|
|H0,i−1|

= pti for all 1≤ i≤ h′

and
|H0, j| = p∑h′

i=1 ti for every j ≥ h′.

Sketch of proof. Let

D =
r′⊕

i=1
(Λ/(pi,T ))ti ⊕Λ/(pr′ ,T )⊕

h′−1⊕

i=r′+1

(Λ/(pi,T ))ti−ti+1 ⊕ (Λ/(ph′ ,T ))th′

and

D0 =
r′⊕

i=1
((p,T )/(pi,T ))ti ⊕Λ/(pr′ ,T )

⊕
h′−1⊕

i=r′+1

((pi−r′ ,T )/(pi,T ))ti−ti+1 ⊕ ((ph′−r′ ,T )/(ph′ ,T ))th′ .

There are four summands both in D and D0: the first one influences the part |H0,0| ≤
|H0,1|≤ . . .≤ |H0,r′ |, the second one, which is the same for D and D0, guarantees that
r(K/k) = r′, the last two affect the part |H0,r′ |< |H0,r′+1|< .. . < |H0,h′ |. The checking
of all the claims of the thesis is a matter of direct (but rather patient) calculation that
we leave to the reader. ()

Now, looking at Theorem 8 (a), the previous proposition implies that every
possibility for the part |Hn,n|≤ |Hn,n+1|≤ . . .≤ |Hn,r| (in the case n < r) is realizable.
In particular, if |Hn,q| seems to stabilize at a certain index m for many subsequent
layers m + 1, m + 2, . . . , m + t, that is, |Hn,m| = |Hn,m+1| = . . . = |Hn,m+t | for some
n ≤ m < m + t ≤ r, then this does not guarantee a definitive stabilization, i.e., we can
still have |Hn,m+t | < |Hn,m+t+1|.

We conclude by observing that, if n ≥ n0 and h(n) = r + 1, then Proposition 5
could take the following form:
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Every situation not explicitly prohibited by Theorem 8 is realizable.

The reason to require h(n) = r + 1 is just technical and not substantial, and it lies
precisely in the hypothesis (14). For instance, the proof of a similar proposition for the
case tr′+1 < tr′+2 < .. . < th′ can be easily realized,¶ but it involves a more complicated
(and not particularly enlightening) computation.

Lastly, we notice that similar techniques to those of Proposition 5 can be em-
ployed to show that many bounds, found in the previous section, are sharp as well and
not improvable in the general case. For example, we observed that the bound (13) is
reached in very special cases and we proved in Remark 2 that the bound of Corollary 6
(a) is always better or equal to the one in (13). Now, using the methods of Proposition
5 and analyzing a series of cases, we can show how the bound in Corollary 6 (a) itself
can be reached case by case.
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ZECH TABLEAUX AS TOOLS FOR SPARSE DECODING

Abstract. Within the framework of Groebner-free Solving, we introduce the notion of Zech
tableau as a tool for producing a linear error locator polynomials for cyclic codes.

1. Introduction

In the Late Nineties, the classical approach on BCH decoding based on Berlekamp’s
key equation was upsetted by the application of Gröbner bases to the problem; it ap-
peared a series of papers which terminated with two different proposals: Orsini-Sala
general error locator polynomial [30] and Augot et al. Newton-Based decoder [3]; both
approaches payed not only the hard pre-computation of a Gröbner basis but (mainly)
the density of their decoders.

A recent work-in-progress [7, 8, 9] reconsidered the same problem within the
frame of Gröbner-free solving, explicitly expressed and sponsored in the book [26,
Vol.3,40.12,41.15]; such approach aims to avoid the computation of a Gröbner basis of
a (0-dimensional) ideal J ⊂ P in favour of combinatorial algorithms describing instead
the structure of the algebra P/J.

The consequence is a preprocessing which is quadratic (and a decoding which
is linear) on the length of the code.

The approach requires to describe and produce a monomial basis of the syn-
drome algebra; such description forced us to introduce the notion of Zech tableau
which is the argument of this note.

2. Notations

F denotes an arbitrary field, F denotes its algebraic closure and Fq denotes a finite field
of size q (so q is implicitly understood to be a power of a prime) and P := F[X ] :=
F[x1, . . . ,xn] the polynomial ring over the field F.

Let T be the set of terms in P , id est

T := {xα1
1 · · ·xαn

n : (α1, . . . ,αn) ∈ Nn}.

If t = xγ1
1 · · ·xγn

n ∈ T , then deg(t) = ∑n
i=1 γi is the degree of t and, for each h ∈

{1, ...,n}, degh(t) := degxh
(t) := γh is the h-degree of t.

∗Department of Computer Science, University of Milan.
†Department of Mathematics, University of Genoa.
‡Department of Mathematics, University of Trento.
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A semigroup ordering < on T is a total ordering such that

t1 < t2⇒ st1 < st2, for each s, t1, t2 ∈ T .

For each semigroup ordering < on T , we can represent a polynomial f ∈ P as a linear
combination of terms arranged w.r.t. <, with coefficients in the base field F:

f = ∑
t∈T

ctt = ∑
t∈T

c( f , t)t =
s

∑
i=1

c( f , ti)ti : c( f , ti) ∈ F\{0}, ti ∈ T , t1 > ... > ts.

For each such f its support is supp( f ) := {τ ∈ T : c( f , t) /= 0}, its leading term is the
term T<( f ) := max<(supp( f )) = t1, its leading coefficient is lc<( f ) := c( f , t1) and its
leading monomial is M<( f ) := lc<( f )T<( f ) = c( f , t1)t1. When < is understood we
will drop the subscript, as in T( f ) = T<( f ).

A term ordering is a semigroup ordering such that 1 is lower than every variable
or, equivalently, such that it is a well ordering.
In all paper, we consider the lexicographical ordering induced by x1 < ... < xn, i.e:

xγ1
1 · · ·xγn

n <Lex xδ1
1 · · ·xδn

n ⇔∃ j |γ j < δ j, γi = δi, ∀i > j,

which is a term ordering. Since we do not consider any term ordering other than Lex,
we drop the subscript and denote it by < instead of <Lex.

The assignement of a finite set of terms

G := {τ1, . . . ,τν}⊂ T ,τi = xa(i)
1

1 · · ·xa(i)
n

n

defines a partition T = T)N of T in two parts:

– T := {ττi : τ ∈ T ,1 ≤ i ≤ ν} which is a semigroup ideal, id est a subset T ⊂ T
such that

τ ∈ T, t ∈ T =⇒ tτ ∈ T;

– the normal set N := T \T which is an order ideal, id est a subset N ⊂ T such
that

τ ∈ N, t ∈ T , t | τ =⇒ t ∈ N,

For any set F ⊂ P , write

– T{F} := {T( f ) : f ∈ F};

– M{F} := {M( f ) : f ∈ F};

– T(F) := {τT( f ) : τ ∈ T , f ∈ F}, a semigroup ideal;

– N(F) := T \T(F), an order ideal;

– I(F) = 〈F〉 the ideal generated by F .
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– F[N(F)] := SpanF(N(F)).

Given an ideal J ⊂ P , denote G the minimal set of generators of the semigroup
ideal T := T(J); we denote by N := N(J) = T \T(J) the order ideal introduced by the
partition T = T(J))N(J) = T)N; N will be called the Groebner escalier of J.

Let X = {P1, ...,PN}⊂ Fn be a finite set of simple points

Pi := (a1,i, ...,an,i), i = 1, ...,N.

We call
I (X) := { f ∈ P : f (Pi) = 0, ∀i},

the ideal of points of X.
If we are interested in the ordered set, instead of its support X, we denote it by X =
[P1, ...,PN ].

For any (0-dimensional, radical) ideal J ⊂ P and any extension field E of F, let
VE(J) be the (finite) rational points of J over E. We also write V (J) = VF(J). We
have the obvious duality between I and V = VF.

Definition 1. For an ideal J ⊂ P , a finite set G⊂ J will be called a Groebner basis of
J if T(G) = T(J), that is, T{G} := {T(g) : g ∈ G} generates T(J) = T{J}.

We give now a brief recap on Cerlienco-Mureddu algorithm, introduced in [11,
12, 13], which is the first combinatorial algorithm that, given a finite set of simple
points X = {P1, ...,PN} computes the lexicographical Groebner escalier N(I(X)) for
the ideal of points of X.
In particular, in [11], they consider an ordered finite set of simple points in kn, X =
[P1, ...,PN ], and prove that there is a one-to-one correspondence between X and the
terms of the lexicographical Groebner escalier of I(X):

Φ : X→ N(I(X))

Pi 5→ xα(i)
1

1 · · ·xα(i)
n

n .

They find Φ using only combinatorics on the coordinates of the elements in X. In
particular, only comparisons among the coordinates of the points are needed. The
algorithm is iterative on the points and recursive on the variables, thus it pays the
price of a rather bad complexity: a straightforward implementation of the algorithm
is proportional to n2N2. Another iterative algorithm [10] gives the same result by
eliminating recursion and keeping iterativity on the points, via the introduction of a
data structure (the Bar Code) that stores the information on the terms needed to perform
the algorithm.

We conclude this section briefly recalling the standard notation on cyclic codes,
needed to understand what follows.
Let C be an [n,k,d]q q-ary cyclic code with length n, dimension k and distance d. We
denote by g(x) ∈ Fq[x] its generator polynomial, remarking that deg(g) = n− k and
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g | xn−1. Let Fqm be the splitting field of xn−1 over Fq.
If a is a primitive n-th root of unity, the complete defining set of C is

SC = { j|g(a j) = 0, 0≤ j ≤ n−1}.

This set is completely partitioned in cyclotomic classes, so we can pick an element for
each such class, getting a set S ⊂ SC, uniquely identifying the code. This set S is a
primary defining set of C.
If H is a parity-check matrix of C, c is a codeword (i.e. c∈C), e∈ (Fq)n an error vector
and v = c + e a received vector, the vector s ∈ (Fqm)n−k such that its transpose sT is
sT = HvT is called syndrome vector. We call correctable syndrome a syndrome vector
corresponding to an error of weight µ≤ t, where t is the error correction capability of
the code, i.e. the maximal number of errors that the code can correct.

3. Cooper Philosophy

In 1990 Cooper [17, 18] suggested to use Gröbner basis computations in order to
decode cyclic codes. Let C be a binary BCH code correcting up to t errors, s̄ =
(s1, . . . ,s2t−1) be the syndrome vector associated to a received word. Cooper’s idea
consisted in interpreting the error locations z1, . . .zt of C as the roots of the syndrome
equation system:

fi :=
t

∑
j=1

z2i−1
j − s2i−1 = 0, 1≤ i≤ t,

and, consequently, the plain error locator polynomial as the monic generator g(z1) of
the principal ideal

{
t

∑
i=1

gi fi,gi ∈ F2(s1, . . . ,s2t−1)[z1, . . . ,zt ]

}
⋂

F2(s1, . . . ,s2t−1)[z1],

which was computed via the elimination property of lexicographical Gröbner
bases.

In a series of papers [14, 15, 16] Chen et al. improved and generalized Cooper’s
approach to decoding. In particular, for a q-ary [n,k,d] cyclic code, with error correc-
tion capability t, they made the following alternative proposals:

1. denoting, for an error with weight µ, z1, . . . ,zµ the error locations, y1, . . . ,yµ the
error values, s1, . . . ,sn−k ∈ Fqm the associated syndromes, they interpreted [14]
the coefficients of the plain error locator polynomial as the elementary symmet-
ric functions σ j and the syndromes as the Waring functions, si = ∑µ

j=1 y jzi
j, and

suggested to deduce the σ j’s from the (known) si’s via a Gröbner basis compu-
tation of the ideal generated by the Newton identities; a similar idea was later
developed in [2, 3].

2. They considered [15] the syndrome variety, namely the variety

V :=

{
(s1, . . . ,sn−k,y1, . . . ,yt ,z1, . . . ,zt) ∈ (Fqm )n−k+2t : si =

µ

∑
j=1

y jei
j, 1≤ i≤ n− k

}
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and proposed to deduce via a Groebner basis pre-computation in

Fq[x1, . . . ,xn−k,y1, . . . ,yt ,z1, . . . ,zt ]

a series of polynomials gµ(x1, . . . ,xn−k,Z),µ ≤ t such that, for any error with
weight µ and associated syndromes s1, . . . ,sn−k ∈ Fqm , gµ(s1, . . . ,sn−k,Z) in
Fqm [Z] is the plain error locator polynomial. This approach was improved in
a series of paper [4, 22] culminating with [30] which, specializing Gianni-
Kalkbrener Theorem [20, 21], stated in Theorem 6 below.

For a survey of this Cooper Philosophy see [29] and on Sala-Orsini locator [5].

4. Syndrome Variety and spurious roots

The notion of syndrome variety was formalized in [15] in its approach to decoding
q-ary [n,k,d] cyclic codes, with error correction capability t.

Definition 2. For such a cyclic code, the syndrome variety is the set of points
V :=

{
(s1, . . . ,sn−k,y1, . . . ,yt ,z1, . . . ,zt) ∈ (Fqm )n−k+2t : sl = ∑µ

j=1 y jzl
j, 1≤ i≤ n− k

}
where for an er-

ror (s1, . . . ,sn−k,y1, . . . ,yt ,z1, . . . ,zt) ∈ V with weight µ≤ t and

yµ+1 = · · · = yt = 0, zµ+1 = · · · = zt = 0,

z1, . . . ,zµ represent the error locations, y1, . . . ,yµ the error values, s1, . . . ,sn−k ∈ Fqm

the associated syndromes.

Definition 3. For such a cyclic code, and µ ≤ t the plain error locator polynomial is
the polynomial ∏µ

j=1(X− zi)

Definition 4. [15, 30] A point (s1, . . . ,sn−k,y1, . . . ,yt ,z1, . . . ,zt) ∈V is said spurious if
there are at least two values zi,z j,1≤ i /= j ≤ µ, such that zi = z j /= 0.

Denote VOS ⊂V the set of the non-spurious points of the syndrome variety and
consider the polynomial set

FOS = { fi,h j,χi,λ j,pll̃ , 1≤ l < l̃ ≤ t,1≤ i≤ n− k,1≤ j ≤ t} ⊂ P ,

where

fi :=
t

∑
l=1

ylz
j
l − xi, pll̃ := zl̃zl

zn
l − zn

l̃
zl− zl̃

,

h j := zn+1
j − z j, λ j := yq−1

j −1, χi := xqm

i − xi.

Theorem 5. [30] It holds I(FOS) = I (VOS).
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5. General error locator polynomial

Let G be the reduced Gröbner basis of I(FOS) = I (VOS) w.r.t. the lex ordering with
x1 < · · · < xn−k < zt < · · · < z1 < y1 < · · · < yt and let us denote, for each ι ≤ t and
each ! ∈ N

Gι := G∩Fq[x1, . . . ,xn−k,zt , · · · ,zι] and Gι! := {g ∈ Gι \Gι+1 : degxι(g) = !}.

Moreover, we enumerate each Gι! as

Gι! := {gι!1, . . . ,gι! jι!},T(gι!1) < · · · < T(gι! jι!).

Theorem 6. [30] With the present notation we have

1. G∩Fq[x1, ...,xn−k,z1, . . . ,zt ] = ∪t
i=1Gi;

2. Gi = )i
δ=1Giδ and Giδ /= /0, 1≤ i≤ t, 1≤ δ≤ i;

3. Gii = {gii1}, 1 ≤ i ≤ t, i.e. exactly one polynomial exists with degree i w.r.t. the
variable zi in Gi;

4. T(gii1) = zi
i, lc(gii1) = 1;

5. if 1≤ i≤ t and 1≤ δ≤ i−1, then ∀g ∈ Giδ,z1 | g.

Definition 7. [30] The unique polynomial

gtt1 = zt
t +

t

∑
l=1

at−l(s1, . . . ,sn−k)zt−l
t

with degree t w.r.t. the variable zt in Gt , which is labelled the general error locator
polynomial, is such that the following properties are equivalent for each syndrome
vector s = (s1, . . . ,sn−k) ∈ (Fqm)n−k corresponding to an error with weight bounded by
t:

– there are exactly µ≤ t errors ζ1, . . .ζµ;

– at−l(s1, . . . ,sn−k) = 0 for l > µ and at−µ(s1, . . . ,sn−k) /= 0;

– gtt1(s1, . . . ,sn−k,zt) = zt−µ ∏µ
j=1(z−ζi).

This means that the general error locator polynomial gtt1 is the monic polynomial in
Fq[x1, ...,xn−k,z] which satisfies the following property:

given a syndrome vector s = (s1, . . . ,sn−k) ∈ (Fqm)n−k corresponding to an error
with weight µ≤ t, then its t roots are the µ error locations plus zero counted with
multiplicity t−µ.

Theorem 8 ([30]). Every cyclic code possesses a general error locator polynomial.
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6. Degroebnerizing Error Correcting Codes (1)

Recently the same problem has been reconsidered in a group of papers [7, 9, 8] within
the frame of Groebner-free Solving [23, 28, 23, 27], explicitly expressed and sponsored
in the book [26, Vol.3,40.12,41.15]; such approach aims to avoid the computation of a
Gröbner bases of a (0-dimensional) ideal J ⊂ P in favour of combinatorial algorithms,
describing instead the structure of the algebra P/J.

In particular, given the syndrome variety∗

Z =
{
(c+d,c3 +d3,c,d),c,d ∈ F∗2m ,c /= d

}

of a BCH [2m−1,2]-code C over F2m , and denoted I (Z) the ideal of points of Z, [7] is
able with good complexity to produce, via Cerlienco-Mureddu Algorithm [11, 12, 13]
and Lazard Theorem [19], the set N := N(I (Z)) and proves that the related Gröbner
basis has the shape

G = (xn
1−1,g2,z2 + z1 + x1,g4)

where (see [30])

g2 =
x

n+1
2

2 − x
n+1

2
1

x2− x1
= x

n−1
2

2 +
n−1

2

∑
i=1

( n−1
2
i

)
xi

1x
n−1

2 −i
2

and g4 = z2
1−∑t∈N ctt is Sala-Orsini general error locator polynomial.

Such result allowed [7] to remark (applying Marinari-Mora Theorem [25, 1, 6])
that, for decoding, it is sufficient to compute a particular polynomial – the half error
locator polynomial (HELP) – that is, a polynomial of the form

h(x1,x2,z1) := z1−∑
t∈H

ctt where H := {xi
1x j

2,0≤ i < n,0≤ j <
n−1

2
}

which satisfies

h(c(1+a2 j+1),c3(1+a3(2 j+1)),z1) = z1− c, for each c ∈ F∗2m ,0≤ j <
n−1

2
,

the other error location ca2 j+1 been computable via the polynomial z2 + z1 +x1 ∈G as
z2 := x1− z1 = (c+ ca2 j+1)− c = ca2 j+1.

In other words, once the HELP h(x1,x2,z1) is known, in order to decode a re-
ceived vector v, one should:

1. compute the syndrome vector s = (s1,s2) from v;

2. evaluate the HELP in s, namely compute h(s1,s2,z1);

∗We remark that the variables yi, corresponding to the error values (see Definition 2) will be omitted in
this paper, because talking about error values in a binary code is completely useless. Therefore s1 = x1 =
c+d, s2 = x2 = c3 +d3 represent the two syndromes and z1 = c, z2 = d represent the error locations.
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3. find the unique root of h(s1,s2,z1) in z1, i.e. z1 = c; being an element of F2m , it
can be expressed either as c = ai, i ∈ {1, ...,n}, in terms of a fixed primitive n-th
root of unity a ∈ F2m or as c = 0;

4. evaluate the polynomial z2 + z1 + x1 in (s,c), namely compute z2 + c+ s1;

5. solve z2 +c+ s1 = 0, getting z2 = c+ s2 =: d; being an element of F2m , it can be
expressed either as d = a j, j ∈ {1, ...,n}, again in terms of a, or as d = 0;

6. c,d are the two error locations, so that, if they are different from zero, they iden-
tify the position of an error. For c = ai,d = a j /= 0, two errors occurred, exactly
in positions i, j. Flipping the bits in that positions, we recover the correct sent
codeword. If some of c,d are zero, it means that less than two errors occurred.

The HELP can be easily obtained with good complexity via Lundqvist interpo-
lation formula [23] on the set of points

{(c+ ca2 j+1,c3 + c3a3(2 j+1),c),c ∈ F∗2m ,0≤ j <
n−1

2
}.

Experimental showed that in that setting HELP has a very sparse formula, which has
been proved in [7]:

h(x1,x2,z1) = z1 +
n−1

2

∑
i=1

aix
(4−3i) mod n
1 x(i−1) mod n−1

2
2

where the unknown coefficients can be deduced by Lundqvist interpolation on the set
of points

{(1+a2 j+1,1+a3(2 j+1),1),0≤ j <
n−1

2
}

and on the monomials {x(4−3i) mod n
1 x(i−1) mod n+1

2
2 ,1≤ i < n+1

2 }.

Knowing the structure of the lexicographical Groebner escalier associated to the syn-
drome variety is a crucial step, in order to find the HELP and efficiently decode a binary
cyclic code.
This suggested [9] to consider a binary cyclic code C over GF(2m), with length
n | 2m−1 and primary defining set SC = {1, l}. Thus it denoted by

– a a primitive (2m−1)th root of unity so that F2m = Z2[a], α := 2m−1
n and

– b := aα a primitive nth root of unity,

– Rn := {e ∈ F2m : en = 1}

– Sn := Rn){0};

considered the following sets of points

Z2 := {(c+d,cl +dl ,c,d),c,d ∈ Rn,c /= d},#Z×2 = n2−n;
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Z+ := {(c+d,cl +dl ,c,d),c,d ∈ Sn,c /= d},#Z×+ = n2 +n,

Zns := {(c+d,cl +dl ,c,d),c,d ∈ Sn}\{(0,0,c,c),c ∈ Rn},#Z×ns = n2 +n+1,

Ze := {(c+d,cl +dl ,c,d),c,d ∈ Sn},#Z×e = (n+1)2,

and denoted, for ∗ ∈ {e,ns,+,2},

– J∗ := I (Z∗),

– N∗ := N(J∗) the Gröbner escalier of J∗ w.r.t. the lex ordering with x1 < x2 < z1 <
z2 and

– Φ∗ : Z∗ → N∗ a Cerlienco-Mureddu correspondence.

Then it assumed to know

(a). the structure of the order ideal N2, #N2 = n2 − n, i.e. a minimal basis
{t1, . . . , tr}, ti := xai

1 xbi
2 , of the monomial ideal T \N2 = T(I(Z2)),

(b). a Cerlienco Mureddu Correspodence Φ2 : N2→ Z2

and deduced with elementary arguments N∗ and Φ∗ for ∗ ∈ {e,ns,+}.

7. Zech Tableaux

We observe that the parameters of a minimal basis G = {t1, . . . , tr}, ti := xγi
1 xδi

2 , of a
monomial ideal

T⊂ T = {xγ
1xδ

2 : (γ,δ) ∈ N2}

satisfy relations

– γ1 > γ2 > · · · > γr

– δ1 < δ2 < · · · < δr

– and T is 0-dimensional if and only if δ1 = 0 = γr.

Indeed, the γi can be ordered so that γ1 ≥ γ2 ≥ ...≥ γr
If γi = γi+1 and without loss of generality, δi ≥ δi+1 then ti+1|ti, contradicting the min-
imality of G. Moreover, if δi ≥ δi+1, ti+1|ti contradicting the minimality of G.
The corresponding escalier N = T /T, in the zerodimensional case, is

N :=
r−1⊔

i=1
{xγ

1xδ
2 : 0≤ γ < γi,0≤ δ < δi+1}.
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Definition 9. Consider the field F2m = Z2[a], a denoting a primitive (2m−1)th root of
unity; for a value n | (2m−1) we denote α := 2m−1

n and b := aα a primitive nth root of
unity.
Denote, for i,0≤ i < α, Zi := { j,1≤ j≤ n : 1+b j = 1+a jα ≡ ai mod n}, set z(i) = #Zi;
for any set H ⊂ { j,1≤ j ≤ n} we consider also the values ζ(i) = #(H ∩Zi).
The (2m−1,n;H)-Zech Tableau is the assignment of

– an ordered sequence S := [ j0, ..., jr−1]⊂ {i,0≤ i < α} which satisfies

– ζ( j0)≥ . . .≥ ζ( jr−1) > 0,

– ζ( j) = 0 for each j /∈ S.

– the minimal basis G = {t1, . . . , tr}, ti := xai
1 xbi

2 , of the monomial ideal T = T \N
corresponding to the escalier

N :=
r−1⊔

i=1
{xa

1xb
2 : 0≤ a < ai,0≤ b < bi+1}.

Example 10. Let us consider the values n = 21,m = 6,α = 63
21 = 3 and O := {2i−1,1≤

i ≤ 10}. Let the primary defining set of our code be S = {1,3}. The three classes in-
duced by the 21-st roots of unity are divided in this way:
[0] = {1 + a21,1 + a45,1 + a9,1 + a27}, [1] = {1 + a51,1 + a15,1 + a3}, [2] = {1 +
a39,1 + a57,1 + a33)}, so that ζ(0) = 4 > ζ(1) = ζ(2) = 3 and the (63,21;O)-Zech
Tableau is given by the sequence [0,1,2] and by the minimal basis {x3

1,x1x3
2,x

4
2}.

Example 11. Let us consider the value n = 35,m = 12,α = 4095
35 = 117 and

O := {2i−1,1≤ i≤ 17}. Let the primary defining set of our code be S = {1,3}. The
35-th roots of unity, namely the powers of a117: R35 = {a117,a234, ...,a3978,a4095 = 1}
The 117 classes induced by the 35-st roots of unity are divided in this way:
[0] = {1 + a2925,1 + a585,(1 + a1755)} and for each u′ ∈ R35 \
{a2925,a585,a1755,a4095},{1+u′} = [k] where 1+u = ak, k ≡ u mod 117.

The (4095,35;O)-Zech Tableau is given by the sequence

[0,113,106,78,116,29,58,115,53,39,73,85,95,101,109]

with ζ(0) = 3, ζ(113) = ζ(106) = ζ(78) = ζ(116) = ζ(29) = ζ(58) = ζ(115) =
ζ(53) = ζ(39) = ζ(73) = ζ(85) = ζ(95) = ζ(101) = ζ(109) = 1 and the minimal basis
{x15

1 ,x1x2,x3
2}.

8. Degroebnerizing Error Correcting Codes (2)

In this section, we deal with the case of codes such that n | 2m−1 with primary defining
set SC = {1, l}.
The escalier’s shape is far from being trivial, and Zech tableaux will be used to study
the escalier’s shape.
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Experiments showed that, for binary cyclic codes C over GF(2m), with length n | 2m−1
and primary defining set SC = {1, l}, the (2m− 1,n;O)-Zech Tableaux – with O :=
{2i− 1,1 ≤ i ≤ n−1

2 } – describe the structure of Z2 thus making effective the results
of [9] and allowing to extend those of [7]. In particular [8] reports (and proves) the
following result. Still denoting a a primitive (2m− 1)th root of unity, α := 2m−1

n and
b := aα a primitive nth root of unity, we consider the (2m−1,n;O)-Zech Tableaux with

– ordered sequence S := [ j0, ..., jr−1]⊂ {i,0≤ i < α},

– minimal basis G = {t1, . . . , tr}, ti := xai
1 xbi

2 ,

and let us enumerate

– each Z ji as Z ji = [βi1, . . . ,βiζ(i)]

Then it holds.

(A). the minimal basis of T(J2) is G2 = {τ1, . . . ,τr},τi := xnai
1 xbi

2 , so that

(B). N2 :=
⊔r−1

i=1{xa
1xb

2 : 0≤ a < nai,0≤ b < bi+1} correlated to Z2 via

(C). the Cerlienco-Mureddu correspondence

Φ2

(
b!(1+bβiι),bl!(1+blβiι),b!,b!+βiι

)
= (x(i−1)+!

1 xι
2).

(D). Also in this more general frame the HELP has still a very sparse formula:

h(z1,x1,x2) = z1−
α−1

∑
j=0

xn j+1
1

ζ(i)−1

∑
i=0

a ji(x−l
1 x2)i,

(E). where the unknown coefficient can be deduced by Lundqvist interpolation on the
set of points {(

(1+bβiι),(1+blβiι),1
)}

.

Example 10 (cont.). We have

N2 = {1,x1, ...,x62
1 ,x2,x1x2, ...,x62

1 x2,x2
2,x1x2

2, ...,x
62
1 x2

2,x
3
2,x1x3

2, ...,x
20
1 x3

2}

corresponding to G2 = {x63
1 ,x21

1 x3
2,x

4
2} and HELP

z1 + a47x13
1 x3

2 +a33x58
1 x2

2 +a47x37
1 x2

2 +a12x16
1 x2

2 +a41x61
1 x2 +a32x40

1 x2 +a47x19
1 x2

+ a27x43
1 +a42x22

1 +a9x1

Example 11 (cont.). We have

N2 = {1,x1, ...,x524
1 ,x2,x1x2, ...,x34

1 x2,x2
2,x1x2

2, ...,x
34
1 x2

2}

corresponding to G2 = {x525
1 ,x35

1 x2,x3
2} and HELP

z1 + a3510x30
1 x2

2a2340x33
1 x2 + a3381x491

1 + a1140x456
1 + a608x421

1 + a56x386
1 + a3477x351

1 +
a2238x316

1 + a3445x281
1 + a3709x246

1 + a2260x211
1 + a3761x176

1 + a510x141
1 + a400x106

1 +
a1044x71

1 +a141x36
1 +a1663x1
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G. Coppola

RECENT RESULTS ON RAMANUJAN EXPANSIONS WITH
APPLICATIONS TO CORRELATIONS

Abstract. This is a survey on some very recent results about Ramanujan expansions and their
applications to the representation of shifted convolution sums of two arithmetical functions.

1. Some basic properties of the Ramanujan expansions

The so-called Ramanujan sum is [22]

cq(n)de f= ∑
j≤q

( j,q)=1

cos(2π jn/q), q ∈ N,n ∈ Z.

Hereafter, d = (a,b) means that d is the greatest common divisor of a and b.

Note that |cq(n)|≤ cq(0) = ϕ(q)de f= #{ j ∈N : j≤ q and ( j,q) = 1} for all q∈N, n∈Z.
Moreover, the arithmetic function n ∈ N 5→ cq(n) is periodic with period q. Through-
out the paper, sometimes without further references, we apply other properties of the
Ramanujan sums, quoted from [11], [13], [21] and summarized in the next proposition.

PROPOSITION 1. Let µ be the Möbius function [24] and let ω(q) denote the
number of the prime factors of q ∈ N.

©1 cq(n) = ∑
d|q
d|n

dµ(q/d) = ϕ(q)
µ
(
q/(q,n)

)

ϕ
(
q/(q,n)

) , for all q ∈ N,n ∈ Z.

©2 |cq(n)|≤ (q,n), for all q,n ∈ N.
©3 ∑d|q cd(n) = q1q|n, for all q ∈ N,n ∈ Z,
where 1q|n is the characteristic function of {n ∈ Z : n≡ 0 (q)}.

©4 (Delange inequality) ∑
d|q

|cd(n)|≤ n∑
d|q

µ(d)2 = n2ω(q), for all q,n ∈ N.

©5 If !,q ∈ N, k ∈ Z, then lim
x→∞

1
x ∑

n≤x
c!(n)cq(n+ k) =

{
c!(k) if ! = q,
0 otherwise.

REMARK 1. We will write n≡ m (q) to abbreviate n≡ m (modq). We denote
the characteristic function of any set U ∩Z, with U ⊆ R, by 1U . Equivalently, such a
function is denoted by 1℘, as in ©3 , provided that ℘ is a characteristic property of
U ∩Z. Note that the first equality in©1 shows that cq(n) ∈ Z for all q ∈ N,n ∈ Z.

57
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DEFINITION 1. Let A de f= { f : N→C} be the set of all the arithmetic functions.
The Ramanujan series associated to g ∈ A is the series

R g(n)de f=
∞

∑
q=1

g(q)cq(n), for all n ∈ N.

We say that f ∈ A admits a Ramanujan expansion if there exists g ∈ A such that

f = R g.

For this, g(q) is the so-called q-th Ramanujan coefficient of the expansion f = R g.

All classical expansions have this form (compare [22], [21], [23]).
However, we include the possibility that g(q) also depends on n. As an example, take

the following expansion of 0−function, 0(n)de f= 0, ∀n ∈ N (recall c1(n) = 1, ∀n ∈ Z) :

(1) 0(n) = 2c1(n)+
(
2 ·1n /≡0(3)−1n≡0(3)

)
c3(n), ∀n ∈ N.

In case g(q) doesn’t depends on n, as n varies in N, we call f = R g a pure expansion.
Given any f ∈ A (except f = 0, see Remark 4), we don’t know if it has a pure

expansion or not. (As far as we know no such a result is in the literature.)
However, all f ∈A have at least one n−pointwise convergent f (n) = R g(n),

as n ∈ N (and it’s finite, see Remark 3).
Consequently, we introduce

〈 f 〉de f= {g ∈ A : f = R g} the Ramanujan cloud of f ,

which is always non-empty, and its “pure part” (that can be empty)

〈 f 〉∗
de f= {g ∈ 〈 f 〉 : R g is pure}.

Assume that 〈 f 〉∗ /= /0. We call the expansion f = R g completely uniform if it’s pure
and the convergence of f (n) = R g(n) is uniform w.r.t. n, as n varies in N. We write

〈 f 〉∗∗
de f= {g ∈ 〈 f 〉 : R g is completely uniform}.

Let us write f =# R g to mean that R g is a finite sum. Assuming that f and g are
not the identically zero functions, such a finite expansion, if pure, can be written in the
form

f (n) = R g(n) = ∑
q≤Q

g(q)cq(n), ∀n ∈ N,

where Q
de f= max{q ∈ N : g(q) /= 0} is the so-called length of R g(n). (Compare

Remark 3 about finite expansions.) We indicate 〈 f 〉#
de f= {g ∈ 〈 f 〉 : R g is finite}.

Henceforth, R -expansion and R -coefficient abbreviate Ramanujan expansion
and Ramanujan coefficient, respectively. Sometimes, we’ll abbreviate R −cloud for
the Ramanujan cloud.



Recent results on Ramanujan expansions with applications to correlations 59

REMARK 2. The reader is cautioned that some authors refer to Ramanujan se-
ries as Fourier-Ramanujan series ([15], [23]). Moreover, in the literature R -expansion
is often synonymous of Ramanujan series. Here we explicitly point out that by defini-
tion a R -expansion is a convergent Ramanujan series taken as a representation of its
sum (compare Remark 4 for its non-uniqueness). Further, it should be plain that in the
present context Ramanujan sum cannot be synonymous of finite R -expansion.

REMARK 3. A celebrated theorem of Hildebrand [18] ensures that for every
f ∈ A and n ∈ N there exist Q(n) ∈ N and h(q,n) ∈ C, with 1≤ q≤ Q(n), such that

(2) f (n) =
Q(n)

∑
q=1

h(q,n)cq(n) ∀n ∈ N.

See also [23] for the proof, where the coefficients h(q,n) are recursively defined. In
other words, Hildebrand’s result yields that 〈 f 〉# /= /0 for all f ∈ A , implying that all
R −clouds are non-empty; however, it leaves open the possibilty that some 〈 f 〉∗ = /0.
Note that for every f ∈ A there are always expansions of the form (2), where the
dependence of Q(n) and the coefficients h(q,n) on n is effective. Indeed, besides the
trivial choices of Q(n) = 1 and h(1,n) = f (n), the expansion (2) holds also by taking

Q(n) = n, h(q,n) = ∑
d≤n

d≡0(q)

( f ∗µ)(d)
d

,

where ∗ denotes the Dirichlet product [24]. (See the last line of the proof of the
Wintner-Delange formula in Proposition 2 below.) The latter case yields the so-called
standard finite R -expansion of f , ∀ f ∈ A . This, in turn, proves (2) immediately.

REMARK 4. Since the first appearance of the Ramanujan series, it was clear
at once that the R -expansion of a given arithmetical function is very far from being
unique. Indeed, besides the trivial fact that the identically zero function 0 belongs to
〈0〉, non-trivial R -expansions of 0 were found by Ramanujan himself [22] and Hardy
[16], respectively as

(3) 0(n) =
∞

∑
q=1

R0(q)cq(n), where R0(q)de f=
1
q
,

(4) 0(n) =
∞

∑
q=1

H0(q)cq(n), where H0(q)de f=
1

ϕ(q)
.

Further samples of Ramanujan expansions are found in [23], [19], [21]. More-
over, it is plain that α〈0〉 ⊆ 〈0〉 for all α ∈ C. Furthermore, for any g ∈ 〈 f 〉 one has

g+ 〈0〉de f= {h ∈ A : h = g+ k for some k ∈ 〈0〉}⊆ 〈 f 〉.
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Together with the aforementioned Hildebrand’s result, this implies that the set 〈 f 〉 is
infinite for any f ∈A . Namely, all R −clouds contain infinitely many expansions each.
Further, they are convex sets : αg1 +(1−α)g2 ∈ 〈 f 〉, ∀g1,g2 ∈ 〈 f 〉 and ∀α ∈ C.
Some of the recent results concern the problem of the unique representation of the
expansion f = R g, namely the search for suitable requirements on g that would yield
uniqueness of such expansion. These results are discussed in §3.

REMARK 5. The convergence of a R -expansion needs not be absolute. Indeed,
since |cq(n)| = µ(q)2 for (q,n) = 1 (see Proposition 1), then for any fixed integer n we
can write

∞

∑
q=1

|cq(n)|
q
≥

∞

∑
q=1

(q,n)=1

µ(q)2

q
≥∑

p

1
p
−∑

p|n

1
p
.

Hereafter, the letter p, with or without subscripts, is devoted to prime numbers. Thus,
the absolute divergence of the series (3) follows from the well-known divergence of the
series of prime numbers reciprocals.

2. The Wintner coefficients and the Carmichael coefficients

DEFINITION 2. The Eratosthenes transform of f is f ′ ∈ A such that f = f ′ ∗1,
i.e.

f (n) = ∑
d|n

f ′(d), ∀n ∈ N.

In particular, if for every n ∈ N and for some Q ∈ N independent of n one has

f (n) = ∑
d≤Q
d|n

f ′(d),

then f is said to be a truncated divisor sum of range Q. We also say that f ′ is the Q-
truncated Eratosthenes transform of f . The set of the truncated divisor sums of range
Q is denoted by AQ.

REMARK 6. Henceforth, E-transform means Eratosthenes transform. Note that
we have already abbreviated Wintner’s terminology, where f ′ is used to be called the
Eratosthenes-Möbius transform of f (see [23], [25]), being plain that f ′ = f ∗µ by the
Möbius inversion formula [24]. We also refer to f as the inverse E-transform of f ′.
Finally, by definition the truncated divisor sum of range Q associated to f = f ′ ∗1 is

fQ(n)de f= ∑
d≤Q
d|n

f ′(d), ∀n ∈ N.

In other words, the E-transform of fQ is f ′ in [1,Q]∩N and 0 otherwise. In §3, the set
AQ is characterized in terms of some peculiar R -expansions (see Theorem 3).
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DEFINITION 3. Let f ′ be the E-transform of f ∈ A .

If
∞

∑
d=1

d≡0(q)

f ′(d)
d

converges, then its sum W f (q) is the q-th Wintner coefficient of f .

If M ( f · cq)
de f= lim

x→∞

1
x ∑

n≤x
f (n)cq(n) exists and is finite, then C f (q)de f=

M ( f · cq)
ϕ(q)

is the

q-th Carmichael coefficient of f .

REMARK 7. If it exists and is finite, then M ( f ·cq) is the so-called mean value

of f ·cq. Namely, M ( f ) = M ( f ·c1) = C f (1) = lim
x→∞

1
x ∑

n≤x
f (n) is the mean value of f .

The next proposition summarizes three classical results. In the first part we spot Wint-
ner’s criterion [23], a sufficient condition for the mere existence of both Wintner and
Carmichael coefficients, which turn out to be equal. The second part of the proposition
is the Wintner-Delange theorem [13], that provides with a sufficient condition for a
given f ∈ A to be such that 〈 f 〉∗ /= /0. In particular, such a theorem reveals that the
Wintner coefficients (or equivalently the Carmichael ones in view of Wintner’s crite-
rion) are instances of R -coefficients for f . The third part is Lucht’s theorem [19] that
gives a deep link between the R -expansion of a function and its E-transform. In §3 we
present a new result yielding the converse of Lucht’s theorem. Such a result is a key
argument for the problem of the unique R -expansion (see Remark 4). In what follows,
for any f ,g ∈ A with g real and non-negative, the notation f (n)2 g(n), equivalent
to f (n) = O(g(n)), means that there exist n0 ∈ N and a real number C > 0 such that
| f (n)|≤Cg(n) for all n > n0. The implicit constant C might depend on other variables,
in which case they are displayed as subscripts in the symbols2 or O.

PROPOSITION 2. Let f ′ be the E-transform of f ∈ A .

©1 Wintner’s criterion. If
∞

∑
d=1

f ′(d)
d

converges absolutely, then W f (q) and C f (q)

exist for all q ∈ N. Moreover, one has W f = C f .

©2 The Wintner-Delange formula. If
∞

∑
d=1

2ω(d) f ′(d)
d

converges absolutely, then the

function W f = C f belongs to 〈 f 〉∗ :

f (n) =
∞

∑
q=1

W f (q)cq(n) =
∞

∑
q=1

C f (q)cq(n), ∀n ∈ N.

©3 Lucht’s theorem. If
∞

∑
q=1

q≡0(d)

g(q)µ(q/d) converges for every d ∈ N, then g ∈ 〈 f 〉,
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where f is the inverse E-transform of f ′(d)de f= d
∞

∑
q=1

q≡0(d)

g(q)µ(q/d), i.e.

f (n) = ∑
d|n

f ′(d) = ∑
d|n

d
∞

∑
q=1

q≡0(d)

g(q)µ(q/d) = R g(n) ∀n ∈ N.

Proof. ©1 Clearly, the existence of W f (q) for all q ∈ N is a straightforward conse-
quence of the hypothesis. Thus, we have to show that for any fixed q ∈ N one has

lim
x→∞

1
x ∑

n≤x
f (n)cq(n) = ϕ(q)W f (q).

To this end, after recalling that [β] and ‖β‖ denote respectively the integer part of β∈R
and the distance of β from the nearest integer, let us write

∑
n≤x

f (n)cq(n) = ∑
n≤x

cq(n)∑
d|n

f ′(d) = ∑
d≤x

f ′(d) ∑
m≤x/d

cq(dm)

= ∑
d≤x

f ′(d) ∑
j≤q

( j,q)=1

∑
m≤x/d

eq( jdm)

= ϕ(q) ∑
d≤x

d≡0(q)

f ′(d)
[

x
d

]
+O

(
∑
d≤x

d /≡0(q)

| f ′(d)| ∑
j≤q

( j,q)=1

∥∥∥∥
jd
q

∥∥∥∥
−1)

,

where we have applied the well-known inequality (see [12], Ch.26)

∑
m≤x

e(mβ)2min(x,‖β‖−1), ∀x≥ 1,∀β ∈ R.

Since the O-term vanishes for q = 1, we can assume q > 1 henceforth. We see that

1
x ∑

n≤x
f (n)cq(n) = ϕ(q) ∑

d≤x
d≡0(q)

f ′(d)
d

+ O
(

ϕ(q)
x ∑

d≤x
| f ′(d)|

)

+ O
(

1
x ∑

d≤x
d /≡0(q)

| f ′(d)| ∑
j≤q

( j,q)=1

∥∥∥∥
jd
q

∥∥∥∥
−1)

.

Now, let us write

∑
d≤x

d /≡0(q)

| f ′(d)| ∑
j≤q

( j,q)=1

∥∥∥∥
jd
q

∥∥∥∥
−1
≤ ∑

r<q
r|q

∑
d≤x

(d,q)=r

| f ′(d)| ∑
j≤q

j /≡0(q/r)

∥∥∥∥
jd/r
q/r

∥∥∥∥
−1

and note that, since (d,q) = r yields (d/r,q/r) = 1, it turns out that (compare [20],§3.2)

∑
j≤q

j /≡0(q/r)

∥∥∥∥
jd/r
q/r

∥∥∥∥
−1
≤ r ∑

j′<q/r

∥∥∥∥
j′

q/r

∥∥∥∥
−1
2 q ∑

j′<q/r

1
j′
2 q logq, ∀r|q,r /= q.
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Thus, we get

(5)
1
x ∑

n≤x
f (n)cq(n) = ϕ(q) ∑

d≤x
d≡0(q)

f ′(d)
d

+Oq

(
1
x ∑

d≤x
| f ′(d)|

)
.

Hence, the desired conclusion follows once it is shown that the O-term goes to zero as
x→ ∞. To this end, by partial summation [24] we write

∑
d≤x

| f ′(d)| = ∑
d≤x

| f ′(d)|
d

+
∫ x

1

(
∑
d≤x

| f ′(d)|
d
−∑

d≤t

| f ′(d)|
d

)
dt.

Note that by hypothesis, for any fixed real number ε > 0, there exists xε < x such that
∣∣∣∣∑
d≤x

| f ′(d)|
d
−∑

d≤t

| f ′(d)|
d

∣∣∣∣< ε, ∀t ∈ (xε,x).

Consequently, for all x > xε one has

1
x ∑

d≤x
| f ′(d)| <

1
x ∑

d≤x

| f ′(d)|
d

+
1
x

∫ xε

1

∣∣∣∣∑
d≤x

| f ′(d)|
d
−∑

d≤t

| f ′(d)|
d

∣∣∣∣dt + ε

≤ 1+2xε
x

∞

∑
d=1

| f ′(d)|
d

+ ε.

©2 It is plain that the hypothesis and©1 yield that W f = C f . From©4 of Prop. 1 we
get

∑
q≤x

|W f (q)cq(n)| ≤ ∑
q≤x

|cq(n)| ∑
d≡0(q)

| f ′(d)|
d

=
∞

∑
d=1

| f ′(d)|
d ∑

q|d
q≤x

|cq(n)|

≤ n
∞

∑
d=1

2ω(d)

d
∣∣ f ′(d)

∣∣ ,

where the double series on d and q converges absolutely because the latter series con-
verges by hypothesis. (In particular, R W f

(n) is absolutely convergent for any fixed n.)
Hence, we can exchange d and q summations, and apply©3 of Proposition 1 so that

R W f
(n) =

∞

∑
q=1

W f (q)cq(n) =
∞

∑
d=1

f ′(d)
d ∑

q|d
cq(n) =

∞

∑
d=1

f ′(d)1d|n = f (n), ∀n ∈ N.

©3 For x≥ n, from©1 of Proposition 1 we get

∑
q≤x

g(q)cq(n) = ∑
d|n

d ∑
q≤x

q≡0(d)

g(q)µ(q/d),

yielding the conclusion immediately. The proposition is completely proved. ()
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REMARK 8. We underline that the absolute convergence of R W f
alone does

not suffice to conclude that f = R W f
. For example, if R W f

(n) is a finite sum, i.e.

there exists Q ∈ N such that W f (q) = 0 for all q > Q, then obviously its convergence
is absolute. However, the argument used to prove that f = R W f

in ©2 is no longer
helpful because©3 of Proposition 1 cannot apply to

R W f
(n) =

∞

∑
d=1

f ′(d)
d ∑

q≤Q
q|d

cq(n).

The reader should compare this case with Remark 14 after Theorem 3 below.

REMARK 9. We give many small new results, now.
Note that |cq(n)|≤ ϕ(q) yields

1
ϕ(q)

∣∣∣∣
1
x ∑

n≤x
f (n)cq(n)

∣∣∣∣≤
1
x ∑

n≤x
| f (n)|.

Hence, if C f (q) and the mean value of | f | exist, then |C f (q)| ≤M (| f |) = C| f |(1). As
a consequence, if C f (q) exists for all q ∈ N, then M (| f |) = 0 implies C f = 0. In
particular, this means that a non-negative real function f /= 0 with a null mean value
does not admit its Carmichael coefficients as R -coefficients, i.e. C f /∈ 〈 f 〉. Samples
of such functions are the characteristic functions of subsets of N with zero density.
Indeed, recalling that the density of B⊆ N is

δ(B)de f= lim
x→∞

#{n ∈ B : n≤ x}
x

∈ [0,1]

(provided that such a limit exists), this can be equivalently written as

δ(B) = lim
x→∞

1
x ∑

n≤x
1B(n) = CB(1),

where the first Carmichael coefficient of 1B is shortly denoted CB(1). In particular, the
set of prime numbers has zero density (esp., from the prime number theorem).
Further, it is well-known [T] that the inverse E-transform of the Liouville function, i.e.,

λ(pα1
1 pα2

2 . . . pαt
t )de f= (−1)α1+α2+...+αt ,

is the characteristic function of the set S of the square numbers, that has plainly zero

density, i.e. CS = 0 ; a theorem of Landau and von Mangoldt states that
∞

∑
d=1

λ(d)
d

= 0

is equivalent to the prime number theorem. Thus, being λ completely multiplicative,

we see that
∞

∑
d=1

d≡0(q)

λ(d)
d

=
λ(q)

q

∞

∑
d=1

λ(d)
d

= 0 for all q ∈ N, i.e. WS = 0 = CS.
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On the other hand, |1′S| = |λ| = 1 doesn’t satisfy Wintner’s criterion hypothesis.
More in general, if f ∈ A is such that f ′ is completely multiplicative (c.m.),

then

W f (q) = ∑
d≡0(q)

f ′(d)
d

=
f ′(q)

q

∞

∑
m=1

f ′(m)
m

=
f ′(q)

q
W f (1), ∀q ∈ N.

Consequently,
f ′ c.m., W f (1) = 0 =⇒ W f = 0

and also

f ′ c.m., W f (1) /= 0 and W f (q) = 0, ∀q > Q =⇒ f ′(q) = 0, ∀q > Q.

Furthermore, it is easily seen that (notice that here f ′ is not necessarily c.m.)

f ′ ≥ 0 and W f (q) = 0, ∀q > Q =⇒ f ′(q) = 0, ∀q > Q.

These properties suggest the following

Conjecture: If f ∈ A is such that W f (1) /= 0, then

W f (q) = 0, ∀q > Q =⇒ f ′(q) = 0, ∀q > Q.

In §4 it is shown how such a conjecture might replace the Delange hypothesis on the

series
∞

∑
d=1

2ω(d) f ′(d)/d within Proposition 2 in pursuing the Wintner-Delange formula

for the shifted convolution sums.

REMARK 10. Formula (5) reveals that if C| f ′|(1) = 0, i.e.

(6) ∑
d≤x

| f ′(d)| = o(x), as x→ ∞,

then C f (q) exists if and only if W f (q) does. Further, if this is the case, then
C f (q) = W f (q). From the proof of Wintner’s criterion it transpires that the absolute

convergence of
∞

∑
d=1

f ′(d)
d

implies (6), which alone however does not yield the exis-

tence of the Wintner coefficients; on the other hand, by taking f ′(d) = 1/ log(d +1) it
is easily seen that the converse of such an implication is not true. Moreover, by taking
f ′ as the Liouville function λ, it is plain that (6) does not hold, while the characteristic
function of square numbers 1S = λ∗1 = f ′ ∗1 = f , say, satisfies the hypotheses of the
next proposition, that is a result of Delange (see the theorem and remark 1.5 in [14]).

PROPOSITION 3. Let f ∈A and q∈N be such that ∑
n≤x

| f (n)| = O(x) and C f (d)

exists for all d|q. Then C f (q) = W f (q).
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In particular, by taking q = 1, this result yields that if ∑
n≤x

| f (n)| = O(x) and there exists

the mean value M ( f ) = C f (1), then

M ( f ) =
∞

∑
d=1

f ′(d)
d

.

3. Uniqueness for Ramanujan coefficients

Here we quote from [2] the next theorem, that provides with a kind of converse of
Lucht’s theorem (see©3 of Proposition 2).

THEOREM 1. Let f ∈ A be such that 〈 f 〉∗ /= /0.
©1 For any given g ∈ 〈 f 〉∗ the E-transform of f is

f ′ : d ∈ N→ f ′(d) = d
∞

∑
q=1

q≡0(d)

g(q)µ(q/d).

©2 If g ∈ 〈 f 〉∗ is such that

(7)
∞

∑
q=1

2ω(q)g(q) converges absolutely,

then g = W f .

Proof. ©1 We can exchange the sums in

∑
d|n

d
∞

∑
q=1

q≡0(d)

g(q)µ(q/d)

because g does not depend on n by hypothesis. Thus, from ©1 of Proposition 1 for
x≥ n we get that

∑
d|n

d ∑
q≤x

q≡0(d)

g(q)µ(q/d) = ∑
q≤x

g(q)cq(n).

As x→ ∞, it follows that

∑
d|n

d
∞

∑
q=1

q≡0(d)

g(q)µ(q/d) = R g(n) = f (n),

yielding that the E-transform of f is the claimed f ′.
©2 From©1 one has that

W f (q) =
∞

∑
d=1

d≡0(q)

f ′(d)
d

=
∞

∑
d=1

d≡0(q)

∞

∑
k=1

µ(k)g(dk) ∀q ∈ N.
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Now, by using the well-known property [24]

∑
k|n

µ(k) =
{

1 if n = 1,
0 otherwise,

for any q ∈ N we can write

g(q) =
∞

∑
n=1

g(qn)∑
k|n

µ(k),

that converges unconditionally because of (7). Indeed, since ω(qn) ≥ ω(n) yields
2ω(qn) ≥ 2ω(n), one has

∞

∑
n=1

|g(qn)|∑
k|n

µ2(k) =
∞

∑
n=1

2ω(n)|g(qn)|≤
∞

∑
n=1

2ω(qn) |g(qn)|

=
∞

∑
m=1

m≡0(q)

2ω(m) |g(m)|≤
∞

∑
m=1

2ω(m) |g(m)| .

Therefore, we can exchange the sums to get

g(q) =
∞

∑
n=1

g(qn)∑
k|n

µ(k) =
∞

∑
k=1

µ(k)
∞

∑
m=1

g(qmk) =
∞

∑
m=1

∞

∑
k=1

µ(k)g(qmk)

=
∞

∑
d=1

d≡0(q)

∞

∑
k=1

µ(k)g(dk) = W f (q).

The theorem is completely proved. ()

REMARK 11. Since any g∈ 〈 f 〉∗ determines the E-transform of f , the previous
theorem establishes the uniqueness of g modulo 〈0〉∗.
We refer to ©2 of the previous theorem as the Wintner-Delange uniqueness formula
and (7) is called the “Dual” Delange condition. In fact, from Theorem 1 it follows that
{g ∈ 〈 f 〉∗ : g satisfies (7)} is either the empty set or {W f }.

REMARK 12. While it is plain that 〈0〉∗∗ /= /0 (for 0∈ 〈0〉∗∗), it might be possible
that 〈 f 〉∗∗ = /0 for some f ∈ A . Indeed, recall that there is the possibility that the larger
set 〈 f 〉∗ might be empty because the (finite) R -expansions ensured by Hildebrand’s
theorem are not necessarily pure. The next theorem, quoted from a lemma of [11],
gives another positive answer to the uniqueness question posed in Remark 4. (First one
coming from Theorem 1.) In particular, it implies 〈0〉∗∗ = {0}.

THEOREM 2. For any f ∈ A , either 〈 f 〉∗∗ is the empty set or {C f }.

Proof. We have to show that if g ∈ 〈 f 〉∗∗, then

g(!) =
1

ϕ(!)
lim
x→∞

1
x ∑

h≤x
f (h)c!(h) ∀! ∈ N.
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Let ! ∈ N be fixed. Note that, from the uniform convergence of the R -expansion
f = R g, it follows that for every ε > 0 there exists Q = Q(ε,!) > ! such that

∣∣∣ ∑
q>Q

g(q)cq(h)
∣∣∣<

ε
d(!)

, ∀h ∈ N,

where d(!)de f= ∑t|! 1 is the number of positive divisors of !. Since the expansion f = R g
is also pure, this entails

1
x ∑

h≤x
f (h)c!(h) = ∑

q≤Q
g(q)

1
x ∑

h≤x
c!(h)cq(h)+

1
x ∑

h≤x
c!(h) ∑

q>Q
g(q)cq(h).

Recalling©4 of Proposition 1, from which in particular one has that

lim
x→∞

1
x ∑

h≤x
c!(h)2 = ϕ(!),

and applying |c!(h)|≤ (!,h) (see©2 of Proposition 1), we can write
∣∣∣∣

1
ϕ(!)

lim
x→∞

1
x ∑

h≤x
f (h)c!(h)− 1

ϕ(!) ∑
q≤Q

g(q) lim
x→∞

1
x ∑

h≤x
c!(h)cq(h)

∣∣∣∣ =

∣∣∣∣
1

ϕ(!)
lim
x→∞

1
x ∑

h≤x
f (h)c!(h)−g(!)

∣∣∣∣ ≤

ε
ϕ(!)d(!)

lim
x→∞

1
x ∑

h≤x
(!,h).

Therefore, the conclusion follows once it is proved that

lim
x→∞

1
x ∑

h≤x
(!,h) = ∑

d|!

ϕ(d)
d

.

To this end, we write

1
x ∑

h≤x
(!,h) =

1
x ∑

t|!
t ∑

h′≤ x
t

(h′, !t )=1

1 =
1
x ∑

t|!
t ∑

d| !
t

µ(d)
[ x

dt

]

= ∑
t|!

∑
d| !

t

µ(d)
d

+O
(

1
x ∑

t|!
td(!/t)

)

= ∑
t|!

ϕ(!/t)
!/t

+o(1) = ∑
d|!

ϕ(d)
d

+o(1).

The theorem is completely proved. ()
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REMARK 13. To emphasize the fact that the R -coefficients of f are uniquely
determined, we set

f̂
de f= C f ;

or also, in the hypotheses of Theorem 1,

f̂
de f= W f .

More generally, we write f̂
de f= g even if 〈 f 〉= g+ 〈0〉 or 〈 f 〉∗ = g+ 〈0〉∗.

The next theorem yields the uniqueness of the R -coefficients for pure and finite R -
expansions (see the following remark).

THEOREM 3. f ∈AQ⇔∃g∈ 〈 f 〉∗∩〈 f 〉# such that f =# R g has length at most
Q.

Proof. Let f ′ be the Q-truncated E-transform of f . By©3 of Proposition 1 we see that

f (n) = ∑
d≤Q
d|n

f ′(d) = ∑
d≤Q

f ′(d)
d ∑

q|d
cq(n) = ∑

q≤Q
W f (q)cq(n),

where

(8) W f (q)de f=






∑
d≤Q

d≡0(q)

f ′(d)
d

if q≤ Q,

0 otherwise,

is a Q-truncated Wintner coefficient, say. It is plain that W f ∈ 〈 f 〉∗ ∩〈 f 〉#.
Vice versa, let g ∈ 〈 f 〉∗ ∩〈 f 〉# be such that the length of the expansion f (n) =# R g(n)
is at most Q for all n ∈ N. By applying©1 of Proposition 1 we write

f (n) = ∑
q≤Q

g(q)cq(n) = ∑
d|n

d ∑
q≤Q

q≡0(d)

g(q)µ(q/d) = ∑
d≤Q
d|n

f ′(d),

where we have set

f ′(d)de f=






d ∑
q≤Q

q≡0(d)

g(q)µ(q/d) if d ≤ Q,

0 otherwise.

The theorem is completely proved. ()

REMARK 14. Theorems 2 and 3 imply that 〈 f 〉∗ ∩ 〈 f 〉# = {C f } = {W f } with
W f defined as in (8). In particular, note that

Q
2

< q≤ Q =⇒ f̂ (q) = W f (q) =
f ′(q)

q
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(for q > Q/2, the conditions d ≤ Q, q|d hold simultaneously if and only if d = q).
Also, see that if we assume the conjecture in Remark 9 for f ∈ A with W f (1) /= 0,
from Theorems 2 and 3 we get

W f (q) = 0 ∀q > Q =⇒ f ∈ AQ =⇒ f =# R f̂ ,

where it turns out that f̂ = C f = W f is given by (8).
Finally, we underline the fact that the above proof provides with an explicit method to
express a truncated divisor sum as a finite R -expansion, and vice versa.

4. Ramanujan expansions of shifted convolution sums

DEFINITION 4. The correlation (or shifted convolution sum) of f ,g ∈ A is

Cf ,g(N,a)de f= ∑
n≤N

f (n)g(n+a).

Since without loss of generality one can assume that f (N)g(N +a) /= 0, the number N
is the length of such a correlation. Here a ∈ N is the shift.

From (2) it follows that

(9) Cf ,g(N,a) = ∑
q

h(a,q)cq(a), ∀a ∈ N,

for some h(a,q) = h(a,q, f ,g,N) ∈ C. We refer to (9) as the shift R -expansion of
the correlation Cf ,g. On the other hand, denoting by f ′,g′ the E-transforms of f ,g,
respectively, we see that

(10) Cf ,g(N,a) = ∑
n≤N

∑
d|n

f ′(d) ∑
q|n+a

g′(q),

where observe that the conditions n≤ N and d|n yield d ≤ N in the second sum, while
n≤ N and q|n+a yield q≤ N +a in the third sum. In other words, within their corre-
lation of length N, the functions f and g can be replaced respectively by the truncated
divisor sums associated to f and g, of range respectively N and N +a, i.e.

fN (n)de f= ∑
d≤N
d|n

f ′(d), gN+a(n+a)de f= ∑
q≤N+a
q|n+a

g′(q).

These functions admit pure (w.r.t n and n + a, respectively) and finite R -expansions
because of Theorem 3 (see also Remark 14). However, by plugging such expansions
into (10) we can only get a finite expansion as

Cf ,g(N,a) = ∑
d≤N

∑
q≤N+a

f̂N (d)ĝN+a(q) ∑
n≤N

cd(n)cq(n+a).
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Evidently, the latter cannot be considered as a shift R -expansion of the form (9). On
the other hand, by combining©4 of Proposition 1 with the Wintner-Delange formula
of Proposition 2, the R -expansions of the above truncated divisor sums can help in
finding a pure and finite R -expansion, which well approximates Cf ,g(N,a), provided
that this correlation is fair and both functions f and g satisfy the Ramanujan Conjecture
(see [10], [11]), accordingly to the following definitions.

DEFINITION 5. The correlation Cf ,g(N,a) of f ,g ∈ A is fair if it depends on
a only because of the argument n+a of g.

DEFINITION 6. We say that f ∈ A satisfies the Ramanujan Conjecture (or
equivalently that f is essentially bounded) if f (n)2ε nε for any real number ε > 0. In
this case, we also write f≪1. We denote the set of the essentially bounded arithmetic
functions by Aε.

For example, the correlation Cf ,g(N,a) is not fair if the support of f or g depends on a
(see [11] for a specific example). In particular, note that the expression (10) is not fair
in that the support of g′ does depend on a. If f ,g ∈ Aε (consequently, also f ′,g′ ∈ Aε),
then somehow we can get rid of such a nuisance by writing

Cf ,g(N,a) = ∑
n≤N

∑
d|n

f ′(d) ∑
q≤N

q|n+a

g′(q)+ ∑
n≤N

∑
d|n

f ′(d) ∑
N<q≤N+a

q|n+a

g′(q)

= ∑
n≤N

∑
d|n

f ′(d) ∑
q≤N

q|n+a

g′(q)+ ∑
N<q≤N+a

g′(q) ∑
n≤N

n≡−a(q)

∑
d|n

f ′(d).

Since for q > N one has that #{n ≤ N : n ≡ −a (q)} ≤ 1, the second sum on the right
hand side is2 aNε max

N<q≤N+a
|g′(q)| max

n≤N
| f ′(n)|. In all, we have for f ,g ∈ Aε that

Cf ,g(N,a) = Cf ,gN
(N,a)+Oε(Nε(N +a)εa).

Thus, we are reduced to deal with the correlation of the truncated divisor sums fN ,gN
of the same range N. For this reason we’ll assume that g ∈ AN (and, concerning
Cf ,g(N,a), the hypothesis f ∈A is equivalent to f ∈AN). Using the finite R -expansion
of length at most N for g (see Theorem 3), namely g(m) = ∑q≤N ĝ(q)cq(m),

(11) Cf ,g(N,a) = ∑
q≤N

ĝ(q) ∑
n≤N

f (n)cq(n+a), ∀a ∈ N.

Note that Cf ,g(N,a) is fair, provided that neither ĝ nor f depends on a. By using©5 of
Proposition 1 we calculate its Carmichael coefficients (we set CC = CCf ,g for brevity):

CC(N,!) =
1

ϕ(!) ∑
q≤N

ĝ(q) ∑
n≤N

f (n) lim
x→∞

1
x ∑

a≤x
cq(n+a)c!(a)

=






ĝ(!)
ϕ(!) ∑

n≤N
f (n)c!(n) if !≤ N,

0 if ! > N.
(12)
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Assuming that the E-transform C′f ,g satisfies the Delange hypothesis (see Prop. 2), i.e.

(13) ∑
d

2ω(d)C′f ,g(N,d)
d

converges absolutely,

Proposition 2, Theorems 2 and 3 yield the so-called Ramanujan exact explicit formula
(REEF)

Cf ,g(N,a) = ∑
q≤N

CC(N,q)cq(a) = ∑
q≤N

(
ĝ(q)
ϕ(q) ∑

n≤N
f (n)cq(n)

)
cq(a), ∀a ∈ N.

Without having (13) at our disposal we can proceed as it follows. Let us write

Cf ,g(N,a) = ∑
d≤N
d|a

C′f ,g(N,d)+ ∑
d>N
d|a

C′f ,g(N,d) = ∑I(a)+∑II(a) , say,

where clearly ∑II(a) = 0, unless a > N. Since ∑I(a) is a truncated divisor sum, from
Theorem 3 we get

Cf ,g(N,a) = ∑
q≤N

WC(N,q)cq(a)+∑II(a)

with

WC(N,q)de f=





∑
h≤N

h≡0(q)

C′f ,g(N,h)
h

if q≤ N,

0 otherwise.

Therefore, calculating the Carmichael coefficients of

∑
q≤N

WC(N,q)cq(a) =
{

Cf ,g(N,a)−∑II(a) if a > N,
Cf ,g(N,a) if a≤ N,

from (12) it follows that (recall the discussion on the uniqueness in Remark 14)

WC(N,q) =
1

ϕ(q)
lim
x→∞

1
x ∑

m≤N
Cf ,g(N,m)cq(m)+

1
ϕ(q)

lim
x→∞

1
x ∑

N<m≤x

(
Cf ,g(N,m)− ∑

d>N
d|m

C′f ,g(N,d)
)

cq(m)

= CC(N,q)−L(N,q), ∀q ∈ N,

where

L(N,q) = L( f ,g,N,q)de f=
1

ϕ(q)
lim
x→∞

1
x ∑

N<m≤x
cq(m) ∑

d>N
d|m

C′f ,g(N,d), ∀q ∈ N.

In particular, CC(N,q) = L(N,q), ∀q > N, because WC(N,q) = 0, ∀q > N.
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Therefore, under the only hypothesis that the correlation Cf ,g is fair, we obtain

Cf ,g(N,a) = ∑
q≤N

(
CC(N,q)−L(N,q)

)
cq(a)+∑II(a)

= ∑
q≤N

(
ĝ(q)
ϕ(q) ∑

n≤N
f (n)cq(n)−L(N,q)

)
cq(a)+∑II(a), ∀a ∈ N,

where

∑II(a)de f=






∑
d>N
d|a

C′f ,g(N,d) if a > N,

0 if a≤ N.

Hence, the following theorem and corollary are proved.

THEOREM 4. If f ∈ A and g ∈ AN are such that Cf ,g(N,a) is fair, then

Cf ,g(N,a) = ∑
q≤N

(
ĝ(q)
ϕ(q) ∑

n≤N
f (n)cq(n)−L(N,q)

)
cq(a)+∑II(a),

where ∑II(a) is defined above,

L(N,q) = L( f ,g,N,q)de f=
1

ϕ(q)
lim
x→∞

1
x ∑

N<m≤x
cq(m) ∑

d>N
d|m

C′f ,g(N,d),

and C′f ,g is the E-transform of Cf ,g.

In particular, if
∞

∑
d=1

2ω(d)

d
|C′f ,g(N,d)| converges, then for all a ∈ N one has the REEF:

Cf ,g(N,a) = ∑
q≤N

Ĉf ,g(N,q)cq(a), with Ĉf ,g(N,q) =
ĝ(q)
ϕ(q) ∑

n≤N
f (n)cq(n).

COROLLARY 1. Let f ,g ∈ Aε. If Cf ,gN
(N,a) is fair and such that the series

∞

∑
d=1

2ω(d)

d
|C′f ,gN

(N,d)| converges, then for all a ∈ N one has

Cf ,g(N,a) = ∑
q≤N

(
ĝN (q)
ϕ(q) ∑

n≤N
f (n)cq(n)

)
cq(a)+Oε(Nε(N +a)εa).

REMARK 15. Given f ∈A and g∈AN , assuming that
∞

∑
d=1

C′f ,g(N,d)
d

converges

absolutely, from Wintner’s criterion it follows that Cf ,g(N,a) has both Carmichael and
Wintner coefficients with CC(N,q) = WC(N,q) for all q ∈ N. In particular, (12) yields
that WC(N,q) = 0 for all q > N. From this, if we further assume the conjecture formu-
lated in Remark 9, we get that C′f ,g(N,d) = 0 for all d > N.
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Besides the consequence that the above series reduces to the finite sum of length at
most N, such a conjecture yields the REEF without the Delange hypothesis (13). In
other words, such a conjecture is an alternative way to get the REEF of Theorem 4.

REMARK 16. Assume that f ∈ A and g ∈ AQ, with Q ≤ N, are such that
Cf ,g(N,a) is fair. From (11) it follows that Cf ,g(N,a) is periodic with respect to a,
which implies that it is a bounded arithmetic function of a. Together with (12), this
reveals that Cf ,g(N,a) satisfies the hypotheses of Proposition 3, so that its Carmichael
coefficients coincide with its Wintner ones.

Now, let us quote here the main result of [11].

THEOREM 5. Let f ∈Aε and g ∈AN ∩Aε be such that Cf ,g(N,a) is fair for all
a∈N and admits the shift R -expansion (9). The following propositions are equivalent:

©1 The shift R -expansion (9) is completely uniform, i.e. it is pure, with h(a,q) = h(q),
and converges uniformly with respect to a.
©2 The coefficients of (9) are the Carmichael coefficients of Cf ,g(N,a), i.e.

h(a,q) = h(q) =
1

ϕ(q)
lim
x→∞

1
x ∑

n≤x
Cf ,g(N,n)cq(n).

©3 The coefficients of (9) are the REEF coefficients of Cf ,g(N,a), i.e.

h(a,q) = h(q) = Ĉ f ,g(N,q) =
ĝ(q)
ϕ(q) ∑

n≤N
f (n)cq(n).

©4 The shift R -expansion (9) is finite and pure.

We underline the latter equivalence between the condition 〈Cf ,g〉∗ ∩ 〈Cf ,g〉# /= /0 and
the REEF. It highlights the fundamental role of Theorem 3 in this new approach to the
R -expansions of the correlations. Moreover, Corollary 1 has to be compared to the
following result that can be proved in a similar fashion of Corollary 1 in [11].

THEOREM 6. Let g ∈ Aε and f ∈ AD∩Aε, with D < N1−δ for some δ ∈ (0,1).

If Cf ,gN
(N,a) is fair and such that

∞

∑
d=1

2ω(d)

d
|C′f ,gN

(N,d)| converges, then uniformly

for all a ∈ N one has

Cf ,g(N,a) = S f ,g(a)N +O
(
N1−δ)+Oε

(
Nε (N +a)ε a

)
,

where S f ,g is the so-called singular sum defined as

S f ,g(a)de f= ∑
q≤N

f̂ (q)ĝ(q)cq(a), ∀a ∈ N.

The elements of AD∩Aε are known as sieve functions (of range D). We refer the reader
to [4]-[9] for further deepenings about such a class of functions.
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We conclude the present section by quoting a result from [1] on the convolution sum
of the von Mangoldt function Λ. Indeed, in [1] Corollary 1 is applied by taking
f = g = Λ, that clearly belongs to Aε. From the well-known property [24]

Λ(n) =−∑
d|n

µ(d) logd,

it follows that its E-transform is Λ′(n) = −µ(n) logn. Further, for the N-truncated
divisor sum of Λ we have (see Theorem 3)

ΛN (n) =− ∑
d≤N
d|n

µ(d) logd = ∑
q≤N

Λ̂N (q)cq(n),

with

Λ̂N (q)de f= − ∑
d≤N

d≡0(q)

µ(d) logd
d

2 L2

q
,

where we have set L
de f= logN. Therefore, since CΛ,ΛN (N,a) is fair, by assuming that

∞

∑
d=1

2ω(d)

d
C′Λ,ΛN

(N,d) converges absolutely, Corollary 1 yields

CΛ,Λ(N,a) = ∑
q≤N

(
Λ̂N (q)
ϕ(q) ∑

n≤N
Λ(n)cq(n)

)
cq(a)+Oε(Nε(N +a)εa).

The result established in [1] shows that the Delange hypotesis for CΛ,ΛN
(N,2k) yields

the Hardy-Littlewood conjecture for the 2k-twin primes [17]. Here it is stated as a
further corollary of Theorem 4.

COROLLARY 2. Let k ∈ N be such that 0 < k < N1−δ, with δ ∈ (0,1/2) fixed.

If
∞

∑
d=1

2ω(d)

d
|C′Λ,ΛN

(N,d)| converges, then

CΛ,Λ(N,2k) = SΛ,Λ(2k)N +O(Ne−c
√

logN),

where c > 0 is an absolute constant and

SΛ,Λ(2k)de f=
∞

∑
q=1

µ2(q)
ϕ2(q)

cq(2k) = 2∏
p|k

(
1+

1
p−1

)
∏

(p,2k)=1

(
1− 1

(p−1)2

)
.

5. Ramanujan expansions and smooth numbers

In the present section we resume some results of [3], where it is showed that all es-
sentially bounded functions, with E-transform supported on smooth numbers, admit a
unique R -expansion with coefficients satisfying the “Dual” Delange condition (7).
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DEFINITION 7. Let Q≥ 2 be an integer.

The set of the Q-smooth positive integers is S = S(Q)de f= {n∈N : p|n⇒ p≤Q}∪{1}.

The set of the Q-sifted positive integers is T = T (Q)de f= {n ∈ N : p≤ Q⇒ p / |n}.

REMARK 17. Note that S ∩T = {1} and (n,m) = 1 for all n ∈ S ,m ∈ T . Fur-
ther, any n∈ S can be written as n = pv1

1 · · · pvr
r , for some integers v j ≥ 0, j = 1, . . . ,r =

π(Q), where π(Q) = #{p≤Q : p prime} and 2 = p1, p2, . . . , pr are all the consecutive
prime numbers ≤ Q. Thus, for any real number x > 1 and for all ε > 0 one has

#S ∩ [1,x]≤ ∑
n∈S
n≤x

xε

nε 2 xε
∞

∑
v1=0

· · ·
∞

∑
vr=0

1
pεv1

1
· · · 1

pεvr
r

= xε ∏
p≤Q

1
1− p−ε 2ε,Q xε.

Similarly, if ε ∈ (0,1), we see that

∑
m∈S

1
m1−ε 2ε,Q 1.

Moreover, from the Legendre formula applied to #T ∩ [1,x] = #{n≤ x : (n,PQ) = 1},
where PQ = ∏

p≤Q
p, it follows that

#T ∩ [1,x] = ∑
d|PQ

µ(d)
[ x

d

]
= x ∑

d|PQ

µ(d)
d

+O
(

∑
d|PQ

|µ(d)|
)

= x ∏
p≤Q

(
1− 1

p

)
+OQ(1).

DEFINITION 8. Let Q ≥ 2 be an integer. The Q-smooth restriction of f ∈ A is
the arithmetic function defined as

fS (n)de f= ∑
d|n

d∈S

f ′(d), ∀n ∈ N,

where f ′ is the E-trasform of f .

REMARK 18. It is plain that fS is the inverse E-trasform of f ′ ·1S , where 1S is
the characteristic function of S . Also note that fS (n) = f (n) for all n ∈ S . Further, one
has

fS (n) = ∑
t∈Sn

f (t), where Sn
de f= {t ∈ S : t|n and n/t ∈ T }.

Indeed, this is trivially true for n = 1.
If n≥ 2, recall that f ′ = f ∗µ and use the (complete) multiplicativity of 1S , to get it:

fS (n) = ∑
d|n

d∈S

∑
t|d

f (t)µ
(

d
t

)
= ∑

t∈S
t|n

f (t) ∑
k∈S
k| n

t

µ(k)

= ∑
t∈S
t|n

f (t)∑
k| n

t

µ(k)1S (k) = ∑
t∈S
t|n

f (t)∏
p| n

t

(
1−1S (p)

)
= ∑

t∈S
t|n

f (t)1T (n/t).
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LEMMA 1. Given any integer Q ≥ 2, let us consider the set S = S(Q) of the
Q-smooth positive integers. For any f ∈ Aε, with f ′ = f ∗µ, one has

©1 ∑
t∈S

| f (t)cq(t)|
t

2ε,q,Q 1 for all q ∈ N

©2 ∑
t∈S

| f ′(t)|
t
2ε,Q 1 and ∑

t∈S

2ω(t)| f ′(t)|
t

2ε,Q 1.

Proof. Without loss of generality, we can assume that ε ∈ (0,1).
©1 Using©2 of Prop. 1 and the inequality ∑

m∈S
mε−12ε,Q 1 (see Remark 17), we get

∑
t∈S

| f (t)cq(t)|
t

2ε ∑
t∈S

(q, t)tε−12ε ∑
d∈S
d|q

d ∑
t∈S

t≡0(d)

tε−12ε ∑
d∈S
d|q

dε ∑
m∈S

mε−12ε,q,Q 1.

©2 Recalling that f ′ ∈ Aε and arguing as before, we see that

∑
t∈S

| f ′(t)|
t
2ε ∑

t∈S
tε−12ε,Q 1.

Since 2ω(t) ≤ 2π(Q) for all t ∈ S , the second inequality follows from the first one. ()

THEOREM 7. Let Q ≥ 2 be an integer. For any f ∈ Aε, let us consider the Q-
smooth restriction fS , where S = S(Q) is the set of the Q-smooth positive integers. The
Carmichael coefficients of fS and the Wintner ones coincide, both given by

(14) f̂S (q) =






f̃ (q,S)
ϕ(q) ∏

p≤Q

(
1− 1

p

)
= ∑

d∈S
d≡0(q)

f ′(d)
d

if q ∈ S ,

0 otherwise,

where we set
f̃ (q,S)de f= ∑

t∈S

f (t)cq(t)
t

.

Further, one has f̂S ∈ 〈 fS 〉, i.e.

(15) fS (a) = ∑
q∈S

f̂S (q)cq(a), ∀a ∈ N,

and f̂S satisfies the “Dual” Delange condition (7).

Proof. Without loss of generality, we can assume that ε ∈ (0,1/2). First, note that
f̃ (q,S) is well-defined for all q ∈ N because of©1 in Lemma 1. Then, recalling that
f ′ ·1S is the E-trasform of fS , the second inequality in©2 of Lemma 1 implies that the
hypothesis of the Wintner-Delange formula holds for fS .
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Therefore, it follows from©2 of Proposition 2 that Carmichael coefficients of fS equal
Wintner ones and they are R -coefficients for fS . Being such coefficients uniquely
determined (see the next remark), we denote the qth coefficient by f̂S (q). In particular,
since it is plain that the conditions d ∈ S and q|d imply that q ∈ S , the qth Wintner
coefficient of fS is

f̂S (q) =






∑
d≡0(q)

( f ′ ·1S )(d)
d

= ∑
d∈S

d≡0(q)

f ′(d)
d

if q ∈ S ,

0 otherwise.

Consequently, recalling that ∑m∈S mε−12ε,Q 1 (see Remark 17), we see that

∞

∑
q=1

2ω(q)| f̂S (q)| = ∑
q∈S

2ω(q)
∣∣∣∣ ∑

d∈S
d≡0(q)

f ′(d)
d

∣∣∣∣

≤ 2π(Q) ∑
q∈S

∑
d∈S

d≡0(q)

| f ′(d)|
d
2ε,Q ∑

q∈S
qε−1 ∑

k∈S
kε−12ε,Q 1,

that is f̂S satisfies (7). Thus, it remains to prove that for every q∈ S the qth Carmichael
coefficient of fS is

1
ϕ(q) ∏

p≤Q

(
1− 1

p

)
∑
t∈S

f (t)cq(t)
t

.

From Remark 18, fS (a) = ∑
t∈Sa

f (t) and Sa
de f= {t ∈ S : t|a and a/t ∈ T }, whence

∑
a≤x

fS (a)cq(a) = ∑
t∈S
t≤x

f (t) ∑
k∈T

k≤x/t

cq(tk) = ∑
t∈S
t≤x

f (t)cq(t)#T ∩ [1,x/t],

where we exchange sums and cq(tk) = cq(t) follows from the conditions q ∈ S , k ∈ T ,
which yield (q,k) = 1. Now, since (see Remark 17)

#T ∩ [1,x/t] =
x
t ∏

p≤Q

(
1− 1

p

)
+OQ(1),

for every q ∈ S the qth Carmichael coefficient of fS is given by

C fS (q) =
1

ϕ(q)
lim
x→∞

1
x ∑

a≤x
fS (a)cq(a)

=
1

ϕ(q) ∏
p≤Q

(
1− 1

p

)
∑
t∈S

f (t)cq(t)
t

+
1

ϕ(q)
lim
x→∞ ∑

t∈S
t≤x

f (t)cq(t)OQ(1/x).
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The conclusion follows once we show that the latter limit is 0. Recalling that f ∈ Aε,
#S ∩ [1,x]2ε,Q xε (see Remark 17), and applying©2 of Proposition 1, we see that

∑
t∈S
t≤x

f (t)cq(t)OQ(1/x)2ε,Q xε−1 ∑
t∈S
t≤x

(q, t)2ε,Q xε−1 ∑
d|q

d#S ∩ [1,x/d]2ε,q,Q x2ε−1.

The theorem is completely proved. ()

REMARK 19. The previous theorem and Theorem 1 yield that if g ∈ 〈 fS 〉∗ sat-
isfies the “Dual” Delange condition (7), then g = f̂S . In other words, the R -coefficients
of a smooth restriction of an essentially bounded function are uniquely determined.
But even more important, since fS (a) = f (a) for all a ∈ S , from (15) we obtain the
R -expansion for the restriction of f to S :

(16) f (a) =
∞

∑
q=1

f̂S (q)cq(a), ∀a ∈ S ,

with the coefficients f̂S (q) defined by (14). In particular, given f ∈ A and g ∈ AQ,
with Q≤N, a fair correlation Cf ,g(N,a) for all a∈N, being bounded (see Remark 16),
satisfies the hypotheses of the previous theorem. Thus, from (16) we get the unique
R -expansion

Cf ,g(N,a) = ∑
q∈S

∑
d∈S

d≡0(q)

C′f ,g(N,d)
d

cq(a)

= ∏
p≤Q

(
1− 1

p

)
∑
q∈S

cq(a)
ϕ(q) ∑

t∈S

Cf ,g(N, t)cq(t)
t

, ∀a ∈ S .

(It is easily see that such an expansion holds also if f ,g ∈ Aε.) On the other hand, in
view of Theorem 4, the conditions f ∈ A , g ∈ AQ, with Q≤ N, and Cf ,g(N,a) fair, do
not suffice to get the REEF for such a correlation on the Q-smooth positive integers,
i.e.

Cf ,g(N,a) = ∑
!≤Q

(
ĝ(!)
ϕ(!) ∑

n≤N
f (n)c!(n)

)
c!(a), ∀a ∈ S .

In [3] it is provided the following counterexample. For a fixed q0 ∈ [3,Q]∩N, let us take
n0 ∈ [1,N]∩N with n0 ≡−1(q0) and define f ,g∈A as f (n) = 1{n0}(n), g(n) = cq0(n),
∀n ∈ N.
It is easily seen that g ∈ AQ and Cf ,g(N,a) is fair. However, it turns out that

Cf ,g(N,1) = ϕ(q0) /=
µ(q0)2

ϕ(q0)
= ∑

!≤Q

(
ĝ(!)
ϕ(!) ∑

n≤N
f (n)c!(n)

)
c!(a).
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CONTINUED FRACTIONS AND FACTORING

Abstract. Legendre found that the continued fraction expansion of
√

N having odd period
leads directly to an explicit representation of N as the sum of two squares. Similarly, it is
shown here that the continued fraction expansion of

√
N having even period directly pro-

duces a factor of a composite N. Shanks’ infrastructural method is then revisited, and some
consequences of its application to factorization by means of the continued fraction expansion
of
√

N are derived.

Mathematics Subject Classification (2010): 11A55, 11A51

1. Introduction

Continued fractions have always held great fascination, for both aesthetic reasons and
practical purposes. Among the many clever properties of periodic continued fractions,
Legendre found how to obtain the representation of an integer N as the sum of two
squares, in his own words, "sans aucun tâtonnement" from the continued fraction ex-
pansion of

√
N when the period is odd [11]. In particular, this property holds for any

prime p congruent 1 modulo 4, [11, 16]. As a kind of counterpart to Legendre’s finding,
this paper shows how to obtain a factor of a composite N directly from the continued
fraction expansion of

√
N when the period is even. In particular, this is certainly possi-

ble when both prime factors of N are congruent 3 modulo 4.
Based on this result, derived from peculiar properties of continued fraction convergents,
and on an adaptation of Shanks’ infrastructural machinery, a factoring algorithm is pro-
posed whose complexity depends on the accuracy of the evaluation of certain integrals
of Dirichlet’s. The paper is organized as follows. Section 2 summarizes the properties
of the continued fraction expansion of

√
N. In Section 3, some new properties of the

convergents are proved, and Shanks’ infrastructural method is revisited and applied to
a sequence of quadratic forms generated from the convergent of the continued fraction
expansion of

√
N. Section 4 discusses the factorization of composite numbers N when

the period of the continued fraction expansion of
√

N is even. Lastly, Section 5 briefly
reports some conclusions.

2. Preliminaries

A regular continued fraction is an expression of the form

(1) a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

83
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where a0, a1, a2, . . . ,ai, . . . is a sequence, possibly infinite, of positive integers. A
convergent of a continued fraction is a sequence of fractions Am

Bm
, each of which is

obtained by truncating the continued fraction at the m-th term. The fraction Am
Bm

is
called the m-th convergent [5, 8, 12]. The first few initial terms of the convergent of (1)
are

A0

B0
=

a0

1
,

A1

B1
=

a0a1 +1
a1

,
A2

B2
=

a0a1a2 +a0 +a2

a1a2 +1
, . . . .

Numerators and denominators of the m-th convergent satisfy the second-order recur-
rences

(2)
{

Am = amAm−1 +Am−2 , A0 = a0, A1 = a0a1 +1
Bm = amBm−1 +Bm−2 , B0 = 1, B1 = a1

, ∀ m≥ 2;

further, we have [5, p.85] the relationships

(3) AmBm−1−Am−1Bm = (−1)m−1

(4) AmBm−2−Am−2Bm = (−1)m−2am .

Equation (3) shows that numerator and denominator of the m-th convergent are rela-
tively prime.
A continued fraction is said to be definitively periodic, with period τ, if, starting from
a finite no, a fixed pattern a′1, a′2, . . . ,a

′
τ repeats indefinitely. Lagrange showed that

any definitively periodic continued fraction represents a positive number of the form
a + b

√
N, a,b ∈ Q, i.e. an element of F = Q(

√
N), and conversely that any such pos-

itive number is represented by a definitively periodic continued fraction [5, 16]. The
maximal order of F is denoted OF. Let G(F/Q) = {ι,σ} be the Galois group of F over
Q, where ι denotes the group identity, and the action of the automorphism σ, called
conjugation, is defined as σ(a + b

√
N) = a− b

√
N. The field norm NF(a) of a ∈ F is

defined to be NF(a) = aσ(a).
In the continued fraction expansion of

√
N, the period of length τ begins immedi-

ately after the first term a0, and consists of a palindromic part formed by τ− 1 terms
a1,a2, . . . ,a2,a1, followed by 2a0. Periodic continued fractions of this sort are con-
ventionally written in the form

(5)
√

N =
[
a0,a1,a2, . . . ,a2,a1,2a0

]
,

where the over-lined part is the period. Note that the period of the irrational a0+
√

N
N−a2

0
starts immediately without anti-period; in this case, the continued fraction is called
purely periodic and is denoted

[
a1,a2, . . . ,a2,a1,2a0

]
.

Carr’s book [2, p.70-71] gives a good collection of properties of the continued fraction
expansion of

√
N, which are summarized in the following, with the addition of some

properties taken from [5, 16, 13]:
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1. Let cn and rn be the elements of two sequences of positive integers defined by
the relation √

N + cn

rn
= an+1 +

rn+1√
N + cn+1

with c0 =
⌊√

N
⌋
, and r0 = N−a2

0; the elements of the sequence a1,a2, . . . ,an . . .
are thus obtained as the integer parts of the left-side fraction

(6) an+1 =
⌊√

N + cn

rn

⌋
.

2. Let a0 = %
√

N& be initially computed, and set c0 = a0, r0 = N − a2
0, then se-

quences {cn}n≥0 and {rn}n≥0 are produced by the recursions
(7)

am+1 =
⌊

a0 + cm

rm

⌋
, cm+1 = am+1rm− cm , rm+1 =

N− c2
m+1

rm
.

These recursive equations, together with (6), allow us to compute the sequence
{am}m≥1 using rational arithmetical operations; however, the iterations may be
stopped when am = 2a0, having completed a period.

3. The n-th convergent to
√

N can be recursively computed as

(8)
An

Bn
=

anAn−1 +An−2

anBn−1 +Bn−2
n≥ 1 ,

with initial conditions A−1 = 1, B−1 = 0, A0 = a0, and B0 = 1.

4. The sequence of ratios An
Bn

assumes the limit value
√

N as n goes to infinity, due
to the inequality ∣∣∣∣

An

Bn
−
√

N
∣∣∣∣≤

1
BnBn+1

,

since An and Bn go to infinity along with n. Furthermore, An
Bn

<
√

N, if n is even,
and An

Bn
>
√

N if n is odd [8, p.132]. Therefore, any convergent of even index is
smaller than any convergent of odd index.

5. The true value of
√

N is the value which (8) becomes when the "approximated"
quotient an, as defined in (6), is substituted with the complete quotient

√
N+cn−1
rn−1

.
This gives

√
N =

(
√

N + cn−1)An−1 + rn−1An−2

(
√

N + cn−1)Bn−1 + rn−1Bn−2
.

6. The value c0 = a0 is the greatest value that cn may assume. No an or rn can be
greater than 2a0.
If rn = 1 then an+1 = a0. For all n greater than 0, we have a0− cn < rn.
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7. The first complete quotient that is repeated is
√

N+c0
r0

, and a1, r0, and c0 com-
mence each cycle of repeated terms.

8. Through the first period (or cycle) of length τ, the elements aτ− j, rτ− j−2, and
cτ− j−1 are respectively equal to a j, r j, and c j.

9. The period length cannot be greater than 2a2
0. This bound is very loose and was

tightened by Kraitchik [17, p.95], who showed that τ is upper bounded by

(9) 0.72
√

N lnN N > 7 .

However, the period length has irregular behavior as a function of N, because it
may assume any value from 1, when N = M2 + 1, to values close to the order
O(
√

N lnN) [16].

10. The element cm = Am +Bm
√

N ∈OF is associated to the m-th convergent.

Numerators and denominators of the convergents satisfy interesting relations [12, p.92-
95]
(10)




A0Aτ−1 +Aτ−2−NBτ−1 = 0
A1Aτ−2 +A0Aτ−3−N(B1Bτ−2 +B0Bτ−3) = 0
A jAτ− j−1 +A j−1Aτ− j−2−N(B jBτ− j−1 +B j−1Bτ− j−2) = 0 3≤ j ≤ τ−3 .

Besides these properties, the following equations, [16, p.329-332], are used in the
proofs:

(11)
{

Aτ = 2a0Aτ−1 +Aτ−2
Bτ = 2a0Bτ−1 +Bτ−2

(12)






AτBτ−1−Aτ−1Bτ = (−1)τ−1

Aτ−1Bτ−2−Aτ−2Bτ−1 = (−1)τ−2

AτBτ−2−Aτ−2Bτ = 2a0(−1)τ

(13)
{

Aτ−2 =−a0Aτ−1 +NBτ−1
Bτ−2 = Aτ−1−a0Bτ−1

(14)
{

Aτ = a0Aτ−1 +NBτ−1
Bτ = Aτ−1 +a0Bτ−1

REMARK 1. The smallest positive solution of Pell’s equation x2−Ny2 = (±1)
is cτ−1, whenever a solution exists. If {1,

√
N} is an integral basis of F, then cτ−1

coincides with the fundamental positive unit ε0 of F. If {1, 1+
√

N
2 } is an integral basis

of F, then cτ−1 may be either ε0 or ε3
0. An easy way to check whether cτ−1 = ε3

0 is to
solve in Q the equation (x+y

√
N)3 = Aτ−1 +Bτ−1

√
N, which is equivalent to verifying
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whether some solution of the following Diophantine equation is a rational number with
2 as denominator

64x9−48Aτ−1x6 +(27NB2
τ−1−15A2

τ−1)x
3−A3

τ−1 = 0 .

If a rational solution xo of this equation exists, the corresponding yo can be computed

as yo =
√

x2
o−1
N .

The following proposition describes how to move from one period to another.

PROPOSITION 1. The sequence {cm}m≥0 satisfies the relation

(15) cm+kτ = cmck
τ−1 ∀ m,k ∈ N .

Proof. The two dependencies, with respect to m and k, are disposed of separately.
The claimed equality is trivial for m = k = 0, and fixing k = 1, equation (14) allows
us to write cτ = a0cτ−1 +

√
Ncτ−1 = (a0 +

√
N)cτ−1 = (A0 +B0

√
N)cτ−1. Then, by the

recurrences (2) and the periodicity of the ais, we can write

cτ+1 = a1cτ + cτ−1 = a1(A0 +B0
√

N)cτ−1 + cτ−1 = c1cτ−1 .

Clearly, we can iterate by using the recurrences (2) and the symmetry of the ais to
obtain the relation cτ+m = cmcτ−1, which shows that multiplication by cτ−1 is equivalent
to a translation by τ. The conclusion is immediate by iterating on k. ()

3. Convergents and quadratic forms

Let ∆m = A2
m − NB2

m denote the field norm of cm = Am +
√

NBm ∈ OF. Several
properties of convergents are better described considering, besides the sequence ∆ =
{∆m}m≥0, a second sequence Ω = {Ωm = AmAm−1−NBmBm−1}m≥1. Using (3), the
following relation can be shown

(16) Ω2
m+1−∆m∆m+1 = N ∀m≥ 0 .

The elements of the sequences ∆ and Ω satisfy the recurrent relations

(17)
{

∆m+1 = a2
m+1∆m +2am+1Ωm +∆m−1

Ωm+1 = Ωm +am+1∆m
m≥ 1

with initial conditions ∆0 = a2
0−N, ∆1 = (1+a0a1)2−Na2

1 and Ω1 = (1+a0a1)a0−
Na1. Using (17), it is immediate to see that cm+1 = |Ωm| and rm+1 = |∆m|.
Introducing the matrix

(18) T (am) =




a2

m am 1
2am 1 0

1 0 0



 ,
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and defining the column vector Λm = [∆m,2Ωm,∆m−1]T , equations (17) can be written
as

(19) Λm+1 = T (am+1)Λm ∀ m≥ 1 .

Iterating this relation, we have

(20) Λm+n = T (am+n)T (am+n−1) · · ·T (am+2)T (am+1)Λm = T(m,n)Λm ∀ m,n≥ 1 ,

where T(m,n) = ∏m+n
j=m+1 T (a j) is a matrix that only depends on the sequence of coeffi-

cients at . Furthermore, from (16) we may derive the relation

Ω2
m+1−Ω2

m = ∆m(∆m+1−∆m−1) ∀ m≥ 1,

which allows us to write equation (17) as

(21)
{

∆m+1 = ∆m−1 +am+1(Ωm+1 +Ωm)
Ωm+1 = Ωm +am+1∆m

∀ m≥ 1 .

DEFINITION 1. Let ϒ be the sequence of quadratic forms fm(x,y) = ∆mx2 +
2Ωmxy+∆m−1y2, m≥ 1, defined by means of the sequences ∆ and Ω.

Note that it may sometimes be convenient to denote a quadratic form simply with the
triple of coefficients, i.e. the 3-dimensional vector Λm; further, due to equation (16),
all quadratic forms in ϒ have the same discriminant 4N.

REMARK 2. The absolute values of ∆m and Ωm are bounded as

|∆m| < 2
1

am+1

√
N ≤ 2

√
N , |Ωm| <

√
N ∀ m≥ 1 .

The bound 2
√

N for ∆m is well known, [8, Theorem 171, p.140], and can be slightly
tightened considering the following chain of inequalities

|A2
m−NB2

m| = B2
m

∣∣∣∣
Am

Bm
−
√

N
∣∣∣∣(

Am

Bm
+
√

N)≤ Bm

Bm+1

∣∣∣∣
Am

Bm
−
√

N +2
√

N
∣∣∣∣

≤ Bm

Bm+1

∣∣∣∣
Am

Bm
−
√

N
∣∣∣∣+2
√

N
Bm

Bm+1
≤ 1

B2
m+1

+2
Bm

am+1Bm +Bm−1

√
N

= 2
1

am+1

√
N +

1
B2

m+1
−2
√

N
Bm−1

am+1(am+1Bm +Bm−1)
< 2

1
am+1

√
N .

The bound for |Ωm| is an immediate consequence of equation (16), we have ∆m∆m+1 <
0 since the signs in the sequence ∆ alternate; consequently

Ω2
m = N +∆m∆m+1 < N ,

thus taking the positive square root of both sides, the inequality |Ωm|<
√

N is obtained.
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3.1. Periodicity and Symmetry

The sequences ∆ and Ω are periodic in the same way as the sequence of coefficients
am, although their periods are even, and may be τ or 2τ depending on whether τ is even
or odd. Further, within a period, there exist interesting symmetries.

THEOREM 1 (Periodicity of ∆). Starting with m = 1, the sequence ∆ =
{∆m}m≥0 is periodic with period τ or 2τ depending on whether τ is even or odd.
The elements of the first block {∆m}τ

m=0 ⊂ ∆ satisfy the symmetry relation ∆m =
(−1)τ∆τ−m−2, ∀ 0≤ m≤ τ−2.

Proof. The period of the sequence ∆ is τ or 2τ, as a consequence of equation (15),
because the norm of Aτ−1 +

√
NBτ−1 is (−1)τ.

The symmetry of the sequence ∆ within the τ elements of the first period follows from
the relations

(22)
{

Aτ−m−2 = (−1)m−1Aτ−1Am +(−1)mNBτ−1Bm
Bτ−m−2 = (−1)mAτ−1Bm +(−1)m−1Bτ−1Am

, 0≤ m≤ τ−2 ,

which are proved using the recurrences (2) together with (13) and (14) [16, p.329-330];
the transformation defined by (22) is identified by the matrix

(23) Mτ−1 =
[
−Aτ−1 NBτ−1
−Bτ−1 Aτ−1

]
.

We have
{

A2
τ−m−2−NB2

τ−m−2 = (Aτ−1Am−NBτ−1Bm)2−N(−Aτ−1Bm +Bτ−1Am)2

= (A2
m−NB2

m)(A2
τ−1−NB2

τ−1) = (−1)τ(A2
m−NB2

m)

that is ∆τ−m−2 = (−1)τ∆m. Actually, equation (22) can be written in the form

(24) Aτ−m−2 +
√

NBτ−m−2 = (−1)m−1(Aτ−1 +
√

NBτ−1)(Am−
√

NBm)

or more compactly as cτ−m−2 = (−1)m−1cτ−1σ(cm). ()

THEOREM 2 (Periodicity of Ω). The sequence Ω = {Ωm}m≥1 is periodic of
period τ or 2τ depending on whether τ is even or odd. The elements of the first block
{Ωm}τ

m=1 ⊂Ω satisfy the symmetry relation
Ωτ−m−1 = (−1)τ+1Ωm, ∀ m≤ τ−2.

Proof. The periodicity of the sequence Ω follows from the property expressed by equa-
tion (15), noting that

Ω j =
1
2

(
(A j +

√
NB j)((A j−1−

√
NB j−1)+(A j−

√
NB j)((A j−1 +

√
NB j−1)

)
.

The symmetry property of the sequence Ω within a period follows from (22) in the
same way as does that of the sequence ∆; we have

Aτ−1− jA(τ−1)− j−1−NBτ−1− jB(τ−1)− j−1 = −(Aτ−1A j−NBτ−1B j)(Aτ−1A j−1−NBτ−1B j−1)
+N(Aτ−1B j−Bτ−1A j)(Aτ−1B j−1−Bτ−1A j−1)

= −(A2
τ−1−NB2

τ−1)(A jA j−1−NB jB j−1)

that is, Ωτ− j−1 = (−1)τ+1Ω j. ()
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The two quadratic forms fn(x,y) = ∆nx2 + 2Ωnxy + ∆n−1y2 and fτ−1−n(x,y) =
∆n−1x2− 2Ωnxy + ∆ny2 are associated respectively to the positions n and τ− 1− n,
as a consequence of the symmetries of the sequences ∆ and Ω shown by Theorems
1 and 2, within the first block of length τ in ϒ. It should be noted that fm(x,y) and
fτ−1−m(x,y) are improperly equivalent.

Key matrix. Clearly, the column vectors Λm and Λτ−m−1 are transformed one into
the other by an involutory matrix J of determinant 1




∆m−1
−2Ωm

∆m



=




0 0 1
0 −1 0
1 0 0








∆m

2Ωm
∆m−1



 .

Using the matrices T (an) and equation (20), and applying to Λm the sequence of ma-
trices T (am+1), T (am+2), . . ., T (aτ−1−m) in reverse order, we obtain Λτ−1−m

(25) Λτ−1−m = T (aτ−1−m) · · ·T (am+1)Λm ⇒ Λm = JT (aτ−1−m) · · ·T (am+1)Λm .

Assuming τ is even, this equation implies that Λm is an eigenvector of eigenvalue 1 of
the matrix

Em = JT (aτ−1−m) · · ·T (am+1)= JT (am+1)T (am) · · ·T (a τ
2−1)T (a τ

2
)T (a τ

2 +1) · · ·T (am+1)

since T (aτ−1−n) = T (an+1) by the symmetry of the sequence {an}τ−1
n=1. Observing that

JT (am)J = T (am)−1 and J2 = I, we have
(26)

Em = (JT (an+2)J)(JT (an+3)J)J · · · · · ·(JT (a τ
2−1)J)JT (a τ

2
)T (a τ

2−1) · · ·T (an+2)
= T (an+2)−1 · · ·T (a τ

2−1)−1JT (a τ
2
)T (a τ

2−1) · · ·T (an+2)
= (T (a τ

2−1) · · ·T (an+2))−1JT (a τ
2
)(T (a τ

2−1) · · ·T (an+2)) .

It follows that the matrix Em has the same characteristic polynomial z3− z2− z + 1 as
JT (a τ

2
), i.e. Em has eigenvalue−1 with multiplicity 1, and eigenvalue 1 with geometric

multiplicity 2.

Assuming τ is odd, the symmetries of the sequences {an}τ−1
n=1, {∆n}τ−1

n=1, and {Ωn}τ−1
n=1,

refer to an even number τ−1 of terms, and equation (26) is written as

(27)

Dn = (JT (an+2)J)(JT (an+3)J)J · · · · · ·(JT (a τ−3
2

)J)JT (a τ−3
2

) · · ·T (an+2)
= T (an+2)−1 · · ·T (a τ−3

2
)−1JT (a τ−3

2
) · · ·T (an+2)

= (T (a τ−3
2

) · · ·T (an+2))−1J(T (a τ−3
2

) · · ·T (an+2)) .

It follows that the matrix Dn has the same characteristic polynomial z3 + z2− z− 1
of J, i.e. Dn has eigenvalue 1 with multiplicity 1, and eigenvalue −1 with geometric
multiplicity 2.
An example may clarify the method.
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EXAMPLE 1. Consider the continued fraction expansion of
√

386, which has
period τ = 12

[[19], [1,1,1,4,1,18,1,4,1,1,1,38]]

Consider the vector Λ3 = [7,−30,−23], since τ−1−3 = 8 the vector Λ8 by symmetry
is [−23,30,7], i.e. Λ8 = JΛ3. However, Λ8 may be obtained by multiplying Λ3 by a
convenient sequence of matrices

T (a) =




a2 a 1
2a 1 0
1 0 0





Λ8 = T (4)T (1)T (18)T (1)T (4)Λ3

Since Λ3 = JΛ8, we have the equation Λ3 = JT (4)T (1)T (18)T (1)T (4)Λ3, that is

Λ3 =




9801 1980 400
−97020 −19601 −3960
240100 48510 9801



Λ3 ⇒ Λ3 = E3Λ3 ,

i.e. Λ3 is an eigenvector of E3 for the eigenvalue 1.
The characteristic polynomial of E3 is found to be Z3−Z2−Z + 1 = (Z + 1)(Z−1)2

which is the same of the matrix JT (a6), with

Tτ
2

= T (18) =




324 18 1
36 1 0
1 0 0



 ;

note that τ
2 = 6, and in position 5 we find the vector Λ5 = [2,−36,−31] whose first

entry gives the factor 2 of 386.

THEOREM 3. The correspondence m↔Λm is one-to-one for 1≤m≤ τ, i.e. all
quadratic forms fm(x,y) within a period are distinct.

Proof. The proof is by contradiction. Suppose, contrary to the theorem’s claim, that
Λn1 = Λn2 = X for some n1 < n2, then equation (20) implies the existence of a matrix
Pn2n1 = ∏n2

j=n1+1 T (a j) such that Λn2 = Pn2n1Λn1 . Thus X must be an eigenvector, for
the eigenvalue 1, of the non-negative (positive whenever n2 − n1 ≥ 2) matrix Pn2n1
which is the product of non-negative matrices.
If n2 = n1 + 1, it is direct to compute the characteristic polynomial p(x) of Pn2n1 =
T (an1)

p(x) = x3− (a2
n1

+1)x2− (a2
n1

+1)x+1 ,

which is a 3-degree reciprocal polynomial which has a single root −1, and the remain-
ing roots are certainly different from 1, because an1 /= 0; thus, in this case, X cannot
exist.
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To prove in general that X does not exist, we observe that any Pn2n1 has a reciprocal
characteristic polynomial q(x) of degree 3, because we have

q(x)= det

(
λI3−

n2

∏
j=n1+1

T (a j)

)
= det

(
λI3− J

n2

∏
j=n1+1

T (a j)J

)
= det

(
λI3−

n2

∏
j=n1+1

T (a j)−1

)
,

q(x) = det

(
λI3−

n2

∏
j=n1+1

T (a j)

)
= det



λI3−
(

n2

∏
j=n1+1

T (a j)

)−1


 ,

where the last equality is justified by [9, Theorem 1.3.20, p.53]. The reciprocal poly-
nomial q(x) has an eigenvalue equal to either −1 or 1. If the eigenvalue is −1, which
occurs when n2− n1 is odd, the eigenvector X does not exist. If the eigenvalue is 1,
which occurs when n2− n1 is even, there is a second eigenvector for the same eigen-
value, because we have

JΛn2 = JPn2n1 Λn1 = JPn2n1 J ·JΛn1 =

(
n2

∏
j=n1+1

T (a j)

)−1

JΛn1 ⇒
(

n2

∏
j=n1+1

T (a j)

)
JΛn2 = JΛn2 .

Then, X and JX should be distinct eigenvectors (because Ωn2 /= 0 for every n2) of the
same eigenvalue 1 of multiplicity one, which is impossible.
In conclusion, the eigenvector X of eigenvalue 1 does not exist, so m↔ ΛT

m is a one-
to-one mapping within each period. ()

3.2. Odd period

In [11, p.59-60], Legendre describes a constructive method for computing the repre-
sentation of a positive (square-free) N as the sum of two squares, by means of the
continued fraction expansion of

√
N. This result is stated as a theorem with a different

proof from that of Legendre [11, p.60].

THEOREM 4. Let N be a positive integer such that the continued fraction ex-
pansion of

√
N has odd period τ. The representation of N = x2 +y2 is given by x = ∆ τ−1

2
and y = Ω τ−1

2
.

PROOF. Since τ is odd, by the anti-symmetry in the sequence {∆n}τ−2
n=0, we have

∆ τ−1
2 −1 = −∆ τ−1

2
, so that the quadratic form ∆ τ−1

2
X2 + 2Ω τ−1

2
XY + ∆ τ−3

2
Y 2 has dis-

criminant 4∆2
τ−1

2
+4Ω2

τ−1
2

= 4N, which shows the assertion. !

3.3. Even period

Let N be a square-free composite integer such that the continued fraction of
√

N has
even period. We say that cτ−1 = Aτ−1 + Bτ−1

√
N splits N whenever Aτ−1 + 1 and

Aτ−1−1 are divisible by proper factors, say m1 and m2, of N = m1m2, respectively.
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LEMMA 1. If the period τ of the continued fraction expansion of
√

N is even,
we have

∆τ = ∆τ−2 and Ωτ =−Ωτ−1

with Ωτ−1 =−a0.

Proof. Since ∆τ−1 = 1, we have Ω2
τ−1−∆τ−2 = N, thus Ωτ−1 =−

√
N +∆τ−2 because

τ− 1 is odd. Considering the Taylor series around the origin for the square root, we
have

Ωτ−1 =−
√

N +∆τ−2 =−
√

N

(
1− ∆τ−2

2N
+

∆2
τ−2

8N2 + · · ·
)

=−
⌊√

N
⌋

=−a0 .

Using equation (17) with m = τ−1 we have

∆τ = ∆τ−2 +aτ (2Ωτ−1 +aτ∆τ−1) = ∆τ−2 .

Thus, equation (21) finally gives Ωτ =−Ωτ−1. ()

LEMMA 2. Let τ be even, and define the integer γ ∈OF by the product

γ =
τ−1

∏
m=0

(√
N +(−1)mΩm

)
,

then γ
σ(γ) =

(
Aτ−1 +Bτ−1

√
N
)2 = c2

τ−1.

Proof. The norm of γ
σ(γ) is patently 1, thus it remains to prove that γ

σ(γ) lies in OF. We
have

γ
σ(γ)

=
τ−1

∏
m=0

√
N +(−1)mΩm

−
√

N +(−1)mΩm
=

τ−1

∏
m=0

(
√

N +(−1)mΩm)2

Ω2
m−N

=
τ−1

∏
m=0

(
√

N +(−1)mΩm)2

∆m∆m−1
.

Observing that ∏τ−1
m=0(∆m∆m−1) = ∏τ−1

m=0 ∆2
m by the periodicity of the sequence {∆m}m,

it follows that γ
σ(γ) is a perfect square. Considering the following identity

√
N +(−1)mΩm

∆m
= (−1)m Am−1−Bm−1

√
N

Am−Bm
√

N
,

we have that the base of the square giving γ
σ(γ) is

τ−1

∏
m=0

(
√

N +(−1)mΩm)
∆m

=
τ−1

∏
m=0

(−1)m Am−1−Bm−1
√

N
Am−Bm

√
N

= (−1)
τ
2

A−1−B−1
√

N
Aτ−1−Bτ−1

√
N

. .

Now, A−1 = 1 and B−1 = 0 by definition, thus

(28)
τ−1

∏
m=0

(
√

N +(−1)mΩm)
∆m

= (−1)
τ
2 (Aτ−1 +Bτ−1

√
N) = (−1)

τ
2 cτ−1 ,

and in conclusion γ
σ(γ) = c2

τ−1, which shows the claimed property. ()



94 M. Elia

The close connection between the continued fraction expansion of
√

N and the factor-
ization of N is proved using the matrix Mτ−1 defined in equation (23). Note that the
matrix Mτ−1 is involutory, or neg-involutory, since its square is either plus or minus
the identity matrix I2, i.e. M2

τ−1 = (−1)τI2. If τ is even, the eigenvalues of matrix
Mτ−1 are ±1, and Mτ−1 is involutory. If τ is odd, the eigenvalues are ±i, and Mτ−1 is
neg-involutory.

THEOREM 5. If the period τ of the continued fraction expansion of
√

N is even,
the element cτ−1 in Q(

√
N) splits 2N, and a factor of 2N is located at positions τ−2

2 +
jτ, j = 0,1, . . ., in the sequence ∆ = {cmσ(cm)}m≥1.

Proof. It is sufficient to consider j = 0, due to the periodicity of ∆. Since τ is even,
Mτ−1 is involutory and has eigenvalues ±1 with corresponding eigenvectors

X (h) =
[

Aτ−1− (−1)h

d
,

Bτ−1

d

]T

with d = gcd{Aτ−1− (−1)h,Bτ−1} h = 0,1 .

Considering equation (22) written as
[

Aτ− j−2
Bτ− j−2

]
= (−1) j−1Mτ−1

[
A j
B j

]
,

we see that Y ( j) = [A j,B j]T is an eigenvector of Mτ−1, of eigenvalue (−1) j−1 if and
only if j satisfies the condition τ− j−2 = j, that is j = τ−2

2 = τ0. From the comparison
of X (h) and Y (τ0), we have

(29) Aτ0 =
Aτ−1− (−1)τ0−1

d
Bτ0 =

Bτ−1

d
,

where the equalities are fully motivated because gcd{Aτ0 , Bτ0} = 1. Direct computa-
tion yields

(30) ∆τ0 =
(Aτ−1− (−1)τ0−1)2−NB2

τ−1
d2 = 2

(−1)τ0−1Aτ−1 +1
d2 ,

which can be written as A2
τ0
−NB2

τ0
= 2(−1)τ0−1 Aτ0

d ; dividing this equality by 2 Aτ0
d we

have
dAτ0

2
−N

1
2Aτ0

d

B2
τ0

= (−1)τ0−1 .

Noting that gcd{Aτ0 , Bτ0} = 1, it follows that 2Aτ0
d is certainly a divisor of 2N, i.e.

∆τ0 |2N. ()

EXAMPLE 2. Consider N = 3 ·5 ·7 ·11 ·19 = 21945 , the period of the continued
fraction of

√
21945 is 10, and is fully shown in the following table for the sequences ∆

and Ω
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j ∆ j Ω j
−1 1
0 -41 148
1 64 -139
2 -129 117
3 16 -141
4 -21 147
5 16 -147
6 -129 141
7 64 -117
8 -41 139
9 1 -148
10 -41 148

In position j = τ−2
2 = 4 we find 21, a factor of N, as expected. The same factor 21 can

be found by considering the fundamental unit c9 = 3004586089 + 20282284
√

21945,
in fact we have 3004586089− 1 = 23 · (3 · 7) · 42292, and the second factor 5 · 11 · 19
may be obtained from 3004586089+1 = 2 · (5 ·113 ·19) ·1092.

In principle, in many cases the above Theorem 5 yields a factor of N; however there
are examples in which only the factor 2 appears.

EXAMPLE 3. Let N = 8527× 8537 = 72794999 be a composite number. The
period of

√
N is τ = 3864 and in position 1931 we do not find a factor of N but ∆1931 = 2

which is a factor of 2N.

It would be interesting to find a general condition that can discriminate the various
situations, i.e. whether a factor of N is found or not. This objective can be achieved
almost in full when N = pq is the product of two primes, a case that cleverly shows the
difficulty of the whole problem.

3.4. Factoring N = pq

When N = pq is the product of two distinct primes, the analysis of section 3.3 may be
further pursued, leading to the following remarkable property:

PROPOSITION 2. If p≡ q≡ 3 mod 4, the fundamental unit ε0 (or the cube ε3
0)

splits N = pq, then ∆ τ−2
2

is equal to (q|p)p, with p < q.

This proposition is given without the proof, which uses units and splitting of primes in
quadratic number fields (see [6, 4, 10]); further, the complete classification in terms of
residues of p and q modulo 8, proved in [6],. is reported in Table 7.1 for easy reference.
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4. Factorization

Gauss recognized that the factoring problem was important, although very difficult,

. . . Problema, numeros primos a compositis dignoscendi, hosque in fac-
tores suos primos resolvendi, ad gravissima ac utilissima totius arithmeti-
cae pertinere, et geometrarum tum veterum tum recentiorum industriam
ac sagacitatem occupavisse, tam notum est, ut de hac re copiose loqui su-
perfluum foret. . . . C. F. GAUSS [Disquisitiones Arithmeticae ART.

329]

and, in spite of much effort, various different approaches, and the problem’s increased
importance due to the large number of cryptographic applications, no satisfactorily
factoring method has yet been found.
Many factorizations make use of the regular continued fraction expansion of

√
N, com-

bined with the idea of using quadratic forms [7, 13]. The infrastructure method, pro-
posed by Shanks [15], considers the subset Ψ = { fm(x,y)}1≤m≤τ−1 in the periodic
sequence ϒ = { fm(x,y)}∞

m≥1 of reduced principal quadratic forms. It should be re-
marked that the forms fm(x,y) = ∆mx2 + 2Ωmxy + ∆m−1y2 in ϒ are reduced following
a different convention from that commonly adopted [1].

DEFINITION 2. A real quadratic form f (x,y) = ax2 + 2bxy + cy2 of discrimi-
nant 4N is said to be reduced if, defining κ = min{|a|, |c|}, b is the sole integer such
that
√

N− |b| < κ <
√

N + |b|, with the sign of b chosen opposite to the sign of a.

DEFINITION 3. The distance between fm+1(x,y) and fm(x,y) is defined to be

(31) d( fm+1, fm) =
1
2

ln
(√

N +(−1)mΩm√
N− (−1)mΩm

)
.

The distance between two quadratic forms fm(x,y) and fn(x,y), with m > n, is defined
to be the sum

(32) d( fm, fn) =
m−1

∑
j=n

d( f j+1, f j) .

Taking the above definitions, Shanks showed that, by the Gauss composition law of
quadratic forms with the same determinant, followed by reduction, the set Ψ equipped
with the distance d( fm+1, fm) modulo R = lncτ−1 resembles a cyclic group, with
fτ−1(x,y) playing the role of identity. Composition followed by reduction affords big
steps (giant steps) within Ψ, thus two operators were further defined [3, p.259] to allow
small steps (baby steps), precisely

1. One-step forward: The operator ρ+ that transforms one reduced quadratic form
into the next in the sequence ϒ, is defined as

ρ+([a,2b,c]) = [
b2

1−N
a

,2b1,a] ,
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where b1 is 2b1 = [2b mod (2a)]+2ka with k chosen in such a way that −|a| <
b1 < |a|.

2. One-step backward: The operator ρ− that transforms a reduced quadratic form
into the immediately preceding quadratic form in the sequence ϒ is defined as

ρ−([a,2b,c]) = [c,2b1,
b2

1−N
c

] ,

where b1 is 2b1 = [−2b mod (2c)]+2kc with k chosen such that−|c|< b1 < |c|.

The infrastructure machinery was used to compute the fundamental unit, the regulator,
and the class number [3], with complexity smaller than O(

√
N), although not of poly-

nomial complexity in N. From a different perspective, by Theorem 5, in many cases a
factor of N is exactly positioned in the middle of a period of the sequence ∆. Therefore,
instead of trying to find special quadratic forms randomly located in Ψ (the principal
genus), or some ambigue form in some non-principal genus, we may try to localize
the position of some factor of N within a period whose length τ is unknown. Then,
it is shown that, by extending the infrastructure machinery to the whole sequence ϒ,
some factors of N can be computed with a complexity substantially bounded by the
complexity required to evaluate an integral of Dirichlet’s at a given accuracy: the more
precise the evaluation of the integral, the less complex the factorization; at the limit,
it is of polynomial complexity; clearly, to be more accurate in the integral evaluation,
greater complexity is required. To pursue this idea, we briefly review and adapt the
previous definitions of the infrastructure components to the new task. Let us recall that
the quadratic forms fm(x,y) are primitive, i.e. gcd{∆m,2Ωm,∆m−1} = 1, and at least
one between |∆m| and |∆m−1| is less than

√
N and 0 < |Ωm| <

√
N. Further, since cτ−1

is either equal to the positive fundamental unit of F = Q(
√

N) or equal to its cube, the
regulator of OF is either RF = lncτ−1, or RF = 1

3 lncτ−1. The following observations
are instrumental to motivate the procedure:

1. The sign of ∆m−1 is the same as that of Ωm, which is opposite to that of ∆m, thus
in the sequence ϒ the two triplets of signs (−,+,+) and (+,−,−) alternate.

2. The distance of fm(x,y) from the beginning of ϒ is defined by referring to a
properly selected hypothetical quadratic form, i.e. f0(x,y) = fτ(x,y) = f0(x,y) =
∆0x2 − 2

√
N−∆0xy + y2, which is located before f1(x,y), that is d( fm, f0) is

given by (32) if m < τ, and by d( fm, f0) = d( fm mod τ, f0) + kRF if kτ ≤ m <
(k +1)τ.

3. Let "•" denote the form composition fm(x,y) • fn(x,y) in ϒ, that is the Gauss
composition [3] of fm(x,y) and fn(x,y) followed by a reduction performed with
the minimum number of steps, ending with a reduced form whose triplet of signs
is (−,+,+) if m and n have the same parity, and (+,−,−) otherwise. This
distance defined by (31) holds in ϒ with good approximation, and is compatible
with the "•" operation, that is we have

f!(m,n)(x,y) = fm(x,y)• fn(x,y)⇒ d( f!(m,n), f0)≈ d( fm, f0)+d( fn, f0) .
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It is remarked that the error affecting this distance estimation is of order O(lnN)
as shown by Schoof in [14].

4. Shanks [15] observed that, within the first period, the composition law "•" in-
duces a structure similar to a cyclic group for the addition of distances modulo
the "regulator".

5. Between the elements of ϒ the distance is nearly maintained by the giant steps,
and is rigorously maintained by the baby steps.

THEOREM 6. The distance d( fτ, f0) is exactly equal to lncτ−1, i.e. this distance
d( fτ, f0) is either the regulator RF or 3RF. The distance d( f τ

2
, f0) is exactly equal to

1
2 d( fτ, f0).

Proof. The distance between fτ and f0 is the summation

d( fτ, f0)=
τ−1

∑
j=0

d( f j+1, f j)=
τ−1

∑
j=0

1
2

ln

(
τ−1

∑
j=0

√
N +(−1) jΩ j√
N− (−1) jΩ j

)
=

1
2

ln

(
τ−1

∏
j=0

√
N +(−1) jΩ j√
N− (−1) jΩ j

)
.

Recalling that N−Ω2
j = −∆ j∆ j−1 > 0, and taking into account the periodicity of the

sequence ∆, the last expression can be written with rational denominator as

1
2

ln

(
τ−1

∏
j=0

(
√

N +(−1) jΩ j)2

−∆ j∆ j−1

)
=

1
2

ln

(
τ−1

∏
j=0

(
√

N +(−1) jΩ j)2

∆2
j

)
= ln

(
τ−1

∏
j=0

√
N +(−1) jΩ j

(−1) j−1∆ j

)
.

The conclusion follows from Lemma 2, showing that the product ∏τ−1
j=0

√
N+(−1) jΩ j
(−1) j−1∆ j

,
which has field norm one and is an element of the order OF, is actually the unit cτ−1
by equation (28). The connection between lncτ−1 and the regulator is motivated by
Remark 1.
The equality d( f τ

2
, f0) = 1

2 d( fτ, f0) is an immediate consequence of the symmetry of
the sequence fm(x,y) within a period. ()

Since Theorem 5 guarantees that, when τ is even, a factor of N is located in the positions
τ−2

2 +kτ of the sequence ϒ, Shanks’ method allows us to find such a factor, if ln(cτ−1),
or an odd multiple of it, is exactly known. Now, a formula of Dirichlet’s gives the
product

(33) hFRF =
√

D
2

L(1,χ) =−
%D−1

2 &

∑
n=1

(
D
n

)
ln
(

sin
nπ
D

)

where RF is the regulator, L(1,χ) is a Dedekind L-function, D = N if N ≡ 1 mod 4 or
D = 4N otherwise, and character χ is the Jacobi symbol in this case. If the product
hFRF is known exactly (computed), for example using equation (33), the distance from
the beginning of the sequence where the quadratic form can be found [1,2Ωτ−1,∆τ−2]
is known. Since this distance is an integer multiple of the regulator, and our target is to
find a quadratic form that is located in the middle of some period, then
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1. if hF is odd, a factor of N is found in the position at distance hFRF
2 , or 3 hFRF

2 ,
from the beginning;

2. If hF is even, in a position at distance hFRF
2 , or 3 hFRF

2 the quadratic form
[1,2Ωτ−1,∆τ−2] is found, (which reveals a posteriori that hF is even); in this
case, the procedure can be repeated with target the position at distance hFRF

4 , or
3 hFRF

4 ; again, either a factor of N is found or hF is found to be a multiple of 4.
Clearly the process can be iterated ! times until hFRF

2! is an odd multiple of RF,
and a factor of N is found.

When the factor m1 of N is found, the second factor is m2 = N
m1

, thus the procedure
can be iterated to find all factors of N. Mimicking Shanks’ infrastructure, giant steps
are performed to get close to forms at distance kRF

2 , or 3 kRF
2 , for some 1≤ k≤ hF, then

baby steps are performed to get the exact position.

5. Conclusions

It has been shown that the complexity of factoring a composite number 4N is upper
bounded by the complexity of evaluating, at a certain degree of accuracy, the product
hFRF, as defined by Dirichlet using the L(1,χN) function, and also that is not necessary
to know hF and RF separately. The more precise the evaluation of the product hFRF,
the less complex the factoring 2N; if we are lucky, the complexity could be polyno-
mial in N. It is an open problem to find which is the best compromise between the
approximate evaluation of hFRF and the computational complexity for obtaining such
approximation. In this context, the following expression, taken from [3, p.262], may
be useful for efficiently evaluating the product hFRF as a function of N

(34) hFRF =
1
2 ∑

x≥1

(
N
x

)(√
N

x
erfc

(
x
√

π
N

)
+E1

(
πx2

N

))
,

where the complementary error function erfc(x), and the exponential integral function
E1(x), can be closely approximated [18, p.297-299]

erfc(z) =
2√
π

∫ ∞

z
e−t2

dt = 1− erf(z) = 1− 2√
π

∞

∑
n=0

(−1)nz2n+1

n!(2n+1)

E1(z) =
∫ ∞

1

e−tz

t
dt =−γ− ln(z)−

∞

∑
n=1

(−1)nzn

n ·n!
.

As a last observation, the arguably, a fast (how fast is open) algorithm for factoring
is achievable by combining results of Dirichlet, Shanks, and the above observations,
which were suggested by Legendre’s finding that continued fractions permit the repre-
sentation of primes as the sum of two squares explicitly computed.
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p mod 8 q mod 8 Split? (p|q) ∆τ/2−1 T mod 4
3 3 Yes ±1 −(p|q)p 1+(p|q)
3 7 Yes ±1 −(p|q)p 1+(p|q)
7 3 Yes ±1 −(p|q)p 1+(p|q)
7 7 Yes ±1 −(p|q)p 1+(p|q)
5 3 Yes 1 p 0
3 5 Yes 1 −p 2
5 3 Yes −1 2p 0
3 5 Yes −1 −2p 2
5 7 Yes 1 p 0
7 5 Yes 1 −p 2
5 7 Yes −1 −2p 2
7 5 Yes −1 2p 0
1 3 No −1 −2 2
1 3 Yes 1 p AND 0
1 3 No/Yes 1 −2,−2p 2
3 1 No −1 −2 2
3 1 Yes 1 2p AND 0
3 1 No/Yes 1 −2,−p 2
7 1 No −1 2 0
7 1 No 1 2 AND 0
7 1 Yes 1 −p,−2p 2
1 7 No −1 2 0
1 7 No/Yes 1 2, p,2p 0
5 1 No −1 1,3
5 1 No 1 AND 1,3
5 1 Yes 1 −p AND 2
5 1 Yes 1 p AND 0
1 5 No −1 1,3
1 5 No 1 AND 1,3
1 5 Yes 1 −p AND 2
1 5 Yes 1 p AND 0
5 5 No −1 1,3
5 5 No 1 AND 1,3
5 5 Yes 1 −p AND 2
5 5 Yes 1 p AND 0
1 1 No −1 1,3
1 1 No 1 AND 1,3
1 1 Yes 1 −p AND 2
1 1 Yes 1 p AND 0

Table 7.1: p < q
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THE GREATEST COMMON DIVISOR
OF LINEAR RECURRENCES

Abstract. We survey the existing theory on the greatest common divisor gcd(un,vn) of two
linear recurrence sequences (un)n and (vn)n, with focus on recent development in the case
where one of the two sequences is polynomial.

1. The problem

A linear recurrence sequence (or just linear recurrence for short) is a sequence (un)n∈N
specified by giving values u0, . . . ,ud−1 and the condition that, for n≥ d,

un+1 =
d

∑
i=1

aiun+1−i

for fixed a1, . . . ,ad and ad /= 0; the integer d is taken to be the least one for which
a linear relation of this form holds and is called the order of the recurrence. All our
recurrences will be assumed for simplicity to have rational integer terms, although the
reader should keep in mind that much of what we are going to state holds with little
to no change when they are instead defined over the ring of integers of a number field.
The characteristic polynomial of the recurrence is P(X) := Xd −∑d

i=1 aiXd−i and its
discriminant is ∆u := ∆(P): accordingly, the recurrence is called simple if the distinct
roots of P (which are also referred to as the roots of u), say α1, . . . ,αr ∈C×, are simple,
and non-degenerate if no ratio αi/α j of any two distinct roots of P is a root of unity.
Any term of the sequence can be expressed as a generalized power sum

un =
r

∑
i=1

Qi(n)αn
i

where the Qi are polynomials over C whose degree is less than the multiplicity of
αi. The basic theory of linear recurrences will be assumed throughout, and we shall
not develop it here but instead point to a general reference work such as the one of
Everest–van der Poorten–Shparlinski–Ward [21] for further detail.

The problem that we are interested in is as follows. Given are two linear recur-
rences (un)n and (vn)n; what can one say about the quantity

gn := gcd(un,vn)?

This can be thought as measuring the “arithmetical proximity” of u and v, as the
G.C.D. puts together, for all non-archimedean places, how much the sequences share

103
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(termwise) at each place. We will be interested in the distribution of the values of such
a sequence, for instance in the counting function

G(x,y) := #{n≤ x : gn ≥ y};

this is slightly more convenient than the version with reversed inequality sign since one
expects gn to be often relatively small.

The plan is as follows. In Section 2 we shall see how one can bound large
values of gn when u and v are simple, by use of Schmidt’s Subspace Theorem, and
then interpret those bounds as cases of Vojta’s conjecture. In Section 3 we will on
the other hand see that if one recurrence is fully non-simple (one root with maximal
multiplicity), almost everything concerning large and small values and averages of
gn can be determined. In Section 4, we will hint at how to translate the statements
when studying other objects, such as elliptic divisibility sequences and meromorphic
functions. We shall adopt an expository layout, with a focus on results over proofs.

We shall suppose, in each section, that the recurrence u (or the recurrences u and
v) is fixed once and for all, so that all Vinogradov symbols depend on u in addition to
other parameters: hence, read Ou, ou,2u, Cu (or Ou,v etc.) for O, o,2, C respectively,
which is the same as saying Od,a1,...,ad etc. The same is understood to hold for the
objects that are meant to stand in place of linear recurrences in Sections 2 and 4.

2. The case with both recurrences non-degenerate

Throughout this section, we assume that the recurrences u and v are simple, and that
their roots generate together a torsion-free multiplicative group (in particular, u and v
are non-degenerate). This assumption is convenient in that it simplifies the statements
of the theorems in the next sub-section, and does not entail a loss of generality [13,
Sect. 1].

2.1. The Subspace Theorem and S-units

We first, and mostly, examine large values of gn. For instance, what can one say on
the cases when it is as large as possible, that is equal to min(|un|, |vn|)? The answer is
given by the classical Hadamard Quotient Theorem.

THEOREM 1 (Pourchet [60], van der Poorten [59]). Suppose that vn divides un
for all n.∗ Then (un/vn)n is a linear recurrence.

We may also rephrase the conclusion by saying that v has to divide u in the ring
of linear recurrences.

Spectacular progress on the problem came next from exploiting the Subspace
Theorem of Schmidt (as generalized by Schlickewei, Evertse, . . . ) in an ingenious

∗Except possibly for those n for which vn = 0, but there is a finite number of them—cf. the Skolem–
Mahler–Lech theorem.
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way; for the theorem itself the reader may see for instance Schmidt [68], or Bilu [6]
for applications. The generalization that is used most often in applications involves all
places of a number field and is due to Schlickewei.

THEOREM 2. Suppose that K is a number field and S a finite set of places
containing the Archimedean ones, n≥ 1 an integer. For each ν ∈ S, let Lν,1, . . . ,Lν,n be
linearly independent linear forms in n variables defined over K. Then, for every fixed
ε > 0, the nonzero solutions of

∏
ν∈S

n

∏
i=1

|Lν,i(x)|ν < H(x)−ε,

with x ∈ On
K, lie in a finite union of proper subspaces of Kn.

First, a powerful improvement to the Hadamard Quotient Theorem was proved
by Corvaja–Zannier [13]. If we only assume that the divisibility occurs for infinitely
many n, then the quotient might not be a linear recurrence anymore, but it is almost so.
The result is also remarkable for not requiring the so-called “dominant root condition”,
which had plagued many applications thus far.

THEOREM 3 (Corvaja–Zannier [13, Th. 1]). Suppose that vn divides un for in-
finitely many n. Then there is a polynomial P(X) ∈ C[X ] such that both sequences
(P(n)un/vn)n and (vn/P(n))n are linear recurrences.

In quantitative form, they also prove that if (un/vn)n is not a linear recurrence,
then un/vn can be an integer only for o(x) values of n ≤ x. This was made precise by
Sanna [63], improving on a remark in Corvaja–Zannier [13, Cor. 2].

THEOREM 4 (Sanna [63, Th. 1.5], Corvaja–Zannier [13, Sect. 4]). If (un/vn)n
is not a linear recurrence, then un/vn can be an integer only for

x
(

log logx
logx

)C

values of n≤ x, for some explicit positive integer C. This is best possible up to a power
of log logx.

The G.C.D. bounds were made quantitatively explicit in a series of works whose
heart were more complex applications of the Subspace Theorem. We now consider
sequences of the form an−1 for simplicity. First, if a = cr and b = cs, then the gcd(an−
1,bn− 1) is as large as a power of min(an− 1,bn− 1) for trivial reasons; we exclude
this case by saying that a and b are multiplicatively independent. Apart from this case,
the greatest common divisor is always smaller than any fixed power of the smallest of
the two sequences.
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THEOREM 5 (Bugeaud–Corvaja–Zannier [8, Th. 1]). Let a,b≥ 2 be multiplica-
tively independent integers. Then for n > n(ε),

gcd(an−1,bn−1) < exp(εn).

If b is not a power of a, then gcd(an−1,bn−1)2 an/2 for large n.

This is close to best possible. Bugeaud–Corvaja–Zannier [8, Rem. 2] observe,
after Adleman–Pomerance-Rumely [1, Prop. 10], that there are infinitely many n’s that
achieve exp(nc/ log logn) (though they do not make a conjecture for the true maximal
order; for instance, could it be exp(n(1+o(1)) log loglogn/ log logn)?).

The start of the proof is as follows. For a positive integer i, write

zi(n) :=
bin−1
an−1

=
ci,n

dn

where ci,n, dn are integers, and dn is taken as the denominator of z1(n).
Observe that for a fixed integer m we have the approximation

1
an−1

= a−n 1
1−a−n = a−n

∞

∑
r=0

a−rn =
m

∑
r=1

1
arn +O(a−(m+1)n).

If we multiply this by bin−1 we get
∣∣∣∣∣zi(n)+

m

∑
s=1

1
asn −

m

∑
r=1

(
bi

ar

)n
∣∣∣∣∣= O(bina−(m+1)n);

the key idea is to see the left-hand side of this as a linear form in the variables zi(n),
bin/arn, a−sn, for various values of i: if it were the case that dn ≤ a(1−ε)n infinitely
often, then such forms would be small too often and contradict Theorem 2.

Corvaja–Rudnick–Zannier [12] prove a matrix generalization of this in the set-
ting of periods of toral automorphisms. If B is a square matrix over Z, we write gcd(B)
for the greatest common divisor of the entries of B.

THEOREM 6 (Corvaja–Rudnick–Zannier [12, Th. 2]). Suppose that ε > 0 is
fixed and A is a square matrix of rational integers. Under some conditions on the
eigenvalues of A, we have

gcd(An− I) < exp(εn)

for all large n.

The Bugeaud–Corvaja–Zannier bound is recovered as a special case of this, for

the diagonal matrix A =
(

a 0
0 b

)
.

Fuchs [22], building on the work of Bugeaud–Corvaja–Zannier [8] and Hernán-
dez–Luca [35], further generalized the theorem as follows.
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THEOREM 7 (Fuchs [22, Thms. 1 and 2]). Suppose that u, v have only positive
real roots, and that v does not divide u in the ring of linear recurrences. Then there is
an explicit constant C < 1 such that for large n

gcd(un,vn) < min(|un|, |vn|)C.

If moreover all the roots of u,v are integer, un is of the form ban + c, and a is coprime
to all the roots of v, then for sufficiently large n this can be strengthened to

gcd(un,vn) < min(|un|, |vn|)ε.

A further generalization by Levin [43] concerns greatest common divisors of
terms with distinct indices; we give a simplified version for the sake of exposition.

THEOREM 8 (Levin [43, Th. 1.11]). Suppose that u, v are simple linear recur-
rences such that for each place ν of Q at least one of the roots α of u or v has |α|ν ≥ 1.
If the inequality

gcd(un,vm) < exp(εmax(m,n))
has infinitely many solutions (m,n), then all but finitely many of those solutions satisfy
one of finitely many linear relations (m,n) = (aik + bi,cik + di) (1 ≤ i ≤ t), where the
linear recurrences (uain+bi)n and (vcin+di)n have a nontrivial common factor in the ring
of linear recurrences for all i.

Another direction for generalizations starts from the observation that an is an
S-unit for a finite S, so that theorems on terms of linear recurrences really are at their
heart theorems concerning sums of S-units. Hence the following:

THEOREM 9 (Corvaja–Zannier [14, Th.], Hernández–Luca [35]). Let S ⊇ {∞}
be a finite set of rational primes and ε > 0 fixed. Then for all but finitely many multi-
plicatively independent S-units u,v we have

gcd(u−1,v−1) < max(|u|, |v|)ε.

Corvaja–Zannier also give further generalizations of these to
gcd(F(u,v),G(u,v)) [15] and versions in positive characteristic [17].

Further still, one can obtain bounds where u, v are just assumed to be “near”
S-units–for instance, of the form F(n)an. This is the case in the following.

THEOREM 10 (Luca [46, Cor. 3.3]). Let a, b be positive integers, and F1, F2,
G1, G2 non-zero polynomials with integer coefficients, ε > 0 fixed. Then for all large
m, n we have

gcd(F1(n)an +G1(n),F2(n)bn +G2(n)) < exp(εn).

Grieve–Wang [31] combine the ideas of Levin and Luca to obtain a very general
upper bound in the case of non-simple recurrences, by means of the moving form of
the Subspace Theorem.

For more applications of the Subspace Theorem to linear recurrences we refer
to Fuchs [23] and Corvaja–Zannier [18].
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2.2. More over function fields

The problem of small values of gcd(un,vn) is more obscure. Indeed, the following
conjecture is open (and probably very difficult).

THEOREM 11 (Ailon–Rudnick [2, Conj. A]). If a and b are multiplicatively
independent integers, then there are infinitely many n for which

gcd(an−1,bn−1) = gcd(a−1,b−1).

Evidence for this was given by Silverman [75].
To avoid the obstacle, people have thus been trying to study what happens when

a, b belong to other rings. The outcome can turn out to be far more satisfying.

THEOREM 12 (Ailon–Rudnick [2, Th. 1]). If F,G∈C[x] are non-constant mul-
tiplicatively independent polynomials, then there is a polynomial H ∈ C[X ] such that
for any n

gcd(Fn−1,Gn−1) divides H.

In particular, deggcd(Fn−1,Gn−1)≤CF,G.

The idea of Ailon and Rudnick is very simple but relies crucially on a deep
theorem of Ihara–Serre–Tate, which states that an irreducible curve in C× ×C× can
only contain finitely many points both of whose coordinates are roots of unity, unless
it is defined by an equation of the form XmY n−ζ = 0 or Xm−ζY n = 0 with ζ a root of
unity [84, Ch. 1.1]. Applying this to the curve {(F(t),G(t)) : t ∈ C} we find that F(z)
and G(z) are simultaneously roots of unity for finitely many z ∈ C.

Now, for any root t of gcd(Fn − 1,Gn − 1), both F(t) and G(t) must si-
multaneously be roots of unity, so there are only finitely many possible roots t for
gcd(Fn − 1,Gn − 1). Moreover, since Fn − 1 = ∏n−1

i=1 (F − ζi
n) and the factors on

the right-hand side are pairwise coprime, any X − t can divide at most one of them
with multiplicity at most degF , and the same for G. Hence, we may take H(X) =
∏(X− t)min(degF,degG).

THEOREM 13 (Silverman [70, Th. 4]). If P,Q ∈ Fq[x] are non-constant monic,
then

deggcd(Pn−1,Qn−1)≥CP,Qn.

for infinitely many n.†

Denis [20, Th. 1.1] gives lower bounds for the number of integers n for which
deggcd(Pn−1,Qn−1) is on the other hand bounded, and studies the analogous prob-
lem on Drinfeld modules. Cohen–Sonn generalize Silverman’s theorem to the quantity
gcd(Φm(an),Φm(bn)) with (Φm)m the classical cyclotomic polynomials [10, Th. 2.1].

†Notice thus the trichotomy Z–C[X ]–Fq[X ] in the results, with profoundly different kinds of bounds in
each case.
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Corvaja–Zannier [17] give more generally estimates on the gcd(u−1,v−1) when u,v
belong to a function field of positive characteristic, and derive a bound of Weil type
from this.

For more applications, and an extensive development of such concepts in the
area of unlikely intersections, see Zannier [84, Ch. 2]. We just mention in passing
a nice application of these bounds due to Luca–Shparlinski [47], who exploit them to
show that the groups E(Fqn) (E/Fq an ordinary elliptic curve) have a large cyclic factor;
and a follow-up by Magagna [50, Th. 5] proving gcd(#E1(Fqn),#E2(Fqn)) < exp(εn)
if E,E ′ are ordinary and non-isogenous.

2.3. The geometric approach and Vojta’s conjecture

We come back to the results of Section 2 to put them in a different light. The connection
between G.C.D. bounds and Vojta’s conjecture that we are going to see was first noticed
by Silverman [72]. We recall here the statement of the conjecture in a form that suits
applications; here we take the ambient variety X as fixed and fix a choice of height
functions as well.

CONJECTURE 2 (Vojta). Let X/k be a smooth projective variety over a number
field k and S a finite set of places of k, KX a canonical divisor, A an ample divisor, D
a divisor with normal crossings. Then for any ε > 0 there is a proper Zariski closed
subset Z of X and a constant C such that, for all P ∈ X(k)\Z, it holds that

∑
ν∈S

λD,ν(P)+hKX (P)≤ εhA(P)+C.

This conjecture is very general and encompasses many open problems in Dio-
phantine geometry. For our needs, the point is that G.C.D. bounds and are essentially
equivalent to cases of Vojta’s conjecture. We immediately state an instance of this.

THEOREM 14 (Silverman [72, Th. 1]). We let |x|′S be the prime-to-S part of x,
i.e. the largest divisor of x that is not divisible by any prime in S. Let S be a finite
set of places, F1, . . . ,Ft ∈ Z[X1, . . . ,Xn] homogeneous polynomials such that their zero
set V is a smooth variety in Pn which does not intersect any hyperplane {Xi = 0}; let
r := n− dimV . Assume Vojta’s conjecture for Pn blown up along V and fix ε > 0.
Then there is a homogeneous G ∈ Z[X1, . . . ,Xn] and a constant δ > 0 such that for any
n+1-tuple of coprime integers x0, . . . ,xn ∈ Z either G(x0, . . . ,xn) = 0 or

gcd(F1(x0, . . . ,xn), . . . ,Ft(x0, . . . ,xn))≤max(|x0|, . . . , |xn|)ε(|x0 · · ·xn|′S)1/(r−1+δε).

If we apply for instance this with n = 2, F1 = X1−X0, F2 = X2−X0, this theorem
says that outside a one-dimensional set we have

gcd(x1− x0,x2− x0)≤max(|x0|, |x1|, |x2|)ε(|x0x1x2|′S)1/(1+δε).

If we specialize further to x0 = 1 and x1, x2 S-units, this becomes

gcd(x1−1,x2−1)≤max(|x1|, |x2|)ε
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and we recover Theorem 9 (up to the exceptional set, which is however not hard to
determine). As for the proof of Theorem 14 itself, it involves Vojta’s conjecture with
X = Pn, A = {X0 = 0}, D =−π∗KX =−π∗∑n

i=0{Xi = 0} and π the blow-up of X along
{F1 = · · · = Ft = 0}.

Instead of explaining the general proof, let us just see where the analogy starts
from [72, Sect. 2]. One writes for a,b ∈Q

loggcd(a,b) = ∑
p

min(νp(a),νp(b)) log p = ∑
ν∈M0

Q

min(ν(a),ν(b));

for general a, b in a number field we then define

loggcd(a,b) := ∑
ν∈Mk

min(ν+(a),ν+(b)).

To bring heights into play, we note that ν+ is the local height function on P1(k) with
respect to the divisor (0). We would like a similar height-theoretic interpretation for
the function min(ν+(·),ν+(·)), but here (0,0) is not a divisor on (P1(k))2. To try and
make things work we then blow up the plane at this point, and it turns out that the height
with respect to the exceptional divisor on this blow-up is in fact the logarithmic G.C.D.
In general, the G.C.D. is to be interpreted as a height function with respect to a closed
subscheme, following the definitions laid out by Silverman [69]. Again, the analogy
is rich and complex and we will not illustrate it, but point to the ultimate reference for
this—the landmark article by Silverman [72].

This important analogy has thence been used to prove various cases of Vojta’s
conjecture for blow-ups by mutuating the techniques that successfully apply for G.C.D.
problems, namely the Subspace Theorem. Levin [43] proves some cases on toric va-
rieties; Wang–Yasufuki [81] on Cohen-Macaulay varieties; Yasufuki [82] on Pn, and
links it with the abc conjecture; Yasufuki again [83] on rational surfaces; Grieve [30]
on Fano toric varieties.

3. The case with one recurrence fully non-simple

It has been realized in recent times [3] that the case where one of the sequences is in-
stead fully degenerate, and in particular a polynomial sequence, the distribution prob-
lem for gn = gcd(P(n),un) offers a more approachable toy version of the general prob-
lem. For the time being, we shall take one of the sequences to be the identity sequence
and the other one to be a simple‡ linear recurrence, and study gn = gcd(n,un); the
stronger results will then follow from the fact that here we have complete control over
the places that divide one of the two recurrences.

Firstly, the case of u a first-order recurrence is easily settled. For instance,
large and small values are immediate to estimate [3, Sect.1], and the observation that
gcd(n, pn) = pvp(n) implies the following asymptotic for the moments.

‡There is no loss of generality in assuming the simplicity of u [3, Sect. 1].
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THEOREM 15. As x→ ∞,

∑
n≤x

(loggcd(n, pn))k = x
(

1− 1
p

)
(log p)k

∞

∑
m=0

mk

pm +O

((
logx
log p

)k+1
)

.

Moreover, if k ≥ 1,
∑
n≤x

gcd(n, pn)k = xk(1+op(1))

as x→ ∞.§

The expression with un = an for composite a is, however, not nearly as nice. At
any rate, we shall henceforth assume that the order of the recurrence u is greater than
1.

3.1. Large values of gcd(n,un)

We first look at large values of gcd(n,un). Remember that u is always a simple linear
recurrence of order at least 2, and that it is fixed once and for all without further mention
of it in all Vinogradov symbols.

Studies on this quantity mostly involved the naïve formulation “when does n
divide un”—in our perspective, this is asking for which n’s the gcd(n,un) equals n,
i.e. is as large as it can possibly get. The early works were partial characterizations,
usually in terms of a (more or less explicit) recursive tree structure which is however
unsuited to quantitative estimates. Credit for this is to be given here to Jarden [39],
Hoggatt–Bergum [36], André-Jeannin [4], Somer [78], Smyth [77], and Győry–Smyth
[33].

The first major work was that of Alba González–Luca–Pomerance–Shparlinski
[3], where they obtained good bounds for various cases according to how nice the
recurrence is.

THEOREM 16 (Alba González–Luca–Pomerance–Shparlinski [3, Th. 1.1]). If
u is non-degenerate, then as x→ ∞

#{n≤ x : n divides un}2
x

logx
.

An ingredient of the proof is again the Subspace Theorem 2, or rather a conse-
quence of it due to Schlickewei, to bound the number of zeros of the recurrence modulo
p, hence number of solutions modulo p of an exponential equation [67].

This is essentially best possible: if we consider for instance the recurrence un =
2n− 2, then p always divides up, and the composite n’s for which n divides un are
pseudoprimes and hence [58, Th. 2] much fewer than odd primes, so that in this case
#{n≤ x : gcd(n,un) = n} = (1+o(1))x/ logx.

§ In fact the sum admits an asymptotic of the form
(

x/pψp,k(logx/ log p)
)k

, where ψ is a bounded periodic
function with an explicit description as well; but we are not concerned here with such higher order terms.
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THEOREM 17 (Alba González–Luca–Pomerance–Shparlinski [3, Th. 1.2]). If
the recurrence u is a non-degenerate Lucas sequence then as x→ ∞

(1) #{n≤ x : n divides un}≤ x exp
(
−(1+o(1))

√
logx log logx

)
.

THEOREM 18 (Alba González–Luca–Pomerance–Shparlinski [3,
Thms. 1.3 and 1.4]). Suppose that u is a non-degenerate Lucas sequence with
characteristic polynomial X2−a1X−a2.

If a2 = ±1 then as x→ ∞

(2) #{n≤ x : n divides un}≥ x1/4+o(1).

If a2 /= ±1 but ∆u /= ±1 then, as x→ ∞

#{n≤ x : n divides un}≥ exp
(
C(log logx)2) .

In fact, to show (2) they use an explicit construction of integers of the form
2s∏p≤x p with s as follows: every one if its prime factors q is greater than x and such
that q2− 1 is x-friable (has only prime factors smaller than x). If the factorization of
integers of the form q2− 1 is statistically the same as a typical integer of their size, a
lower bound x1+o(1) in (2) holds.

The next step was that of Luca and the author [49], who showed that the upper
bound (1) can be vastly improved, and gave an explicit structure theorem for such
integers. Their result was for Fibonacci numbers and was generalized by Sanna [62] to
any Lucas sequence, using the appropriate formulae for the p-adic valuation of Lucas
sequences [61]. From now on Lucas sequences will be understood to be non-degenerate
as degenerate ones pose no problem [62, Sect. 2].

THEOREM 19 (Sanna [62, Th. 1.2], Luca–Tron [49, Th. 1]). If the recurrence u
is a Lucas sequence, then

#{n≤ x : n divides un}≤ x exp
(
−
(

1
2

+o(1)
)

logx log loglogx
log logx

)
.

The 1/2+o(1) factor is just an artifact of the methods [27, Th. 3]. In fact, based
on this and on analogies [58, Sect. 4] with Carmichael numbers via Korselt’s criterion,
Luca–Tron conjecture the following.

CONJECTURE 3 (Luca–Tron [49, Sect. 1]). If the recurrence u is a Lucas se-
quence, then

#{n≤ x : n divides un} = x exp
(
−(1+o(1))

logx log loglogx
log logx

)
.

It should be noted that numerical evidence supporting this conjecture is rela-
tively poor [58, Sect. 5], but there is a very precise and interesting reason why [29].
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The “workhorse” here is a structure theorem for such integers n which reads as
follows. We let zu(n) to be the least positive integer m for which n divides a term um of
the sequence, whenever it is defined.

LEMMA 1 (Luca–Tron [49, Th. 2], Sanna [62, Lemma 3.3]). For any fixed k let
Rk := {n ∈ N : n/zu(n) = k}. If n is in Rk, then it is of the form γ(k)m, where m is a
positive integer all of whose prime factors divide 6∆uk, and γ(k) an integer depending
only on k.

In other words, if the ratio n/zu(n) is prescribed, every integer n is the product
of a fixed integer times an S-integer with controlled S. This can be proved using explicit
formulas for the p-adic valuation of un [61] and then, taking any n that belongs to Rk,
inspect for which n′ the integer nn′ also belongs to Rk. This is of course no use without
being able to estimate γ(k), and the little miracle here is the existence of a very neat
expression for it.

LEMMA 2 (Luca–Tron [49, Th. 2], Sanna [62, Lemma 3.3], Leonetti). For any
k, γ(k) is the least element in Rk and we have

γ(k) = k lcm
m≥1

z◦m(k).

One can indeed see that this is well defined; once we know this expression
we can notice that indeed γ(k) ∈ Rk almost by construction. This kind of expression
might be telling for someone working in dynamical systems, but a satisfying dynamical
interpretation is still lacking.

The work of Luca–Tron and Sanna does in fact prove an upper bound for the
counting function when one instead asks for gcd(n,un)≥ αn with 0≤ α≤ 1 fixed (and
thus a bound on G(x,y) in the range yG x). With some more work, the methods would
imply the following uniform bound.

CONJECTURE 4. If 0≤ α≤ 1 is fixed, then

#{n≤ x : gcd(n,un)≥ αn}≤ x exp
(
−
(

1
2

+oα(1)
)

logx log loglogx
log logx

)
.

The conjecture for the correct order of magnitude is still the same, that the
1/2 +o(1) on the right-hand side is actually an 1 +o(1). The key here is that Lemma
1, as well as its proof, adapts almost word by word when instead of n = bz(n), b ∈ N a
fixed integer, one asks for n = βz(n), β ∈Q a fixed rational number.

We end the section by considering the more general case when one of the re-
currences is fully non-simple but of possibly higher order, i.e. the G.C.D. has the
form gcd(F(n),un) with F a non-constant polynomial with integer coefficients. In
this case, using sieve methods Alba González–Luca–Pomerance–Shparlinski prove a
sligthly worse upper bound.

THEOREM 20 (Alba González–Luca–Pomerance–Shparlinski [3, Sect. 7]). If
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the recurrence u has order d ≥ 2 and F is as above, as x→ ∞ it holds that

#{n≤ x : F(n) divides un}2F
x log logx

logx
.

3.2. Small values of gcd(n,un)

After studying when n divides un, next is the “dual” problem of when n is coprime to
un. We retain the notation and hypotheses of the previous section.

The first basic theorem is due to Sanna [65] and proves, under very general
assumptions, that those n have an asymptotic density.

THEOREM 21 (Sanna [65, Th. 1.1]). If u is non-degenerate, the set of integers
n such that gcd(n,un) = 1 has an asymptotic density. Such a density is positive, unless
(un/n)n is also a linear recurrence, in which case this set is in fact finite.

Next came the work of Sanna and the author [66], where it was shown that not
only this generalizes to any fixed value of the G.C.D., but also that another little miracle
occurs: there is a very explicit expression for the asymptotic density. For notational
convenience set !u(m) := lcm(m,zu(m)).

THEOREM 22 (Sanna–Tron [66, Thms. 1.3 and 1.4]). Let u be a non-
degenerate Lucas sequence with characteristic polynomial X2 − a1X − a2. For any
k∈N, let Ak be the set of integers n such that gcd(n,un) = k. Then Ak has an asymptotic
density which is given by the absolutely convergent series

∑
gcd(d,a2)=1

µ(d)
!u(dk)

.

Such a density is positive if and only if Ak is not empty if and only if gcd(k,a2) = 1 and
k = gcd(!u(k),u!u(k)).

The last part vindicates a conjecture made in another setting by Silverman [73,
Q. 1]. The statement is moderately far-reaching: for instance, the integers n such
that gcd(n,2n−1) = k have an asymptotic density given by ∑nodd 1/lcm(kn,ordkn(2)).
However, a way of proving a priori the criterion for such a sum to be zero or not, or
even just showing its non-negativity, directly without going through the related arith-
metical problem, is not known to exist.

The heart of the proof is also the apparently least interesting part, to show that
the expression is well defined. We record it separately to emphasize it.

LEMMA 3. The series

∑
gcd(d,a2)=1

1
!u(d)

converges absolutely.
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If in place of !u(d) = lcm(d,zu(d)) we just had d zu(d) things would be much
easier: the convergence of the sum ∑d 1/dzu(d) has been known at least since the work
of Romanoff in the ‘30s [53].

Once we know this, the expression for the density in Theorem 22 is straightfor-
ward to derive; let us do the case k = 1 and a2 = 1, so that zu is defined on all integers.
If we set ρ(n,d) to be the indicator function of “d|un” then

#A1(x) = ∑
n≤x

∏
p|n

(1−ρ(n, p)) = ∑
n≤x

∑
d|n

µ(d)ρ(n,d) = ∑
d≤x

µ(d) ∑
m≤x/d

ρ(dm,d);

now, ρ(dm,d) = 1 is equivalent to m being divisible by !u(d)/d, so the latter quantity
is

∑
d≤x

µ(d) ∑
m≤x/d

1 = ∑
d≤x

µ(d)
⌊

x
!(d)

⌋
= x

(

∑
d≤x

µ(d)
!(d)

)
−∑

d≤x
µ(d)

{
x

!(d)

}
.

All we need to do now is to use that ∑d>x
µ(d)
!(d) is the tail of a convergent series,

and split the latter sum into large and small d (say, at a cutoff of x1/2) to recover
Theorem 22.

REMARK 1. In light of Theorem 22, the set of numbers k for which Ak is empty
(or not) is itself of interest. Leonetti–Sanna [42] prove that there are at least Cx/ logx
and at most o(x) integers k up to x for which Ak is not empty. Given that they only
consider prime numbers in the lower bound, the true order of magnitude should be
somewhat larger; are there, say, at least x log logx/ logx such integers up to x?

Parallel to the previous sections, the problem with gcd(F(n),un) a fixed integer,
where F is a polynomial with integer coefficients, has also been studied.

THEOREM 23 (Mastrostefano–Sanna [52, Th. 1.4]). Suppose that F splits over
Q, and let k be a fixed integer. Then the set of integers n such that gcd(F(n),un) = k
has an asymptotic density. If moreover u is non-degenerate and F does not have fixed
divisors, then the set set of integers n such that gcd(F(n),un) = 1 has zero asymptotic
density if and only if it is finite.

However, no nice expression for the density is presently known in cases other
than F(n) = n.

3.3. Averages of gcd(n,un)

The previous sections give quite satisfying answers to the problem of determining ex-
treme values of gcd(n,un). If we inquire, however, about its average size, much less
is known–let alone the distribution function G(x,y) in general. We summarize here
partial progress towards the solution.
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If we allow for some more regular version of the G.C.D., say its logarithm
loggcd(n,un), the situation is already quite different.

THEOREM 24 (Sanna [64, Th. 1.1]). Let u be a non-degenerate Lucas sequence.
Then for any fixed positive integer k, as x→ ∞,

∑
n≤x

(loggcd(n,un))k = Mkx+Ok(x1−1/(3k+3)).

Moreover, the constant Mk is given explicitly by an absolutely convergent series

Mk = ∑
gcd(d,a2)=1

ρk(d)
!u(d)

and ρk is a certain, explicitly defined, arithmetical function such that ρk(m) ≤
(k logm)k.

This implies directly a bound for the counting function.

COROLLARY 1 (Sanna [64, Cor. 1.3]).

G(x,y)2u,k
x

(logy)k .

The argument itself is not too different to what we have seen already in the
previous section. Suppose for instance that k = 1: we can write

∑
n≤x

loggcd(n,un) = ∑
n≤x

∑
!u(pe)|n

log p = ∑
pe

log p ∑
n≤x

!u(pe)|n

1 = ∑
pe

log p
⌊

x
!u(pe)

⌋

=: ∑
gcd(m,a2)=1

ρ1(m)
⌊

x
!u(m)

⌋
=

(

∑
gcd(m,a2)=1

ρ1(m)
!u(m)

)
x− ∑

gcd(m,a2)=1
ρ1(m)

{
x

!u(m)

}
,

then argue as in Section 3.2; for larger k there is more combinatorial work involved,
but again convergence of the relevant sum is the bulk of the proof.

Inspired by this work, Mastrostefano set out to find more on the moments them-
selves. Here is the upper bound that he obtained.

THEOREM 25 (Mastrostefano [51, Th. 1.3]). Let u be a non-degenerate Lucas
sequence. Then for any fixed positive integer k, as x→ ∞,

∑
n≤x

gcd(n,un)k ≤ xk+1−(1+ok(1))
√

log logx/ logx.

The key to improving these estimates is the study of the tail of a series

∑
d>x

gcd(d,a2)=1

1
!u(d)

:
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Mastrostefano bounds it by exp
(
−(1/

√
6− ε+oε(1))

√
logx log logx

)
. We also get

the following for the counting function.

COROLLARY 2 (Mastrostefano [51, Cor. 1.5]). As x→ ∞,

G(x,y)≤ x2−(1+o(1))
√

log logx/ logx/y.

The determination of the moments can be a subtle problem [51, Sect. 6]. How-
ever, it is not difficult to conjure up a simple heuristic: if we come back to numbers
n such that gcd(n,un) = n, there are conjecturally x1−(1+o(1)) log loglogx/ log logx of them
up to x. If they were evenly spaced (which they are not, but they are at least well
distributed) they would contribute at least

∑
n≤x/x(1+o(1)) log loglogx/ log logx

(
nx(1+o(1)) log loglogx/ log logx

)k
= xk+1−(1+o(1)) log log logx/ log logx

to the k-th moment. If we compound this with the ansatz that “most” of the mass of the
moments comes from those n with large gcd(n,un)—e.g. larger than βn, cf. Conjecture
4—we end up with the following conjecture.

CONJECTURE 5. If the recurrence u is a non-degenerate Lucas sequence, then
as x→ ∞

∑
n≤x

gcd(n,un)k = xk+1−(1+ok(1)) log loglogx/ log logx.

As Mastrostefano kindly pointed out to me, this very argument, coupled with
the input from Alba González–Luca–Pomerance–Shparlinski (cf. Theorem 18), imme-
diately provides the following.

THEOREM 26. If a2 = ±1 then as x→ ∞

∑
n≤x

gcd(n,un)k ≥ xk+1/4+ok(1).

It is maybe worth to point out the formal resemblance of Theorems 24 and 15
with work of Luca–Shparlinski [48, Th. 2]. They study sums of the form ∑n≤x f (un)k,
where f is any arithmetic function satisfying certain stringent growth conditions, and
they prove an estimate M f ,k x+O f ,k(x(log logx)k/ logx).

4. The problem in other settings

4.1. Elliptic divisibility sequences

The most straightforward adaptation of statements from Part 3 is in the setting of ellip-
tic divisibility sequences—which by the way is an indicator that some properties have
more to do with un being a divisibility sequence rather than a linear recurrence. We
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recall that an elliptic divisibility sequence, call it un still, is defined by taking a non-
torsion point P ∈ E(Q) of an elliptic curve E/Q defined by a Weierstrass equation and
then the reduced x-coordinates of its orbit x[n]P = vn/u2

n.
The recursive structure theorems mentioned at the start of Section 3.1 have

an elliptic version by Silverman–Stange [76]; the theorems for the distribution of
gcd(n,un) = n are due to Gottschlich [28].

THEOREM 27 (Gottschlich [28, Th. 1.1]). As x→ ∞, we have

#{n≤ x : n divides un}2E,P x
(log logx)5/3(log loglogx)1/3

(logx)4/3 .

When E has complex multiplication, and for any E under the Lang–Trotter
conjecture, he also obtains an upper bound

x exp
(
−(1+oE,P(1)) ·

√
logx log logx/8

)
.

On the other hand, the analogy is even closer for the problem of gcd(n,un) = k
constant. In this case, Kim [40] proved that a theorem formally analogous to Theorem
22 holds. Again, the delicate point is the convergence of the sum [40, App. A], while
the proof itself is otherwise formally the same.

As an aside, we comment that the setting of elliptic curves gives a more trans-
parent geometric interpretation which otherwise, in the case of linear recurrences, is to
be found in the work of Cubre–Rouse [19] (after Lagarias [41]), solving a conjecture
of Bruckman–Anderson [7] by means of the “torus trick” of Hasse–Ballot [5]. For a
slightly different take on this, also see Silverman [72].

Finally, the Ailon–Rudnick theorem 12 as well is proved by Silverman for el-
liptic divisibility sequences over function fields (i.e. obtained from a curve E/k(T )) in
case the j-invariant of the curve is k-rational [71, Th. 3]. Ghioca–Hsia–Tucker give a
variant over any field of positive characteristic [25], Ostafe [56] for multivariate poly-
nomials, Ghioca–Hsia–Tucker again [26] over elliptic curves, Ulmer–Urzúa [79] a re-
sult of similar flavor on unlikely intersections. Silverman [72] has a theorem analogous
to Theorem 14 where a bound in the same form as Theorem 9 but for elliptic divisibility
sequences is shown to be another consequence of Vojta’s conjecture.

4.2. Nevanlinna theory

An extremely fruitful development in analogy with the greatest common divisors of
recurrences is in Nevanlinna theory, where the quantities are replaced by their cousins
in the setting of entire functions in the spirit of Vojta’s celebrated dictionary between
Nevanlinna theory and diophantine approximation [80]. Without developing the basics
of Nevanlinna theory, we shall limit ourselves to mentioning the most relevant results.

The basic ideas involved in the correct analogy where introduced in the land-
mark work of Noguchi–Winkelmann–Yamanoi [55]. The article of Pastén–Wang [57]
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is the most complete source of meromorphic counterparts to the arithmetic G.C.D.
bounds, and we now introduce some of them.

For f a meromorphic function on C and z∈C, we set ν+
z ( f ) := max(0,ordz( f ))

and ν−z ( f ) :=−min(0,ordz( f )). We then define the characteristic function

T ( f ,r) :=
1

2π

∫ 2π

0
max(0, log | f (reiθ)|)dθ+ ∑

0<|z|≤r
ν−z ( f ) log |r/z|+ν−0 ( f ) logr.

The analogue for the G.C.D. is defined as follows: if

n( f ,g,r) := ∑
|z|≤r

min(ν+
z ( f ),ν+

z (g)),

then the relevant counting function is

N( f ,g,r) :=
∫ r

0

n( f ,g, t)−n( f ,g,0)
t

dt +n( f ,g,0) logr.

A sample of the many G.C.D. bounds that Pastén–Wang obtain in this setting are the
following.

THEOREM 28 (Pastén–Wang [57, Th. 1.3]). Let f , g be algebraically indepen-
dent meromorphic functions and ε > 0. Then

N( f n−1,gn−1,r) < εmax(nT ( f ,r),nT (g,r))

for all r in a set of infinite Lebesgue measure.

THEOREM 29 (Pastén–Wang [57, Th. 1.5]). Let f , g be multiplicatively inde-
pendent entire functions without zeros, both of finite order, and ε > 0. Then for all large
n, as r→ ∞ we have

N( f n−1,gn−1,r) < εmin(T ( f n,r),T (gn,r))+O(logr).

They give many more theorems under various different hypotheses on the
growth of the functions, and even general results for meromorphic functions over any
complete algebraically closed field, so the reader is advised to read their introduction.
For more on the general technical background, see Noguchi–Winkelmann [54].

This line of work spawned the following developments.

THEOREM 30 (Guo–Wang [32, Th. 1.1]). Let f , g be algebraically independent
meromorphic functions and ε > 0. Then for all large n, and for all r outside a set of
finite Lebesgue measure,

N( f n−1,gn−1,r) < (1/2+ ε)max(T ( f n,r),T (gn,r)).

THEOREM 31 (Levin–Wang [44, Cor. 1.6]). Let f , g be multiplicatively inde-
pendent meromorphic functions, and ε > 0. Then for all large n, as r→ ∞ (outside a
set of finite Lebesgue measure), we have

N( f n−1,gn−1,r) < εmax(T ( f n,r),T (gn,r)).
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The Corvaja–Zannier version of the Hadamard Quotient Theorem has an analog
for entire functions as well, due to Guo [34].

THEOREM 32 (Guo [34, Th. 1.2]). Let f1, . . . , fk,g1, . . . ,gm be nonconstant
entire functions such that maxi T ( fi,r) H max j T (g j,r) as r→ ∞. Set F(n) := a0 +
a1 f n

1 + · · ·+ ak f n
k , G(n) := b0 + b1gn

1 + · · ·+ bkgn
k where the ai and b j are nonzero

complex numbers. If F(n)/G(n) is an entire function for infinitely many n, then the
fi,g j are multiplicatively dependent (there is a product f r1

1 · · · f rk
k gs1

1 · · ·gsk
k which is a

nonzero constant).

For more work on G.C.D. bounds in Nevanlinna theory in the setting of holo-
morphic maps to semi-abelian varieties also see Liu–Yu [45]. Corvaja–Noguchi [11]
prove another counterpart to the Corvaja–Zannier theorem [13].

4.3. Rational dynamical systems

Another domain of research which is rich in analogies with the problems that we have
studied is that of rational dynamical systems [74], i.e. the study of the behavior of
iterates of rational maps (which is itself linked to the domain of unlikely intersections
[84, Ch. 3.4.7]). The links usually exploit Silverman’s ideas in some way or another,
and the powers of integers are replaced by n-fold iterates of polynomials.

Chen–Gassert–Stange [9] prove analogues of the structure theorems mentioned
at the beginning of Section 3.1 and Gassert–Urbanski [24] study the divisibility by n of
F◦n(0), F a polynomial.

More interestingly, Hsia–Tucker [37] prove a “compositional” cousin to the
Ailon–Rudnick theorem.

THEOREM 33 (Hsia–Tucker [37, Th. 4]). Let F,G ∈ C[X ] be compositionally
independent polynomials, of degree greater than 1, and C ∈ C[X ] another polynomial
satisfying some extra conditions. Then there is a polynomial H ∈ C[X ] such that, for
all m,n,

gcd(F◦m−C,G◦n−C) divides H.

A compositional analogue of the Bugeaud–Corvaja–Zannier bound is known as
well; here, however, the substantial recourse to Silverman’s method requires Vojta’s
conjecture in a form not yet proved in such generality. Assuming thus Vojta’s conjec-
ture, the theorem reads as follows.

THEOREM 34 (Huang [38, Th. A]). Let F,G∈Z[X ] be polynomials of the same
degree d = degF = degG ≥ 2, and a,b,α,β ∈ Z integers. Under some genericity
assumption, there is a constant C > 0 such that for all n

gcd(F◦n(a)−α,G◦n(b)−β)≤C exp(εdn).

In fact he proves more general versions for rational maps and also gives more
in-depth characterizations in case the genericity assumption is not satisfied.
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1. Introduction and general setting

It is well known that the harmonic series restricted to prime numbers diverges, as the
harmonic series itself. This was first proved by Leonhard Euler in 1737 [7], and it is
considered as a landmark in number theory. The proof relies on the fact that

N

∑
n=1

1
n

= logN + γ+O(1/N) ,

where γ 4 0.577215 . . . is the Euler–Mascheroni constant. The corresponding result
for primes is one of the formulae proved by Mertens, namely

∑
p≤N

1
p

= log logN +A+O
(

1
logN

)
,

where A 4 0.2614972 . . . is the Meissel–Mertens constant. It is also referred to as
Hadamard–de la Vallée-Poussin constant that appears in Mertens’ second theorem.

Recently, Bettin, Molteni and Sanna [2] studied the random harmonic series

(1) X :=
∞

∑
n=1

sn

n
,

where s1, s2, . . . are independent uniformly distributed random variables in {−1,+1}.
Based on the previous work by Morrison [9, 10] and Schmuland [12], they proved the
almost sure convergence of (1) to a density function g, getting lower and upper bounds
of the minimum of the distance of a number τ ∈ R to a partial sum ∑N

n=1 sn/n. In 1976
Worley studied the same problem in terms of upper bound of (1) both in the case τ = 0
(see [13]) and for a generic τ ∈ R (see [14]); his approach is not probabilistic but he
has achieved an upper bound comparable to that of [2]. For further references, see also
Bleicher and Erdős [3, 4], where the authors treated the number of distinct subsums
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of ∑N
1 1/n, which corresponds to taking si independent uniformly distributed random

variables in {0,1}. A more complete list of references can be found in [2].
The purpose of this paper is firstly to show that basically the same results hold

for a general sequence of integers under some suitable, and not too restrictive, con-
ditions; moreover, that a stronger result can be reached if we restrict to integers with
exactly k distinct prime factors.

Although Bettin, Molteni and Sanna [2] treat both the lower bound and the upper
bound, we are mainly interested in the upper bound using a probabilistic approach. As
we will see, in the cases that we treat, we will not be able to say anything about the
lower bound, except in terms of numerical computations.

We will use a consistent notation with the previous works by Bettin, Molteni
and Sanna [1], [2], Crandall [6] and Schmuland [12].

1.1. General setting of the problem

We denote by N the set of positive integers. Let (an)n∈N be a strictly decreasing se-
quence of positive real numbers such that

(2) lim
n→+∞

an = 0 and ∑
n≥1

an = +∞.

Notice that
∑
n≥1

(−1)nan

converges (not absolutely) by Leibniz’s rule. Hence, by Riemann’s theorem, given λ,
Λ ∈ [−∞,+∞] with λ ≤ Λ, we can arrange the choice of the signs sn = sn(λ,Λ) ∈
{−1,1}, in such a way that

liminf
N→+∞ ∑

n≤N
snan = λ and limsup

N→+∞
∑

n≤N
snan = Λ.

As we said above, we are mainly interested in prime numbers, so we introduce some
further reasonable hypotheses on the sequence an: we assume that bn = a−1

n ∈ N, so
that bn is strictly increasing, and that

(3) n≤ bn ≤ nB(n),

where B(n) = nβ(n), with β a real-valued decreasing function such that β(n) = o(1). In
order to prove Proposition 20 below, we will assume a more restrictive condition on β,
that is

(4) β(n)≤ 1
8loglogn

for sufficiently large n.

Actually, this assumption is not strictly necessary and we will discuss this in Remark
25. Nevertheless, since the series ∑an must diverge, this condition is not too restric-
tive, and besides it is satisfied by most of the interesting sequences, like arithmetic
progressions, the one of primes, and primes in arithmetic progressions.
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Let us introduce some more notation: we consider the set

(5) S(N) =
{

∑
n≤N

snan : sn ∈ {−1,1} for n ∈ {1, . . . ,N}
}

,

and, for a given τ ∈ R, we set

mN(τ) = min
{
|SN− τ| : SN ∈S(N)

}
.

In other words, for a given N ∈ N, the goal is to find the choice of signs such that
|SN− τ| attains its minimum value. Finally, we define the random variable

XN :=
N

∑
n=1

snan,

where the signs sn are taken uniformly and independently at random in {−1,1}. We
will study its small scale distribution. With a slight abuse of notation, we denote by sn
both the signs in the definition (5) and the random variables in the definition above.

1.2. Results

For ease of comparison with the results in Bettin, Molteni and Sanna [2], we now state
our main results in the following form, even though more precise versions of them are
to be found within the paper.

Theorem 12. Let β satisfy (4). Then there exists C > 0 such that for every τ ∈ R we
have

mN(τ) < exp(−C log2 N)

for all sufficiently large N depending on τ.

Theorem 13. Let (bn)n∈N be the sequence of integers having exactly k distinct prime
factors. Then, for every τ ∈ R and for all sufficiently large N depending on τ, we have

mN(τ) < exp(− f (N)),

where f is any function satisfying

f (N) = o
(

N1/(2k+1)−ε
)

.

Remark 14. We emphasize the fact that the estimate obtained in Theorem 13 holds
uniformly for every τ ∈ R in any fixed compact set.

Corollary 15 (J. Benatar and A. Nishry). For any fixed τ∈R, ε > 0 and any sufficiently
large N there exists a choice of signs (sn)n≤N ∈ {−1,1}N, such that

∣∣∣∣∣∑n≤N

sn

n
− τ

∣∣∣∣∣2τ,ε exp
(
−N1/3−ε

)
.
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We collect some numerical results for k = 1 in Tables 1, 2 and 3. The sequence
of Tables 1 and 2 appears in OEIS A332399: see [5].

Acknowledgements. We thank Sandro Bettin and Giuseppe Molteni for many conver-
sations on the subject, and Mattia Cafferata for his help in computing the tables at the
end of the present paper. We also warmly thank Jacques Benatar and Alon Nishry for
their fruitful suggestions which improved our paper, for providing us references and for
letting us include their proof of Corollary 15 in this paper. R. Tonon and A. Zaccagnini
are members of the INdAM group GNSAGA, which partially funded their participa-
tion to the Second Symposium on Analytic Number Theory in Cetraro, where some of
this work was done.

2. Lemmas

In this section we study some properties of the general sequence defined in (2), using
the classical notation: E[X ] denotes the expected value of a random variable X , P(E)
the probability of an event E. For each continuous function with compact support
Φ ∈ Cc(R) we denote by Φ̂ its Fourier transform defined as follows:

Φ̂(x) :=
∫

R
Φ(y)e−2πixy dy.

We are actually interested in smooth functions, because the smoothness of the density
of any random variable X is related to the decay at infinity of its characteristic function,
defined precisely by its Fourier transform.

For each N ∈ N∪ {∞}, for any x ∈ R and for any sequence satisfying (2), we
also define the product

ρN(x) :=
N

∏
n=1

cos(πxan) and ρ(x) := ρ∞(x).

We begin with the following lemma, which is a more general version of Lemma
2.4 from [2].

Lemma 16. We have

E[Φ(XN)] =
∫

R
Φ̂(x)ρN(2x)dx

for all Φ ∈ C 1
c (R).

Proof. By the definition of expected value we have

E[Φ(XN)] =
1

2N ∑
s1,...,sN∈{−1,1}

Φ

(
N

∑
n=1

snan

)
.
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Using the inverse Fourier transform we get

E[Φ(XN)] =
1

2N ∑
s1,...,sN∈{−1,1}

∫

R
Φ̂(x)exp

(
2πix

N

∑
n=1

snan

)
dx

=
∫

R
Φ̂(x)

1
2N ∑

s1,...,sN∈{−1,1}
exp

(
2πix

N

∑
n=1

snan

)
dx.

Exploiting the fact that eiα + e−iα = 2cos(α), we have

∑
s1,...,sN∈{−1,1}

exp

(
2πix

N

∑
n=1

snan

)
=

1
2 ∑

s1,...,sN∈{−1,1}
2cos

(
2πx

N

∑
n=1

snan

)
.

Finally, taking advantage of Werner’s trigonometric identities, we obtain

E[Φ(XN)] =
∫

R
Φ̂(x)ρN(2x)dx. ()

We will need also a generalisation of Lemma 2.5 from [2], which is the follow-
ing

Lemma 17. For all N ∈ N and x ∈ [0,
√

N] we have

ρN(x) = ρ(x)
(
1+O

(
x2/N

))
.

Proof. We recall that an is defined as in (2) and satisfies (3). In particular an = O(1/n),
so that the same argument in the proof of Lemma 2.5 of [2] holds. ()

Let us now define, for every positive integer N and any real δ and x the set

S
(
N,δ,x,(an)n≥1

)
:= {n ∈ {1, . . . ,N} : ‖xan‖ ≥ δ},

where ‖ · ‖ denotes the distance from the nearest integer. For brevity, we sometimes
drop the dependence on the sequence (an)n≥1.

Lemma 18. For all N ∈ N and for all x,δ≥ 0 we have

|ρN(x)|≤ exp
(
−π2δ2

2
·#S(N,δ,x)

)
.

Proof. It is a straightforward consequence of the inequality

|cos(πx)|≤ exp
(
−π2‖x‖2

2

)
. ()

Lemma 19. For any N ∈ N, x ∈ R and 0 < δ < 1/2 we have

N
2
−D(N,y(δ),x) < #S(N,δ,x) < N−D(N,y(δ)/2,x),
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where
D(N,y,x) = D(N,y,x,(bn)n≥1) := ∑

x−y<m<x+y
∑

bn|m
N/2≤n≤N

1

and y(δ) := δNB(N).

Proof. As in Lemma 3.3 of [2], we observe that

N
2
−T (N,δ,x) < #S(N,δ,x) < N−T (N,δ,x),

where
T (N,δ,x) := #{n ∈ N∩ [N/2,N] : ‖xan‖< δ}.

Now, recalling that an = 1/bn, we have

T (N,δ,x) = #{n ∈ N∩ [N/2,N] : ∃! ∈ N, !−δ < xan < !+δ}
= #{n ∈ N∩ [N/2,N] : ∃! ∈ N, x−δbn < !bn < x+δbn}.

From our hypothesis (3) we know that bn ≤ NB(N); then

T (N,δ,x) < #{n ∈ N∩ [N/2,N] : ∃! ∈ Z, x− y(δ) < !bn < x+ y(δ)}
= D(N,y(δ),x).

This proves the lower bound; the upper bound follows with the same argument. ()

Proposition 20. Let A be a fixed positive constant and, for N sufficiently large,

β(N)≤ 1
8loglogN

.

Then there exists C′ > 0 such that |ρN(x)| < x−A for all sufficiently large positive inte-
gers N and for all x ∈ [N,exp(C′(logN)2)].

Proof. The proof follows along the same lines as Proposition 3.2 of [2]: we take

δ =
2
√

2A logx
π

N−1/2 and x ∈
[

N,exp
(

π2N
32A

))
,

so that 0 < δ < 1/2 and y(δ) = δNB(N) < x.
By Lemmas 18 and 19, if we show that D(N,y(δ),x) < N/4, then we get

|ρN(x)|< 1/xA. Considering that bn is a sequence of positive integers, we use Rankin’s
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trick with w ∈ (1/4,1/2) and Ramanujan’s result on σ−s(n) [11] to obtain

D(N,y(δ),x) <
4
π
√

2AN logxB(N) ·max
m≤2x ∑

bn|m
N/2≤n≤N

1

<
4
π
√

2AN logxB(N) ·max
m≤2x ∑

k|m
N/2≤k≤NB(N)

1

≤ 4
π
√

2AN logxB(N) ·max
m≤2x ∑

k|m
N/2≤k≤NB(N)

(
NB(N)

k

)w

=
4
π

N
1
2 +wB(N)1+w

√
2A logx ·max

m≤2x ∑
k|m

N/2≤k≤NB(N)

k−w

≤ 4
π

N
1
2 +wB(N)1+w

√
2A logx ·max

m≤2x
σ−w(m)

<
4
π

N
1
2 +wB(N)1+w

√
2A logx · exp

(
C1

(log2x)1−w

log log2x

)
,

where C1 is the constant of Ramanujan’s theorem, as it is stated in Lemma 3.4 of [2].
Let w = w(x) := 1/2−ϕ(x), where ϕ is a positive decreasing function that we

will choose later. Then we have

B(N)1+w = exp
((

3
2
−ϕ(x)

)
β(N) logN

)
,

and so we would be done if we showed that

N1−ϕ(x)+(3/2−ϕ(x))β(N)
√

logx · exp

(
C1

(log2x)1/2+ϕ(x)

log log2x

)
= o(N),

that is
√

logx · exp

(
C1

(log2x)1/2+ϕ(x)

log log2x

)
= o(Nϕ(x)+(ϕ(x)−3/2)β(N)).

Hence we must have
ϕ(x)+(ϕ(x)−3/2)β(N) > 0,

that is
β(N) <

ϕ(x)
3/2−ϕ(x)

≈ 2
3

ϕ(x).

Since ϕ is decreasing and we want to maintain the same range for x as in [2], that is
x ∈
[
N,exp

(
C′(logN)2)], we need to have

β(N) # 2
3

ϕ
(
exp
(
C′(logN)2)) .
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Let us take ϕ(x) = (log log2x)−1 and β(N) such that for x ∈
[
N,exp

(
C′(logN)2)] it

holds

(6) β(N)≤ 2
3J

ϕ(x) =
2
3J

1
loglog2x

,

where J ∈ R, J > 1. Then we would achieve our goal if we showed that

√
logx · exp

(
C1e

(log2x)1/2

loglog2x

)
= o

(
exp
((

1− 1
J

+o(1)
)

logN
log log2x

))
,

that is

exp

(
C1e

(log2x)1/2

log log2x
−
(

1− 1
J

+o(1)
)

logN
log log2x

+
1
2

loglogx

)
= o(1).

This condition is equivalent to

C1e
(log2x)1/2

log log2x
−
(

1− 1
J

+o(1)
)

logN
log log2x

+
1
2

loglogx→−∞.

Taking into account the ranges for x, we see that it is sufficient to have

1
loglogN

[
C1
√

C′ e logN(1+o(1))−
(

1− 1
J

)
logN +O

(
(log logN)2)

]
→−∞.

We recall that, by our choice of x and N, we have loglogxH log logN. Hence, we just
need to take C′ sufficiently small, in a way that

(7) C′ <
(

J−1
C1eJ

)2
,

to guarantee that D(N,y(δ),x) < N/4 for large N. For the sake of simplicity, we take
J = 2 and the proposition is proved as stated. ()

Remark 21. We remark here that condition (4) on β, which we assumed to prove the
proposition, was necessary to ensure the existence of the function ϕ satisfying all the
properties we needed, and in particular (6).

Corollary 22. Let A be a fixed positive constant and β satisfy (4). Then |ρ(x)| < x−A

for all sufficiently large x ∈ R.

Proof. It holds

|ρ(x)| =

∣∣∣∣∣ρ%x&+1(x) ∏
n>%x&+1

cos(πxan)

∣∣∣∣∣< x−A.()
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Theorem 23. Let C′ > 0 satisfy (7) and β satisfy (4). Then for all intervals I ⊆ R of
length |I| > exp(−C′(logN)2) one has

P[XN ∈ I] =
∫

I
g(x)dx+o(|I|),

as N→ ∞, where

g(x) := 2
∫ ∞

0
cos(2πux)

∞

∏
n=1

cos
(

2πu
bn

)
du = 2

∫ ∞

0
cos(2πux)ρ(2u)du.

The proof follows along the same lines as Theorem 2.1 in [2] and we omit the
details for brevity.

Corollary 24. Let β satisfy (4). For all τ ∈ R and C′ > 0 satisfying (7), we have

#

{
(s1, . . . ,sN) ∈ {−1,+1}N :

∣∣∣∣∣τ−
N

∑
n=1

sn

bn

∣∣∣∣∣< δ

}
∼ 2N+1g(τ)δ(1+oC′,τ(1))

as N → ∞ and δ→ 0, uniformly in δ ≥ exp(−C′(logN)2). In particular, for large
enough N, one has mN(τ) < exp(−C′(logN)2).

Remark 25. We have imposed condition (4) for β to keep the same range of validity
for x as in [2]. We remark that the hypotheses on β could be relaxed at the price of
restricting this range: for example, we could take

β(N) =
log loglogN

log logN
,

and obtain the result of Proposition 20 for x ∈ [N,exp(loga N)], where a ∈ (1,2) is a
suitable constant. In fact, this would weaken directly the estimates that we have just
found in Theorem 23 and Corollary 24, where exp(−C′(logN)2) would be replaced by
exp(− loga N).

3. Products of k primes

We now leave the general case and concentrate on primes and products of k distinct
primes. Hence, we define

Pk := {n ∈ N | n is the product of k distinct primes} ;

we will denote by b(k)
n the n-th element of the ordered set Pk. Let us recall the definition

of S(N,δ,x) in the case an = 1/b(k)
n :

S(N,δ,x) := {n ∈ {1, . . . ,N} : ‖x/b(k)
n ‖ ≥ δ} .
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We remark that, since we left the general case, we can now take B(n) = b(k)
n /n, and

denote it by Bk(n). In 1900, Landau [8] proved that

πk(t) := |Pk ∩{n ∈ N | n≤ t }| = t
log t

(log log t)k−1

(k−1)!
+O

(
t(log log t)k−2

log t

)
,

which implies that

(8) Bk(n)∼ logn
(k−1)!

(log logn)k−1 .

We can now start with a refinement of Proposition 20, where we extend the interval of
validity for x in the case bn = b(k)

n .

Proposition 26. Let A be a fixed positive constant, k ∈ N be fixed and an = 1/b(k)
n ,

where b(k)
n is the n-th element of the ordered set Pk. Then |ρN(x)| < x−A for all suffi-

ciently large positive integers N and for all x ∈ [U,exp( f (N))], where logN = o( f (N))
and

f (N) = o

((
N

B2
k(N)

)1/(2k+1)
)

,

and U > 1 is a constant depending on f .

Proof. Let x ∈ [N,exp( f (N))]. As in the proof of Proposition 20, we need to show that
D(N,y(δ),x) < N/4, where δ is chosen in the same way and y(δ) = δNBk(N). Since
now we are considering x ≥ N, it is easy to see that for sufficiently large N we have
y(δ)≤ x. We recall here that the prime omega function ω(n) is defined as the number
of different prime factors of n, and that

ω(n)2 logn
log logn

,

as a consequence of the prime number theorem. In this case, we have

D(N,y(δ),x) := ∑
x−y(δ)<m<x+y(δ)

∑
b(k)

n |m
N/2≤n≤N

1≤ ∑
x−y(δ)<m<x+y(δ)

∑
p1...pk|m

pi distinct primes

1

≤ ∑
x−y(δ)<m<x+y(δ)

ω(m)k ≤ (2y(δ)+1) max
m<x+y(δ)

ω(m)k

2 (N logx)1/2Bk(N)
(

log2x
log log2x

)k

2 N1/2Bk(N)(logx)k+1/2,

where we used the trivial bound for the prime omega function. If we show that this
quantity is o(N), we are done. So we need

logx = o

((
N

B2
k(N)

)1/(2k+1)
)

.
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Hence we can take any f that satisfies

f (N) = o

((
N

B2
k(N)

)1/(2k+1)
)

,

where we recall that Bk satisfies (8). The theorem is then proved for x∈ [N,exp( f (N))].
If x < N, it holds

|ρN(x)|≤ |ρ%x&(x)|,

hence the result we have just proved holds also whenever x ≤ exp
(

f (%x&)
)
. But there

must exist U > 0 such that this holds for any x > U , since logx = o( f (x)). ()

We are now ready to prove a more general version of Theorem 2.1 of [2] for the
sequence

(
b(k)

n
)

n∈N.

Theorem 27. Let f and an be defined as in Proposition 26. Then for all intervals I ⊆R
of length |I| > exp(− f (N)) one has

P[XN ∈ I] =
∫

I
g(x)dx+o(|I|),

as N→ ∞, where

g(x) := 2
∫ ∞

0
cos(2πux)

∞

∏
n=1

cos

(
2πu

b(k)
n

)
du = 2

∫ ∞

0
cos(2πux)ρ(2u)du.

Proof. The proof follows the one of Theorem 2.1 of [2]. Let ε > 0 be fixed. We define

ξ = ξN,−ε := exp(−(1− ε) f (N)),
ξ+ = ξN,+ε := exp(−(1+ ε) f (N)),
ξ0 := ξN,0 = exp(− f (N)),

so that ξ−1 < ξ−1
0 and Proposition 26 holds for x ∈ [N,ξ−1

0 ]. For an interval I = [a,b]
with b−a > 2ξ0, let us define I+ := [a−ξ,b+ξ] and I− := [a+ξ+,b−ξ+]. Then one
can construct two smooth functions Φ±

N,ε,I(x) : R→ [0,1] (from now on, we will drop
the subscripts when they are clear by the context) such that






suppΦ+ ⊆ I+

Φ+(x) = 1 for x ∈ I,
suppΦ− ⊆ I
Φ−(x) = 1 for x ∈ I−,
(Φ±)( j)(x)2 j ξ− j for all j ≥ 0.

By the last equation, we know that the Fourier transforms of Φ± satisfy

(9) Φ̂±(x)2B (1+ |x|ξ)−B for any B > 0 and x ∈ R.
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Since
E[Φ−(XN)]≤ P[XN ∈ I]≤ E[Φ+(XN)],

we just need to show that

E[Φ±(XN)] =
∫

R
Φ±(x)g(x)dx+oε(|I|).

From now on, Φ will indicate either Φ+ or Φ−. By Lemma 16 we have

E[Φ(XN)] =
1
2

∫

R
Φ̂(x/2)ρN(x)dx = I1 + I2 + I3,

where I1, I2 and I3 are the integrals supported respectively in |x|< Nε, |x|∈ [Nε,ξ−(1+ε)]
and |x| > ξ−(1+ε). Note that ξ−(1+ε) = exp((1− ε2) f (N)) > exp(ε logN) = Nε, that
ξ−(1+ε) = ξ−(1−ε2)

0 < ξ−1
0 , and that ξ−(1+ε) ·ξ = ξ−ε = ξ−ε(1−ε)

0 →+∞ as N→+∞. By
Lemma 17 and Corollary 22, we have

I1 =
1
2

∫ Nε

−Nε
Φ̂(x/2)ρN(x)dx =

1
2

∫ Nε

−Nε
Φ̂(x/2)ρ(x)dx+O

(
‖Φ̂‖∞N−1+3ε

)

=
1
2

∫

R
Φ̂(x/2)ρ(x)dx+OA

(
‖Φ̂‖∞N−(A−1)ε

)
+O

(
‖Φ̂‖∞N−1+3ε

)

=
∫

R
Φ̂(x)ρ(2x)dx+Oε

(
‖Φ‖1N−1+3ε) ,

where to conclude we chose A = A(ε) sufficiently large. For the second integral, we
use Proposition 26 and obtain

|I2|≤ ‖Φ̂‖∞

∫ ξ−(1+ε)

Nε
|ρN(x)|dx≤ ‖Φ‖1

∫ ξ−(1+ε)

Nε
x−A dx≤ ‖Φ‖1

∫ +∞

Nε
x−A dx

2ε ‖Φ‖1N−Aε+ε2ε ‖Φ‖1N−1,

where, as before, to conclude we took A = A(ε) sufficiently large. For the last integral,
we recall that trivially |ρN(x)|≤ 1; using the bound (9), we obtain

|I3|≤
∫

|x|>ξ−(1+ε)
|Φ̂(x/2)|dx2B

∫ +∞

ξ−(1+ε)
(1+ xξ)−B dx = (B−1)(ξ−1 +ξ−(1+ε))1−B

2B ξB−1
0 = oε(ξ0) = oε(|I|),

where to conclude we chose B = B(ε) sufficiently large. We can now put these results
together: using Parseval’s theorem and the fact that ‖Φ‖1 = Oε(|I|), we get

E[Φ(XN)] =
∫

R
Φ̂(x)ρ(2x)dx+Oε

(
‖Φ‖1N−1+3ε)+oε(|I|) =

∫

R
Φ(x)g(x)dx+oε(|I|)

and the theorem is then proved. ()
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Remark 28. By Corollary 22, for any n ∈ N it holds
∫ +∞

−∞
|tnρ(t)|dt < ∞,

which implies by standard arguments (see e.g. §5 of [12]) that the density g is a smooth
strictly positive function. Besides, by the same corollary, g(x)2D x−D for any D > 0.

Corollary 29. For all τ ∈ R, we have

#

{
(s1, . . . ,sN) ∈ {−1,1}N :

∣∣∣∣∣τ−
N

∑
n=1

sn

b(k)
n

∣∣∣∣∣< δ

}
∼ 2N+1g(τ)δ(1+oτ(1))

as N→ ∞ and δ→ 0, uniformly in δ≥ exp(− f (N)), where f is defined as in Proposi-
tion 26. In particular, for N large enough, one has mN(τ) < exp

(
− f (N)

)
.

4. Addendum (by J. Benatar and A. Nishry): proof of Corollary 15

Proof. Let cm denote the m-th non-prime integer, so that c1 = 1, c2 = 4, c3 = 6, . . . We
first approximate τ with a restricted harmonic sum of the form ∑m≤M smcm, where
M = M(N) = N−π(N). Since Cm := cm/m∼ 1, we may apply Theorem 12 to obtain
a sequence of signs (sn)n≤M ∈ {−1,1}M such that

−1≤ τ′ := ∑
m≤M

smcm− τ≤ 1.

Moreover, taking (pn)n∈N to be the sequence of primes, we have that B(n)∼ logn and
hence we may apply Theorem 13 to get a choice of signs (σn)n≤π(N) ∈ {−1,1}π(N)

such that ∣∣∣τ′ − ∑
n≤π(N)

σn

pn

∣∣∣2τ,ε exp
(
−N1/3−ε

)
.()
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1. Numerical data

N mN(0) · p1 · · · pN
1 1
2 1
3 1
4 23
5 43
6 251
7 263
8 21013
9 1407079

10 4919311
11 818778281
12 2402234557
13 379757743297
14 3325743954311
15 54237719914087
16 903944329576111
17 46919460458733911
18 367421942920402841
19 17148430651130576323
20 1236225057834436760243
21 4190310920096832376289
22 535482916756698482410061
23 29119155169912957197310753
24 443284248908491516288671253
25 28438781483496930396689638231
26 10196503226925713726754541885481
27 137512198125317766267968137765087
28 5572821202475305606211985553786081
29 77833992457426020006787481021085581
30 24244850423688161715955346535954790877
31 2030349334778419995324119439659994086131
32 76860130392109667765387079377871685276909
33 5191970624445760882844533168270184721318637
34 329643209271348431895096550792159132283920307
35 19171590315567357340242017182966253037383120953
36 58192378490977430486851365332352874578233287403
37 837477642920747839191618216897250374978659503996169
38 130665466261033919414441892800025408642432364448372023
39 7541550169407232608689149525984967898398947805296216009
40 23868339955752715692132986729285170427530832996153507207

Table 1: The values, multiplied by p1 · · · pN , of the smallest signed harmonic sums
with the first N primes, with N up to 40. See also OEIS A332399.
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N ∆N · p1 · · · pN
1 1
2 1
3 1
4 2
5 22
6 35
7 263
8 4675
9 24871

10 104006
11 2356081
12 6221080
13 141769355
14 6096082265
15 6928889495
16 367231143235
17 1283811918935
18 78312527055035
19 5246939312687345
20 372532691200801495
21 8815359347599933286
22 223849990729887044174
23 6148176498383067879445
24 179847837287937160817963
25 663024394602752425373130

Table 3: The values, multiplied by p1 · · · pN , of the shortest distances ∆N between
different signed harmonic sums with the first N primes, with N up to 25.





Rendiconti Sem. Mat. Univ. Pol. Torino
Vol. 78, 1 (2020), 143 – 147

G. Zaghloul

ZEROS OF GENERALIZED HURWITZ ZETA FUNCTIONS

Abstract. In [6], Davenport and Heilbronn proved that the classical Hurwitz zeta function
ζ(s,α) has infinitely many zeros in the half-plane σ > 1, provided that α /∈ {1, 1

2 } is rational
or transcendental. The algebraic irrational case was later settled by Cassels [3]. This note is
a survey of the main results about zeros of Dirichlet series in the region of absolute conver-
gence. In particular, we focus on the results in [12], where a recent contribution by Chatterjee
and Gun [4] is improved. Given a function f (n) periodic of period q ≥ 1 and a real number
0 < α ≤ 1, in [12] it is shown that the series F(s, f ,α) = ∑∞

n=0
f (n)

(n+α)s has infinitely many
zeros for σ > 1.

1. Introduction

In the literature, several results show that non-trivial linear combinations of L-functions
may have infinitely many zeros in the region of absolutely convergence, so in partic-
ular they do not satisfy the Riemann hypothesis. For instance, in 1935 Potter and
Titchmarsh showed the Epstein zeta function has infinitely many zeros on the critical
line σ = 1

2 , but they also gave an example of an Epstein zeta function, without a Euler
product, which has a zero in the critical strip not lying on the critical line (cf. [9]).
In 1936, Davenport and Heilbronn [6] completed the analysis of the Epstein zeta func-
tion and they also studied the Hurwitz zeta function, defined by

(1) ζ(s,α) =
∞

∑
n=0

1
(n+α)s ,

for s = σ + it ∈ C with σ > 1 and α ∈ (0,1]. They proved that if α /∈ {1, 1
2} is either

rational or transcendental, ζ(s,α) has infinitely many zeros in σ > 1.
In 1961, the remaining, more difficult, case of α algebraic irrational was settled by
Cassels [3], by means of a lemma of algebraic number theory. The following theorem
summarizes the results for the zeros of the Hurwitz zeta function.

THEOREM 1 (Davenport-Heilbronn, Cassels). Let α∈ (0,1]. If α /∈ {1, 1
2}, then

ζ(s,α) has infinitely many zeros in σ > 1.

REMARK 1. We observe that if α = 1, ζ(s,1) = ζ(s), while for α = 1
2 we get

ζ(s, 1
2 ) = (2s−1)ζ(s). So, for this values the Hurwitz zeta function does not vanish in

the half-plane σ > 1.

The proof of Theorem 1 is based on Bohr’s theory of equivalent Dirichlet series.
Let f (s) and g(s) be two general Dirichlet series

f (s) =
∞

∑
n=1

a(n)e−λ(n)s and g(s) =
∞

∑
n=1

b(n)e−λ(n)s

143
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and let B be a basis for the sequence of exponents Λ = {λ(n)} (cf. [1] for more details).
Then, f (s) and g(s) are equivalent with respect to the basis B if there exists a sequence
of real numbers Y = {y(n)} such that

b(n) = a(n)ei(RBY )n for all n≥ 1

where RB is a matrix such that Λ = RBB.
An important property of Dirichlet series used in the proof is almost periodicity.

DEFINITION 1. A holomorphic function f (s) = f (σ+ it) defined in some verti-
cal strip−∞≤ σ1 < σ < σ2 ≤+∞ is Bohr almost periodic in (σ1,σ2) if, for any ε > 0,
the set

{τ ∈ R|| f (s+ iτ)− f (s)| < ε for all σ1 < σ < σ2, t ∈ R}

is relatively dense, i.e. there exists ! = !( f ,ε,σ1,σ2) > 0 such that any interval of
length ! contains at least an element of the above set.

Another key ingredient is Rouché’s theorem.

THEOREM 2 (Rouché). Let two functions f (s) and g(s) be analytic inside and
on a closed simple curve C . Assume that

| f (s)| > |g(s)| on C .

Then, f (s) and f (s)+g(s) have the same number of zeros inside C .

The idea is to find a Dirichlet series equivalent to ζ(s,α) whit a zero s0 = σ0 + it0
in σ > 1. Then, by almost periodicity and Rouché’s theorem, one concludes that, for
any ε > 0 and for T sufficiently large,

|{s = σ+ it|ζ(s,α) = 0,σ0− ε < σ < σ0 + ε,a < t < T +a}|G T.

The same argument has been used by Conrey and Ghosh in [5] to prove the existence
of infinitely many zeros with σ > 1 for the Dirichlet series associated to the square of
the Ramanujan’s τ function.
In 2009, Saias and Weingartner [11] proved that Dirichlet series with periodic coeffi-
cients can be written as linear combinations of the form

(2) F(s) =
N

∑
j=1

Pj(s)L(s,χ j),

where for j = 1, . . . ,N, Pj(s) is a Dirichlet polynomial and L(s,χ j) is the Dirichlet
L-function associated to the primitive character χ j. They also show that, if (2) does
not reduce to a single term, then it has infinitely many zeros in σ > 1. They were in-
spired by Kaczorowski and Kulas [8], who proved that (2) has infinitely many zeros for
1
2 < σ < 1 if N ≥ 2, using a strong universality property. However, since the universal-
ity property introduced in [8] does not hold in strips in the half-plane σ > 1, Saias and
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Weingartner proved a sort of weak joint universality property of Dirichlet L-functions.
In 2014, Booker and Thorne [2] extended the result to combinations of L-functions
coming from automorphic representations, under Ramanujan conjecture. In 2016,
Righetti [10] modified the proof obtaining the analogous result in a more general set-
ting, (combinations of Dirichlet series with an Euler product, bounded coefficients and
satisfying orthogonality relations).

2. The generalized Hurwitz zeta function

Let now f (n) be a periodic function of period q≥ 1 and let α ∈ (0,1]. The generalized
Hurwitz zeta function is defined for σ > 1 by

F(s, f ,α) =
∞

∑
n=0

f (n)
(n+α)s .

Since the coefficients are periodic, it can be easily observed that

F(s, f ,α) =
1
qs

q−1

∑
b=0

f (b)ζ
(

s,
b+α

q

)
.

Then, it follows by the well-known properties of the classical Hurwitz zeta function
(cf. e.g. [7]) that F(s, f ,α) admits a meromorphic continuation to the whole complex
plane with a possible simple pole at s = 1 with residue

Ress=1 F(s, f ,α) = q−1
q−1

∑
b=0

f (b).

In 2014, Chatterjee and Gun [4] proved that F(s, f ,α) has infinitely many zeros in
σ > 1 if α is irrational under some restrictive conditions.

THEOREM 3 (Chatterjee−Gun). Let α be a positive transcendental number and
let f be a real valued periodic function with period q ≥ 1. If F(s, f ,α) has a pole at
s = 1, then F(s, f ,α) has infinitely many zeros for σ > 1.

THEOREM 4 (Chatterjee−Gun). Let α be a positive algebraic irrational num-
ber and let f be a positive valued periodic function with period q ≥ 1. Moreover, let

c :=
max

n
f (n)

min
n

f (n) < 1.15. If F(s, f ,α) has a pole at s = 1, then F(s, f ,α) has infinitely many

zeros for σ > 1.

In [12], we showed that these assumptions can be removed, proving the result
in full generality, including the case of α rational.

THEOREM 5. Let f (n) be a non identically zero periodic function with period
q≥ 1 and let 0 < α≤ 1 be a real number. If α /∈ {1, 1

2}, or if α ∈ {1, 1
2} and F(s, f ,α)

is not of the form P(s)L(s,χ), where P(s) is a Dirichlet polynomial and L(s,χ) is the
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L-function associated to a Dirichlet character χ, then F(s, f ,α) has infinitely many
zeros with σ > 1.

We now briefly sketch the idea of the proof of Theorem 5.

Case α rational. It can be easily verified that F(s, f ,α) can be written as a
linear combination of Dirichlet L-functions, i.e.

(3) F(s, f ,α) = ∑
χ∈C

Pχ(s)L(s,χ),

where C is a set of primitive Dirichlet characters and Pχ(s) is a Dirichlet polynomial.
Then, by the result of Saias and Weingartner, the sum (3) does not vanish in the
half-plane σ > 1 if and only if it reduces to a single term. It can be shown that (3) can
be of the form P(s)L(s,χ) only if α = 1, 1

2 .

Case α transcendental. The argument of Davenport and Heilbronn for the
Hurwitz zeta function applies also to F(s, f ,α), since

∞

∑
n=0

| f (n)|
(n+α)σ →+∞ as σ→ 1+,

so the assumption of the existence of the pole at s = 1 can be avoided.

Case α algebraic irrational. The proof is based on a modification of Cassels’
original lemma. Let K = Q(α), let OK be its ring of integers and let a = {r ∈ OK |
r · (α)⊆ OK} be the denominator ideal of α.

LEMMA 1. Given an integer q≥ 1, fix b∈ {0, . . . ,q−1}. There exists an integer
N0 > 106q, depending on α and q, satisfying the following property: for any integer
N > N0 put M = %10−6N&, then at least 0.54 M

q of the integers n≡ b (mod q), N < n≤
N +M are such that (n+α)a is divisible by a prime ideal pn for which

pn " ∏
m≤N+M

m/=n

(m+α)a.

The proof of the lemma is based on facts from algebraic number theory and it
follows Cassels’ argument, with some small modifications.

We now briefly describe the proof of Theorem 5 when α is algebraic irrational,
referring to [12] for the complete argument. The idea is to rearrange Cassels’ argument,
applying it to each residue class modulo q.
By Bohr’s theory, we know that it is sufficient to find a series equivalent to F(s, f ,α)
with a zero in σ > 1. In this case, this means finding a σ ∈ (1,1+δ) and a function ϕ
of absolute value 1 multiplicative on the group of ideals of OK , such that

∞

∑
n=0

f (n)ϕ((n+α)a)
(n+α)σ = 0.
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It can be noticed that it is enough to define ϕ(p), with |ϕ(p)| = 1, on the prime ideals
p of OK dividing (n + α)a. To this end, the idea is to apply Lemma 1 to each residue
class and to use Bohr’s results on addition of convex curves, proceeding as in Cassels.
The conclusion follows summing over the residue classes modulo q and, as usual, by
almost periodicity and Rouché’s theorem.

References

[1] H. Bohr, Zur Theorie der allgemeinen Dirichletschen Reihen, Math. Ann. 79 (1918), 136156.

[2] A. R. Booker, F. Thorne, Zeros of L-functions outside the critical strip, Algebra Number Theory 8
(2014), no. 9, 20272042.

[3] J.W.S. Cassels, Footnote to a note of Davenport and Heilbronn, J. London Math. Soc. 36 (1961),
177-184.

[4] T. Chatterjee and S. Gun, On the zeros of generalized Hurwitz zeta functions, J. Number Theory, 145
(2014), 352-361.

[5] J. B. Conrey, A. Ghosh, Turán inequalities and zeros of Dirichlet series associated with certain cusp
forms, Trans. Amer. Math. Soc. 342 (1994), no. 1, 407419.

[6] H. Davenport and H. Heilbronn, On the zeros of certain Dirichlet series I, II, Journal London Math.
Soc. 11 (1936), 181-185, 3017-312.

[7] R. Garunkstis, A. Laurincikas, The Lerch Zeta Function, Springer (2002).

[8] J. Kaczorowski, M. Kulas, On the non-trivial zeros off the critical line for L-functions from the extended
Selberg class, Monatsh. Math. 150 (2007), no. 3, 217232.

[9] H. S. A. Potter, E. C. Titchmarsh, The zeros of Epsteins zeta functions, Proc. London Math. Soc. S2-39
(1935), no. 1, 372-384.

[10] M. Righetti, Zeros of combination of Euler product for σ > 1, Monatsh Math 180 (2016), 337-356.

[11] E. Saias and A. Weingartner, Zeros of Dirichlet series with periodic coefficients, Acta Arithmetica 140
(2009), 335-344.

[12] G. Zaghloul, A note on the zeros of generalized Hurwitz zeta functions, J. Number Theory (2019),
https://doi.org/10.1016/j.jnt.2018.09.016.

AMS Subject Classification: 11M35

Giamila ZAGHLOUL,
Dipartimento di Matematica, Università degli Studi di Genova
via Dodecaneso 35, 16146 Genova, ITALIA
e-mail: giamizaghi@gmail.com

Lavoro pervenuto in redazione il 10.07.2019.





Special Issues and Proceedings published in the Rendiconti

Differential Geometry (1992)
Numerical Methods in Astrophysics and Cosmology (1993)
Partial Differential Equations, I-II (1993–1994)
Problems in Algebraic Learning, I-II (1994)
Number Theory, I-II (1995)
Geometrical Structures for Physical Theories, I-II (1996)
Jacobian Conjecture and Dynamical Systems (1997)
Control Theory and its Applications (1998)
Geometry, Continua and Microstructures, I-II (2000)
Partial Differential Operators (2000)
Liaison and Related Topics (2001)
Turin Fortnight Lectures on Nonlinear Analysis (2002)
Microlocal Analysis and Related Topics (2003)
Splines, Radial Basis Functions and Applications (2003)
Polynomial Interpolation and Projective Embeddings - Lecture Notes
of the School (2004)
Polynomial Interpolation and Projective Embeddings - Proceedings of
the Workshop of the School (2005)
Control Theory and Stabilization, I-II (2005–2006)
Syzygy 2005 (2006)
Subalpine Rhapsody in Dynamics (2007)
ISASUT Intensive Seminar on Non Linear Waves, Generalized Continua
and Complex Structures (2007)
Lezioni Lagrangiane 2007–2008 (2008)
Second Conference on Pseudo-Differential Operators and Related
Topics: Invited Lectures (2008)
Second Conference on Pseudo-Differential Operators and Related Topics (2009)
In Memoriam Aristide Sanini (2009)
Workshop on Hodge Theory and Algebraic Geometry (2010)
School on Hodge Theory (2011)
Generalized Functions, Linear and Nonlinear Problems. Proceedings of
the International Conference GF 2011 (2011)
Forty years of Analysis in Turin. A conference in honour of Angelo Negro (2012)
Proceedings of the School (and Workshop) on
Invariant Theory and Projective Geometry (2013)
Stochastic Analysis at the 8th Congress of Isaac (2013)
Special issue dedicated to Alberto Conte on the occasion of his 70th birthday (2013)
Rate-independent evolutions and hysteresis modelling (2014)



RENDICONTI DEL SEMINARIO MATEMATICO-UNIVERSITÀ
E POLITECNICO DI TORINO

Volume 78, N. 1 (2020)

CONTENTS

S. Barbero, U. Cerruti, N. Murru, On Polynomial Solutions of the Diophantine
Equation (x+ y−1)2 = wxy . . . . . . . . . . . . . . . . . . . . . . . . 5

F. Battistoni, Discriminants of number fields and surjectivity of trace homomor-
phism on rings of integers . . . . . . . . . . . . . . . . . . . . . . . . . . 13

D. Bazzanella and C. Sanna, Least common multiple of polynomial sequences . 21
F. Caldarola, On the maximal finite Iwasawa submodule in Zp-extensions and

capitulation of ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
M. Ceria, T. Mora, M. Sala, Zech tableaux as tools for sparse decoding . . . . . 43
G. Coppola, Recent results on Ramanujan expansions with applications to cor-

relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
M. Elia, Continued Fractions and Factoring . . . . . . . . . . . . . . . . . . . 83
E. Tron, The greatest common divisorof linear recurrences . . . . . . . . . . . 103
Alessandro Gambini, Remis Tonon, Alessandro Zaccagnini, with an addendum

by Jacques Benatar and Alon Nishry, Signed harmonic sums of integers
with k distinct prime factors . . . . . . . . . . . . . . . . . . . . . . . . 125

G. Zaghloul, Zeros of generalized Hurwitz zeta functions . . . . . . . . . . . . 143

ISSN 0373-1243

V
L

GI
I

V
R

E
N

G
AA

E

V
T

R
N

R
O

S

T

V

A

I
S

VS

M

V

I UNIVERSITÀ DEGLI STUDI DI TORINO
DIPARTIMENTO DI MATEMATICA


