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REALIZATION OF DISTANCE MATRICES BY UNICYCLIC
GRAPHS

Abstract. Given a distance matrix D, we study the behavior of its compaction vector and
reduction matrix with respect to the problem of the realization of D by a weighted graph. To
this end, we first give a general result on realization by n−cycles and successively we mainly
focus on unicyclic graphs, presenting an algorithm which determines when a distance matrix
is realizable by such a kind of graph, and then, shows how to construct it.

1. Introduction

Let D be a matrix whose rows and columns are indexed by a set X . We assume that
D is symmetric and has zero entries on the main diagonal. In phylogenetics, this kind
of matrices are called dissimilarity matrices. Usually, we take X = [n] := {1,2, . . . ,n}.
Hence a dissimilarity matrix D can also be seen as a map D : [n]2 → R, with D(i, j) =
D( j, i) and D(i, i) = 0 for each i, j ∈ [n].

A distance matrix (sometimes also called metric) is a non-negative dissimilarity
matrix which satisfies the triangle inequality D(i, j)≤D(i,k)+D(k, j) for all i, j,k ∈X .
In [7, 10], one can find some results about this kind of matrices.

We say that D has a realization if there is a weighted graph (so one where a
non-negative weight is assigned to each edge) whose nodes set contains X and such
that the distance (i.e. the length of the shortest path) between nodes i, j ∈ X is exactly
D(i, j). The problem of realizing a distance matrix by a graph of minimal total weight
is a difficult problem. A lot of authors have considered the special case where the
graph is a tree and the distance matrix is a tree metric, also called an additive metric.
This case has been studied intensively and is well understood. The main result is the
so-called Tree Metric Theorem, (see [4] or [16, Theorem 2.36]), which is based on the
four-point condition, which is a necessary and sufficient condition for a matrix to be
realized by a tree.

Efficient algorithms constructing such trees were published in [8] or [18]. But
real data describe merely a tree metric because they arise from a similarity measure that
includes errors. Such a measure appears in various fields such as the study of evolution
( [1,14]), the synthesis of certain electrical circuits ( [9]) or the traffic modelling ( [6]).
Thus, many authors address the problem of realization by a graph which is not a tree.
For example in [17] and [18] the author characterizes, respectively, distance matrices
which have a unicyclic graph as unique optimal realization and introduces an algorithm
for finding optimal graph of non-tree realizable distance matrices. In [5] can be found
results of realization for some particular classes of graphs: paths, caterpillar, cycles,
bipartite graphs, complete graphs and planar graphs. The particular class of cactus
metric is studied deeply in [11].
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In this paper we consider the problem of realizing a distance matrix by a uni-
cyclic graph, i.e. a graph containing only one cycle. This kind of graphs represents a
first non-trivial case in the study of phylogenetic networks. See, for example, Figure 4
in [3], Figures 2 and 5 in [12], Figures 1 and 4 in [19].

Using and generalizing the definitions of compaction and reduction processes
contained in [20] (and basing, especially compaction, on the results in [10]), we estab-
lish a recursive method to “contract” a distance matrix D, until we end with a matrix
where contractions are no more possible. The analysis of this final matrix by Theorem
2, and Propositions 1 and 2, permits to establish if it is realizable, or not, by an n−cycle
or a tree. Then, in case of positive answer, moving backward we are able to reconstruct
the tree or the unicyclic graph which realizes D. Moreover, Theorem 2, combined with
a condition on compaction values, furnishes a result on optimality of the realization;
this is stated in Proposition 3. The case of unicyclic graphs can be seen as a particular
case of cactus graphs, however we would like to point out that the approach of this pa-
per is different with respect to [11]: the attempt, here, is to give an algorithm that gives
an optimal realization of a distance matrix M, just working with repeated processes of
compaction and reduction on it. Our interest in such approach is due to the fact that the
formula in Theorem 2 can be written as a tropical polynomials and, considering also
the compaction vector, we get another tropical polynomial (formula (15) in Section
6) which is the corner locus of a dissimilarity matrix which realizes a unicyclic graph
with pendant edges. As explained in Section 6, we hope that this approach leads to the
description of the moduli space of tropical curves of genus 1.

2. Preliminaries

We initially recall, from [20], the definitions of compaction and reduction processes.
Let D be a distance matrix of order n× n and consider the n× n−matrices Ei

where

(Ei)( j,k) =


1 if j = i ̸= k
1 if j ̸= i = k
0 elsewhere

Let Di(α) = D−α ·Ei. The following result establishes for which values of α , Di(α)
is still a distance matrix.

THEOREM 1 ( [10], Lemma 1). Di(α) is a distance matrix if and only if α ≤
1
2 · (D(p, i)+D(i,r)−D(p,r)), for all p,r ̸= i.

The new matrix Di(α), obtained from D, is called the i−th compaction matrix
of D with respect to α . The compaction of an index i of D leads to a new matrix
with, possibly, equal rows and, by symmetry, equal columns (see [20]). By deleting
all, but one, repeated rows and columns we obtain a new matrix which is called i−th
reduction matrix of D with respect to α .
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Here, we are interested in considering the maximal value α for which Di(α) is
still a distance matrix. Moreover, we want to work for each index i of compaction, with
i = 1, . . . ,n, and collect these data into a vector. This leads to the following

DEFINITION 1. Given a distance matrix D of order n×n, the compaction vec-
tor of D, aD = (a1, . . . ,an), is defined as

ai =
1
2
· min

p ̸=i,r ̸=i
{D(p, i)+D(i,r)−D(p,r)}.

Consider the tree in Figure 1. Its distance matrix is

(1) D =


0 3 5 6
3 0 6 7
5 6 0 7
6 7 7 0

 .

The compaction vector of D is aD = (1,2,3,4).

Figure 1: The tree of matrix in (1).

It is a well known fact that, in case D is obtained from a weighted graph and if i
is a leaf, then there is a realization of D in which the entry ai is the weight of the edge
connecting the leaf i to its internal node ( [20]). As a matter of fact, consider the graph
in Figure 2(a). Its distance matrix is

(2) D =


0 3 5 4
3 0 5 5
5 5 0 5
4 5 5 0


and its compaction vector is aD = (1, 3

2 ,
5
2 ,2). In this case, the entries of aD do not

correspond to the weights of the edges incident to the leaves. However, we can notice
that the graph in Figure 2(b) has the same distance matrix, and hence the same com-
paction vector, of the graph in Figure 2(a) and, for this graph, the weights of the edges
connecting the leaves to the internal nodes correspond to the entries of the compaction
vector. Both these graphs are realizations of the matrix in (2).

Once the compaction vector aD of D is computed, we consider the following
matrix

(3) D(aD) = D−a1 ·E1 −·· ·−an ·En
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(a) (b)

Figure 2: The graphs of matrix in (2).

DEFINITION 2. The matrix D(aD) in (3) is called the compaction matrix of D.

DEFINITION 3. Let D(aD) be the compaction matrix of D as defined in (3). The
matrix D̂aD

obtained removing from D(aD) all but one repeated rows and columns is
called reduction matrix of D. If there are not equal rows (and columns) in D(aD),
then D̂aD

= D(aD).

Notice that now we omit the expression “with respect to aD” and we do not
refer to a specific index i, since we are considering the compaction process along all
the indices and only with respect to the corresponding values of the compaction vector;
while in the standard definition of compaction matrix the computation is taken only
with respect to an index and a given value α ( [20]). Thus process of reduction is dif-
ferent with respect to the one in [20], where only one of the equal rows (and columns)
is removed.

EXAMPLE 1. Let D be the following distance matrix

D =


0 4 6 6 3
4 0 5 5 5
6 5 0 2 5
6 5 2 0 5
3 5 5 5 0



Its compaction vector is

aD =

(
1,

3
2
,1,1,1

)
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from which we get

D(aD) = D−E1 −
3
2

E2 −E3 −E4 −E5 =


0 3

2 4 4 1
3
2 0 5

2
5
2

5
2

4 5
2 0 0 3

4 5
2 0 0 3

1 5
2 3 3 0

 .

Notice that the third and fourth rows of D(aD) are equal, so the reduction matrix is

D̂aD
=


0 3

2 4 1
3
2 0 5

2
5
2

4 5
2 0 3

1 5
2 3 0

 .

We prove now two results concerning particular behavior of compaction and
reduction matrices.

PROPOSITION 1. Let D be a distance matrix of order n× n, if its reduction
matrix D̂aD

has order 2, then D is realizable by a tree.

Proof. If D̂aD
has order 2, then

(4) D̂aD
=

(
0 δ
δ 0

)
for some δ ∈ R>0.

Moreover, for reduction process, there exist positive integers n1 and n2, with
n1 + n2 = n, such that D(aD) has a set of n1 equal rows (and correspondent columns)
and a set of n2 equal rows (and correspondent columns). For simplicity we assume that
the first n1 rows are equal, and hence the remaining n2 rows are equal.

Then by (4) we get that D(aD) has the form

(5)

(
0n1×n1

δ1n1×n2
δ1n2×n1

0n2×n2

)

where 0k×l denotes the null matrix of order k× l and δ1k×l denote the matrix of order
k× l whose entries are all equals to δ .

Let aD =(a1, . . . ,an) be the compaction vector of D, by definition of compaction
matrix we know that

(6) D(aD) =


0 D(1,2)−a1 −a2 · · · D(1,n)−a1 −an

D(2,1)−a1 −a2 0 · · · D(2,n)−a2 −an
...

...
. . .

...
D(n,1)−a1 −an D(n,2)−a2 −an · · · 0
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Comparing the entries of the matrices in (5) and (6) one has

D(i, j) =


0 if i = j
ai +a j if 1 ≤ i < j ≤ n1 or n1 +1 ≤ i < j ≤ n1 +n2

δ +ai +a j otherwise

from which follows that D has a realization by the tree in Figure 3.

Figure 3: Realization for Proposition 1.

EXAMPLE 2. Let D be the distance matrix

D =


0 2 3 3
2 0 3 3
3 3 0 2
3 3 2 0


From its compaction vector

aD = (1,1,1,1)

we get

D(aD) = D−E1 −E2 −3E3 −E4 =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 .

In this case D(aD) has two pairs of equal rows and, after the reduction process, we get

D̂aD
=

(
0 1
1 0

)
.

Then, by Proposition 1, D has a realization by the tree in Figure 4.

The second result concerns the compaction matrix.
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Figure 4: Tree which realizes the matrix of Example 2.

PROPOSITION 2. Let D be a distance matrix of order n× n, if its compaction
matrix D(aD) is the null matrix, then D is realizable by a star tree with n leaves (and a
unique internal node of valency n).

Proof. Let aD = (a1, . . . ,an) be the compaction vector of D. By definition of com-
paction matrix we know that

D(aD) =


0 D(1,2)−a1 −a2 · · · D(1,n)−a1 −an

D(2,1)−a1 −a2 0 · · · D(2,n)−a2 −an
...

...
. . .

...
D(n,1)−a1 −an D(n,2)−a2 −an · · · 0


Since by hypothesis, D(aD) is the null matrix, one has

D(i, j) =

{
ai +a j if i ̸= j
0 otherwise

from which easily follows that D has a realization by the star tree in Figure 5.

EXAMPLE 3. Let D be the distance matrix

D =


0 3 4 5
3 0 5 6
4 5 0 7
5 6 6 0


From its compaction vector

aD = (1,2,3,4)

we get

D(aD) = D−E1 −2E2 −3E3 −4E4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Then, by Proposition 2, D has a realization by the tree in Figure 6.
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Figure 5: Realization for Proposition 2.

Figure 6: Star tree which realizes the matrix of Example 3.

3. Realizations by cycles

In this section we give a useful result for matrices which are realizable by cycles. While
in other research papers the order of the vertices is given a priori, or the vertices are
eventually re-labelled after some algorithm (see, for example, Definition 4.2 in [5]),
the following theorem gives a more general characterization of such matrices also if
the order of vertices is not known.

Let π = (i1, i2, . . . , in) be a permutation on [n]. We denote by πs(i) the image of
i after applying s time the permutation π .

We recall that a permutation π of [n] is real if it has only one term in the cycle-
notation. For example π1 = (2,3,4,5,1) is real, while π2 = (2,1,4,5,3) is not since it
can be written as (2,1)(4,5,3).

THEOREM 2. A distance matrix D, of order n, has a realization by an n−cycle
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C if and only if there exists a real permutation π of [n], such that

(7) D(i,πs(i)) = min

{
s−1

∑
t=0

D(π t(i),π t+1(i)),
n−1

∑
t=s

D(π t(i),π t+1(i))

}
for all i = 1, ...,n and s = 1, ...,n−1.

Proof. If D has a realization by an n−cycle C, let i1, i2, . . . , in, with i1 = 1, be the labels
of the nodes taken in clockwise order. Then π = (i2, . . . , in,1) is a real permutation and
since, on an n−cycle, the distance between nodes i and πs(i) is the minimum of the two
paths from i to πs(i), equations (7) are satisfied, for all i = 1, ...,n and s = 1, ...,n−1.

Vice versa, suppose there exists a real permutation π for which D satisfies equa-
tion (7), for all i = 1, ...,n and s = 1, ...,n− 1. Then let C be the graph of vertices
V = {1,2, . . . ,n} and edges

E = {(π i(1),π i+1(1)), i = 0, . . . ,n−1}.

It is easy to check that C is an n−cycle. Then, putting the weight D(π i(1),π i+1(1)) on
the edge (π i(1),π i+1(1)), for all i = 0, . . . ,n− 1, we get a weighted n−cycle that, by
equation (7), is a realization of D.

According to the fact that, on an n−cycle, the distance between nodes i and j is
the minimum of the two paths from i to j, the reader could be surprised of formula (7)
instead of the following formula

D(i, j) = min{D(i, i+1)+D(i+1, i+2)+ · · ·+D( j−1, j),

D(i, i−1)+D(i−1, i−2)+ · · ·+D( j+1, j)}
(8)

where the indices are taken modulo n. Notice that (8) expresses the condition of a path
for an n−cycle where the indices are labeled in clockwise order.

However in general, it is not true that if a distance matrix D, of order n×n, has
a realization by an n−cycle C, then the adjacent vertices of C correspond to adjacent
rows (or columns) of D.

For example, if we consider the distance matrix

(9) D =


0 3 4 1 3 2
3 0 2 4 3 1
4 2 0 3 1 3
1 4 3 0 2 3
3 3 1 2 0 4
2 1 3 3 4 0


we can notice that (8) does not work for some choice of i and j. For example

3 = D(1,5) ̸= min{D(1,2)+D(2,3)+D(3,4)+D(4,5),D(1,6)+D(6,5)}
= min{3+2+3+2,2+4}
= min{10,6}= 6

(10)
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However, D has a realization by the 6−cycle in Figure 7. Here we can notice that the
vertices are ordered following the permutation π = (4,5,3,2,6,1). Since π2(1) = 5,
we can compute again (10) using (7), obtaining

3 = D(1,5) = D(1,π2(1)) =

= min

{
1

∑
t=0

D(πt(i),πt+1(i)),
5

∑
t=2

D(πt(i),πt+1(i))

}
= min{D(1,4)+D(4,5),D(5,3)+D(3,2)+D(2,6)+D(6,1)}
= min{1+2,1+2+1+2}
= min{3,6}= 3.

Figure 7: Realization of the matrix in (9).

REMARK 1. If s = 1, then formula (7) become

D(i,π(i)) = min

{
D(i,π(i)),

n−1

∑
t=1

D(π t(i),π t+1(i))

}

which is trivially satisfied. The same happens when s = n−1. Hence these two cases
can be omitted in formula (7).

A realization of a metric D is minimal if the removal of an arbitrary edge yields
a graph that does not realize D. Given a metric D on X with |X | ≥ 4, we say that D
is cyclelike if there is a minimal realization for D that is a cycle. This type of metric
was discussed in, e.g., [5] , [13], [17]. In [5], the authors characterize cyclelike metrics
according to equation (8), after performing an algorithm that re-enumerate rows and
columns of the metric.

We want to mention a useful result from [13].
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THEOREM 3 ( [13], Theorem 4.4). Suppose D is a cyclelike metric on a finite
set X and a cycle C is a minimal realization of D with V (C) = X = {v1,v2, . . . ,vm},
m ≥ 4 and E(C) = {{vi,vi+1} : 1 ≤ i ≤ m}, where the indices are taken modulo m.
Then, C is an optimal realization of D if and only if

(11) D(vi−1,vi)+D(vi,vi+1) = D(vi−1,vi+1)

holds for all i. In this case, C is the unique optimal realization of D.

It is not true, in general, that a metric D satisfying the conditions of Theorem 2,
must satisfy also equations (11), where the order of the indices is given by the permu-
tation π . However, this becomes true when we add an extra condition on D, thus we
have the following result.

PROPOSITION 3. Let D be a distance matrix such that aD is the null vector. If D
satisfies the conditions of Theorem 2, then the realization of D by a cycle C is optimal.

Proof. For simplicity of notation, we assume that D satisfies equations (7) with respect
to the permutation π = (2,3, . . . ,n−1,n,1).

Suppose that the realization C is not optimal, then, according to Theorem 3 there
are vertices vi−1,vi,vi+1 such that

(12) D(vi−1,vi+1)< D(vi−1,vi)+D(vi,vi+1).

Since D satisfies the conditions of Theorem 2 we must have

D(vi−1,vi+1) = D(vi+1,vi+2)+D(vi+2,vi+3)+ · · ·+D(vi−2,vi−1),

where the indices are taken modulo n. Let us add an edge between nodes vi−1 and vi+1
of weight W := D(vi+1,vi+2)+D(vi+2,vi+3)+ · · ·+D(vi−2,vi−1). We can then apply
an elementary cycle reduction (see [10]) obtaining a new node w and the following set
of weighted edges

• the edge (vi−1,w) of weight 1
2

(
D(vi−1,vi)+W −D(vi,vi+1

)
)

• the edge (vi,w) of weight 1
2

(
D(vi−1,vi)+D(vi,vi+1)−W

)
• the edge (vi+1,w) of weight 1

2

(
D(vi+1,vi)+W −D(vi−1,vi

)
)

By (12), the edge (vi,w) has strictly positive weight and this number is exactly
the i−th entry of the compaction vector aD, which is a contradiction.

The application of Theorem 2 requires, in principle, to check all possible n!
permutations, but this is intractable also for n of moderate size. However, the following
greedy algorithm permits to find an expected permutation π in O(n2) time.

INPUT: a distance matrix D of order n
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(1) set πn = 1 and L = {1}

(2) choose the two minimal entries D(1, i) and D(1, j) in the first row (if more,
choose two of them);

(3) set π2 = i, πn−1 = j and L = {1, i, j}

(4) for s from 2 to n−2 do

(4.1) choose minimal entry D(πs,k) in πs-th row with k /∈ L (if more, choose one
of them);

(4.2) set πs+1 = k and L := L∪{k}

(5) if D(πn−1, j) is one of the two minimal entries in πn−1-th row, then π is the
expected permutation

4. Algorithm of realization of a matrix by a graph of genus 1

The idea of the algorithm is to iterate the processes of compaction and reduction, ob-
taining at every step i a new matrix D(i). The algorithm will stop when, at a certain
step t, we will be in one of the following cases

(1) the matrix D(t) has order 2;

(2) the compaction matrix D(aD(t)) is the null matrix;

(3) the compaction vector aD(t) is the null vector and neither cases (1) or (2) are
verified.

If we have kept track of all compaction vectors aD(i) and of all the rows and
columns eliminated in the matrices D(aD(i)), by going backwards, we can construct
the graph realizing the starting matrix D, from the graph G(t) which realizes the last
matrix D(t), adding at every step t − i, with 1 ≤ i ≤ t, new distinct nodes with edges
adjacent to the graph Gt−i+1.

From Propositions 1 and 2 we know that in cases (1) and (2), the matrix Dt is
realizable by a tree and hence, as we have just said, we will get that D is realizable by
a tree. Finally, if we are in case (3) and we verify, by Theorem 2, that D(t) is realizable
by an m−cycle, with m ≤ n then the matrix D can be realized by a unicyclic graph.

We divide the algorithm into two parts: a first part of analysis, which determines
if or not a distance matrix can be realized by a unicyclic graph and then, a part of
reconstruction which, using data from the analysis part, constructs the desired unicyclic
graph.
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Algorithm
INPUT: a distance matrix D of order n.

Analysis:

Step 0: Let t = 0, D(t) = D, Θ = {1,2, . . . ,n} and ρ = n.

Step 1: Compute the compaction vector aD(t) of D(t).

If aD(t) is the null vector go to Step 4.

Step 2: Compute the compaction matrix D(aD(t)) of D(t). If D(aD(t)) is the zero matrix,
then, by Proposition 2, D(t) is realizable by a tree G(V,E) and go to Step 5.

Step 3: Let

S(t) =
{{

i1,1(t), i1,2(t), . . . , i1,s1(t)
(t)
}
, . . . ,

{
iθ(t),1(t), iθ(t),2(t), . . . , iθ(t),sθ (t)

(t)
}}

be the collection of all distinct (ordered) subset of Θ of indices of equal rows of
D(aD(t)), with |S(t)|= θ(t), and let

S′(t) =
{

j1(t), j2(t), . . . , jσ(t)(t)
}

be the set of (ordered) indices of Θ not in any subset of S(t), with |S′(t)|= σ(t).

For k from 1 to θ(t) do

Step 3.1: Remove from D(t) all rows and columns indexed by

ik,2(t), ik,3(t), . . . ik,sk(t)
(t)

Step 3.2: Relabel ik,1(t)-th row and column of D(t) by ρ + k

Step 3.3: Set
Θ :=

(
Θ∪{ρ + k}

)
\
{

ik,1(t), ik,2(t), . . . , ik,sk
(t)
}
.

For k from 1 to σ(t) do

Step 3.4: Relabel jk(t)-th row and column of D(t) by ρ +θ(t)+ k

Step 3.5: Set
Θ :=

(
Θ∪{ρ +θ(t)+ k}

)
\
{

jk(t)
}
.

We get the reduction matrix D̂(aD(t)) with a new labelling of rows and columns.

If D̂(aD(t)) has order 2 then, by Proposition 1, D(t) is realizable by a tree G(V,E)
and go to Step 5.
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Otherwise set
ρ := ρ +θ(t)+σ(t),

t := t +1,

D(t) := D̂(aD(t−1))

and return to Step 1.

Step 4: Check if D(t) is realizable by an m−cycle G(V,E) with m = |Θ|. If so, then D
can be realized by a unicyclic graph oand go to Step 5.

Otherwise, D has not a realization by a tree or a unicyclic graph then EXIT.

Reconstruction:

Step 5 For τ from t −1 to 0 do

Set ρ := ρ −θ(τ)−σ(τ)

Step 5.1: for κ from 1 to σ(τ) do

If (aD(τ)) jκ (τ)
̸= 0 then

add node: V :=V ∪
{

jκ(τ)
}

add weighted edge: E := E ∪
{
(ρ +θ(τ)+κ, jκ(τ),(aD(τ)) jκ (τ)

)
}

Else

replace node: V :=
(
V \{ρ +θ(τ)+ k}

)
∪
{

jκ(τ)
}

Step 5.2: for κ from 1 to θ(τ) do

Add nodes: V :=V ∪
{

iκ,1(τ), iκ,2(τ), . . . , iκ,sκ (τ)
(τ)
}

Add weighted edges:

E := E ∪
{
(ρ +κ, iκ,1(τ),(aD(τ))iκ ,1(τ)

), . . . ,(ρ +κ , iκ ,sκ (τ),(aD(τ))iκ ,sκ (τ)(τ)
)
}

OUTPUT: the graph G realizing D.

It is easy to observe that, in the algorithm, the equal rows in a compaction matrix
will correspond to nodes which are adjacent to the same interior node.

The algorithm has been implemented in MapleTM. Here, the stored data of
compaction vectors and reduction matrices are used to build the weighted adjacency
matrix of the graph which realizes the distance matrix D. The algorithm can be found
as ancillary file algorithm.mw, in the arXiv version of this paper ( [2]).

The study of recursive compaction vectors is equivalent to removing all pendant
trees in the optimal realization. In such a procedure, the number of operations grows in
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a time complexity of O(n4), where n is the order of the distance matrix D. As a matter
of fact, computing an entry of the compaction vector is done in a time complexity of
O(n2). This must be done for the n entries of the compaction vector. Moreover, we
need to compute the compaction vector for the successive steps of the algorithm. The
number of steps is at most n.

We conclude this section with a result about optimality of this realization.

PROPOSITION 4. If the algorithm outputs a unicyclic graph realizing D, then
this realization is optimal.

Proof. In the analysis part, the algorithm checks if the matrix D(t) satisfies equations
(7) at Step 4, which is reached if the compaction vector of D(t) is the null vector.
Hence, by Proposition 3, if D(t) has a realization by a cycle C, this realization is opti-
mal.

Successively, the reconstruction part of the algorithm reconstructs the graph G
realizing D, starting from C and adding, recursively, pendant edges. Hence, by the
following theorem, the realization of D is optimal.

THEOREM 4 ( [10], Theorem 5). If 0 ≤ a ≤ ai and if Gi(a) is an optimal real-
ization of Di(a), then G obtained from Gi(a) adding the vertex v′i to Gi(a) and the edge
(v′i,vi) of weight a, is an optimal realization of D.

5. A computational example

The following example shows how the algorithm works.
Consider the following matrix

(13) D =



1 2 3 4 5 6 7 8 9
1 0 4 2 6 4 6 2 2 5
2 4 0 4 4 4 4 4 4 4
3 2 4 0 6 4 6 2 2 5
4 6 4 6 0 5 2 6 6 4
5 4 4 4 5 0 5 4 4 3
6 6 4 6 2 5 0 6 6 4
7 2 4 2 6 4 6 0 2 5
8 2 4 2 6 4 6 2 0 5
9 5 4 5 4 3 4 5 5 0



We set t = 0, D(0) = D, Θ = {1,2,3,4,5,6,7,8,9} and ρ = 9. The compaction vector
of D(0) is aD(0) = (1,1,1,1,1,1,1,1,1). Since aD(0) is not the zero vector we pass to
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Step 2 computing the compaction matrix

D(aD(0)) =



1 2 3 4 5 6 7 8 9
1 0 2 0 4 2 4 0 0 3
2 2 0 2 2 2 2 2 2 2
3 0 2 0 4 2 4 0 0 3
4 4 2 4 0 3 0 4 4 2
5 2 2 2 3 0 3 2 2 1
6 4 2 4 0 3 0 4 4 2
7 0 2 0 4 2 4 0 0 3
8 0 2 0 4 2 4 0 0 3
9 3 2 3 2 1 2 3 3 0


Since D(aD(0)) is not the zero matrix we pass to Step 3. Here we have

S(0) =
{{

1,3,7,8
}
,
{

4,6
}}

S′(0) =
{

2,5,9
}
,

θ(0) = 2 σ(0) = 3.

Hence, we remove rows (and columns) labeled by 3, 7, 8 and 6 and relabel

• rows (and columns) 1 and 4 respectively by 10(= ρ +1) and 11(= ρ +2 = ρ +
θ(0)),

• rows (and columns) 2,5 and 9 respectively by 12(= ρ +θ(0)+1), 13 and 14(=
ρ +θ(0)+3 = ρ +θ(0)+σ(0)).

We get
Θ(t) = {10,11,12,13,14}

and

D̂(aD(0)) =



10 12 11 13 14
10 0 2 4 2 3
12 2 0 2 2 2
11 4 2 0 3 2
13 2 2 3 0 1
14 3 2 2 1 0


Since D̂(aD(0)) has not order 2, we come back to Step 1 after setting t = 1, ρ = 14 and

D(1) = D̂(aD(0)).

The compaction vector of D(1) is aD(1) = (1,0,1,0,0) and again we pass to
Step 2 computing the compaction matrix

D(aD(1)) =



10 12 11 13 14
10 0 1 2 1 2
12 1 0 1 2 2
11 2 1 0 2 1
13 1 2 2 0 1
14 2 2 1 1 0
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This matrix has not equal rows so θ(1) = 0 and σ(1) = 5 with

S′(1) = {10,12,11,13,14}.

After Step 3.4 and Step 3.5 we get Θ = {15,16,17,18,19} and

D̂(aD(1)) =



15 16 17 18 19
15 0 1 2 1 2
16 1 0 1 2 2
17 2 1 0 2 1
18 1 2 2 0 1
19 2 2 1 1 0


Since it has not order 2, we set t = 2, ρ = 19 and D(2) = D̂(aD(1)).

Computing the compaction vector of D(2) we get the null vector. Hence, in the
analysis part of the algorithm we move to Step 4.

Notice that D(2) satisfies Formula (7) of Theorem 2 for π = (4,5,3,2,1) hence
it is realizable by the 5-cycle G in Figure 8(a) and, moreover, D will be realizable by a
unicyclic graph.

(a) (b)

Figure 8: Intermediate steps for the realization of D in (13).

We start now the reconstruction part of the algorithm to determine such a graph.
Since for τ = 1(= t −1) one has θ(1) = 0 and σ(1) = 5 we set ρ = 14 and we perform
only Step 5.1. More in details, one has that

• since (aD(1))10 = 1 we add node {10} and edge (15,10,1).

• since (aD(1))12 = 0 we replace node {16} by node {12}.

• since (aD(1))11 = 1 we add node {11} and edge (17,11,1).
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• since (aD(1))13 = 0 we replace node {18} by node {13}.

• since (aD(1))14 = 0 we replace node {19} by node {14}.

Thus, we get the graph in Figure 8(b).
Now, we perform one more time Step 5 for τ = 0 (hence ρ = 14 − θ(0)−

σ(0) = 9). Performing Step 5.1 one has that

• since (aD(0))2 = 1 we add node {2} and edge (12,2,1).

• since (aD(0))5 = 1 we add node {5} and edge (13,5,1).

• since (aD(0))9 = 1 we add node {9} and edge (14,9,1).

Performing Step 5.2 we add

• nodes {1}, {3},{7} and {8} and edges (10,1,1), (10,3,1) (10,7,1) and
(10,8,1)

• nodes {4} and {6} and edges (11,4,1) and (11,6,1)

This concludes the algorithm giving the unicyclic graph in Figure 9, which realizes D.
We end this section with some examples performed by our algorithm in the

software MapleTM. Here, starting from some weighted unicyclic graphs, we computed
their distance matrices and we used them, as input, for the algorithm. The Figure 10
show the original graphs (on the left) and the outputs of the algorithm in MapleTM (on
the right).

6. Future directions

In this paper we present an algorithm, running in time O(n4), such that, taken as input
a distance matrix D, firstly returns if D is or not realizable by a tree or a unicyclic graph
and, in case of affirmative answer, it reconstruct the graph itself. This algorithm con-
cerns the use of the well-known processes of compaction and reduction, even though
that of compaction has been slightly modified in such a way to be performed along all
the indices of a given distance matrix D; this approach leads to the definition of the
compaction vector of the matrix D itself.

The conditions given by Theorem 2, to check if a distance matrix has a re-
alization by a n−cycle, suggests us an important direction of research. As a matter
of fact, formula (7 of Theorem 2 means that D(i,πs(i)) is equal to the minimum be-
tween D(i,π(i))+D(π(i),π2(i))+ · · ·+D(πs−1(i),πs(i)) and D(πs(i),πs+1(i))+ · · ·+
D(πn−1(i), i). Then the minimum is attained at least twice among the terms

D(i,πs(i)),
D(i,π(i))+D(π(i),π2(i))+ · · ·+D(πs−1(i),πs(i))

D(πs(i),πs+1(i))+ · · ·+D(πn−1(i), i)
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Figure 9: Unicyclic graph realizing the matrix D in (13).

In terms of Tropical Mathematics ( [15]) this means that the entries of the distance
matrix are a zero of the tropical polynomial

pis := D(i,πs(i))⊕
⊕
(
D(i,π(i))⊗·· ·⊗D(pis−1(i),πs(i))

)
⊕

⊕
(
D(πs(i),πs+1(i))⊗·· ·⊗D(πn−1(i), i)

)
.

(14)

Hence the pis’s are exactly the tropical equations for the space of weighted n−cycles.
The next step is that of understanding how to modify these equations to be

satisfied by a distance matrix which has a realization by a unicyclic graph. Reaching
this goal, will give us, not only a complete characterization, tropically speaking, of such
distance matrices, but also the tropical equations for the moduli space M1 of elliptic
tropical curves.

Some preliminary results, in this direction, show, for example that if D has a
realization by an n−cycle C with only one pendant edge for each node of C, then its



74 C. Bocci and C. Capresi

(a) (b)

Figure 10: Examples in MapleTM.
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entries are a zero of the following kind of polynomials

p̃is :=

 ⊗
j ̸=i,πs(i)

2a j

⊗D(i,πs(i))

⊕
⊕

 πn−1(i)⊗
j=πs+1(i)

2a j

⊗D(i,π(i))⊗·· ·⊗D(πs−1(i),πs(i))

⊕
⊕

πs−1(i)⊗
j=π1(i)

2a j

⊗D(πs(i),πs+1(i))⊗·· ·⊗D(πn−1(i), i)


(15)

where the ai are the entries of the compaction vector of D. Since these entries can
be expressed in terms of the entries of D, it is easy to check that the polynomials p̃is
are homogeneous, while the ones in (14) are not. Moreover, if D has a realization by
an n−cycle then its entries are a zero also of this new set of polynomials, giving the
hope to use them for a kind of “four point condition” for unicyclic graphs and then
characterize M1.
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