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INTEGERS IN A RATIONAL SEQUENCE

Abstract. We discuss a peculiar rational sequence whose terms, in very specific cases, are
natural numbers. We also discuss the possibility of having prime numbers appearing in the
sequence.

1. Introduction

In this paper we analyze the rational sequence

(1) ad(n) =
dn +1

2n d ∈ N,d > 1

and we determine the conditions that ensure that ad(n) is an integer, or even a prime
number.

The sequence (1) can contain integers only if d is odd and, in this case, we
prove that the number of integers in the sequence is finite. Then, we proceed to study
whether, for a fixed d, the sequence

(
ad(n)

)
contains prime numbers, and we identify

a few conditions to ensure it.

2. Integers in the rational sequence

To prove the main theorems we need the lifting-the-exponent (LTE) lemma, which
provides a formula for computing the p-adic valuation νp of special forms of integers.

LEMMA. (Lifting-the-exponent lemma). For any integers x, y and positive in-
tegers n, p, where n is odd and p is a prime such that p � x and p � y, (n, p) = 1 and
p | x+ y, then νp(xn + yn) = νp(x+ y).

The lemma, often used in olympic problem solving contests [3], belongs to the
folklore and it is typically attributed to Lucas [4] and Carmichael [1]. It is related to
Hensel’s lemma [2, 5], and it is very useful in several applications, see Sanna [6].

It is straightforward to prove that

THEOREM 1. If d ∈ N is even, then
(
ad(n)

)
does not contain natural numbers.

Proof. If d ∈ N is an even number, then the numerator in (1) is odd, for all n.

The situation is more interesting and more intricate if we consider an odd d.

THEOREM 2. If d ∈ N is odd, then ad(n) /∈ N, ∀n even.
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Proof. d ∈ N odd implies either d ≡ 1 (mod 4) or d ≡ 3 (mod 4). Then we have

d2 ≡ 1 (mod 4)

and thus
d2k ≡ 1 (mod 4), ∀k ∈ N,

which is equivalent to
dn ≡ 1 (mod 4), ∀n ∈ N even

and therefore
dn +1 ≡ 2 (mod 4), ∀n ∈ N even.

The number 4 does not divide dn +1, which implies

dn +1
2n /∈ N, ∀n even

THEOREM 3. For every odd d ∈ N, the sequence
(
ad(n)

)
has at most a finite

number of terms that belong to N. Moreover, the sequences
(
ad(n)

)
that contain the

maximum number of natural terms are those with d = 2k −1.

Proof. Using the LTE lemma with p = 2, x = d and y = 1, we can prove that

dn +1
2n ∈ N ⇐⇒ d +1

2n ∈ N

which implies

(2) d +1 = 2nm

for some m ∈ N. Fixing the value of d, equation (2) has a finite number of solutions
and this number is maximum if the integer d has the form d = 2k −1.

THEOREM 4. For every odd d ∈N, the integer terms of
(
ad(n)

)
are only among

those with n ≤ log2 (d +1).

Proof. Equation (2) states a condition:

d +1 = 2nm , m ∈ N, d odd.

Thus we have
d +1 = 2nm ≥ 2n

and so
log2 (d +1)≥ n.

COROLLARY 1. Let d = 2k −1.
If k is odd then the only integer terms in the sequence are a1, a3, a5, . . . , ak.
If k is even then the only integer terms in the sequence are a1, a3, a5, . . . , ak−1.
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In general, the problem regarding how many integer terms are present in the
rational sequence (1) depends on the p-adic valuation of d +1.

THEOREM 5. Given d such that ν2 (d +1) = 1, that is there exists an odd inte-
ger H such that d +1 = 2H, then a1 ∈ N and

(
ad(n)

)
n≥2 does not contain integers.

Proof. If d +1 = 2H, then equation (2) becomes

d +1 = 2nm

2H = 2nm(3)

The only solution to equation (3) is n = 1 and m = H.

d = 2k −1 and ν2 (d +1) = 1 are the extreme cases. In the remaining ones, the
number of integers in the sequence

(
ad(n)

)
assumes values in-between.

3. Prime numbers in the rational sequence

We now wonder whether, for a fixed d, the sequence
(
ad(n)

)
not only contains integers,

but some of them are prime numbers. The answer to this question is not easy, but we
can make some observations.

By inspection of a few terms, it is easy to identify that d = 7 brings to a3 =
43, which is a prime number. In the case d = 31, there are only two integers in the
sequence, a1 = 16 and a3 = 3724, none of which is prime. This is sufficient to state
that the sequence

(
ad(n)

)
may contains prime numbers, but it doesn’t always occur.

More precisely, we can state the following theorems.

THEOREM 6. The term a1 is prime if and only if d = 2p−1, where p is a prime
number.

Proof. The proof follows immediately from the definition of the sequence in equation
(1).

THEOREM 7.
(
ad(n)

)
may contain primes for n ≥ 2 only if d = 2k −1 and k is

an odd integer. In this case only the term ak may be a prime.

Proof. From Theorem 1 we know that only terms with odd n of the sequence
(
ad(n)

)

may be integer. From the LTE lemma it follows that

(4)
d +1

2n divides
dn +1

2n = ad(n)

for every odd n. If ad(n) is prime and d > 1, this implies that

d +1
2n = 1
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and then
d = 2n −1.

This prove the first part of the Theorem.
Furthermore from Equation 4 it follows that if

d +1
2n > 1 ⇐⇒ n < log2 (d +1)

then ad(n) is not prime.
It is known from Theorem 4 that ad(n) is integer if n ≤ log2 (d +1) and then

none of the integer terms in the sequence can be a prime number, except for ak; where
k is such that d = 2k −1.

Theorem 7 states that ak may be prime only for d = 2k − 1, with odd k but,
unfortunately, this does not always occur.

For example for d = 7 (k = 3, d = 2k − 1), we have a1 and a3 integers, and
a3 = 43 is prime. On the other hand, for d = 31 (k = 5, d = 2k −1) we have a1, a3 and
a5 integers, but a5 = 894661 is not prime (it is divisible by 41).

To analyze the primality of the values of all the sequences, as d varies in the odd
naturals, it is convenient to set d = 22k+1 −1, k ≥ 1, and consider the sequence

(5) ck =

(
22k+1 −1

)2k+1
+1

22k+1 .

Thanks to the above theorems, it is possible to prove that this new sequence is
an integer sequence and contains all the possible prime numbers belonging to all the
sequences under study.

By calculations, we can verify that the prime numbers that we are looking for
are very few. More precisely, we have verified that there exist only two primes in all
the sequences with d ≤ 10100: they belong to the sequences with d = 23 − 1 = 7 and
with d = 243 −1 = 8796093022207, respectively.

Our conjecture is the following.

CONJECTURE. There are only finitely many values of d such that the corre-
sponding sequence

(
ad(n)

)
contains prime numbers.

We currently have only computational evidence and heuristic arguments for this
conjecture. We look forward to achieving further results in a future work.
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