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GENERICALLY NONREDUCED COMPONENTS OF HILBERT

SCHEMES ON FOURFOLDS

To Gianfranco

Abstract. We exhibit generically nonreduced components of the Hilbert scheme of at least
21 points on a smooth variety of dimension at least four. The result was announced in [19]
and answers a question [1, Problem 3.8]. The method is similar to the one of [22, §6].

1. Introduction

Let X be a smooth quasi-projective variety over a field k. The Hilbert scheme of
d points Hilbd (X ) is a moduli space of central importance, with applications to
combinatorics [11, 12], algebra, enumerative geometry [29], and classical algebraic
geometry [3]. Many of the applications are limited to the case when dim X ≤ 2 as
in this case Hilbd (X ) is smooth [9]. For a good and gentle introduction to Hilbert
schemes, see [4] or [27, Chapter 18]. See also [19] for a list of open problems.

The possible singularities of
⊔

d Hilbd (X ) for dim X ≥ 3 are only partially
understood. A point [Z ] ∈ Hilbd (X ) is smooth for every Z ⊆ X which can be em-
bedded into a smooth surface. As a very particular case, this implies that Hilbd (X )
is smooth for d ≤ 3. In contrast, the Hilbert scheme Hilbd (X ) is singular for every
d ≥ 4 and dim X ≥ 3, in fact for every x ∈ X , any degree d subscheme Z ⊆ V (m2

x )
gives a singular point [27, Cor 18.30].

The singularities in the case dim X = 3 are constrained as the Hilbert scheme
is a critical locus [6]. Understanding the singularities is a very active research area,
see for example [10, 23, 28, 30].

The singularities in the case dim X ≥ 16 can be almost arbitrary: the Hilbert
scheme satisfies Murphy’s Law up to retraction, see [18]. For important singularity
types, such as nonreduced ones, sharper bounds on dim X are known. Szach-
niewicz [34] proved that Hilbd (A6) is nonreduced for every d ≥ 13; it has an embed-
ded component. See [7, 31] for some results in similar direction on fixed loci.

One instance where up to retraction cannot be ignored is when we consider
generic nonreducedness. In particular, the results above do not prove that the
Hilbert scheme has any generically nonreduced components. Proving that such
components do exist and already in codimension four is the main aim of the current
article.
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1.1. Generic nonreducedness

We work over a field of characteristic zero, in particular over a perfect field. An
irreducible component of a finite type k-scheme is either generically smooth, that is,
its general point is smooth, or generically nonreduced which means that every point
is nonreduced.

The problem is that generic nonreducedness does not propagate along re-
tractions. For example, consider

k[[y]]

(y2)
,→ k[[x, y]]

(x y, y2)
.

The source of this map is generically nonreduced, while the target is generically
reduced. Geometrically speaking, the above map comes from a retraction of
V (x y, y2) ⊆A2 onto V (y2) ⊆A1 by contracting the x axis:

Therefore, from [18] it does not follow that Hilbd (A16) admits generically nonre-
duced components. Neither it follows from subsequent paper of Szachniewicz [34].
In contrast, in the paper [22] the authors show that Quot8(A4) has a generically
nonreduced component.

The aim of the present note is to apply the method of Jelisiejew-Šivic to
the case of the Hilbert scheme and show the following theorem, which resolves [1,
Problem 3.8]. Let LH ⊆ Hilbpts(An) denote the locus of [Z ] such that Z = Spec(A)
is an irreducible scheme corresponding to the local algebra A with Hilbert function
HA = H .

THEOREM 1. Let k be a field of characteristic zero and let H = (1,4,10, s) for
s ∈ {6,7,8,9}. Then LH ⊆ Hilb15+s (A4) is an irreducible component, and this com-
ponent, with the scheme structure inherited from the Hilbert scheme, is generically
nonreduced. Therefore, the Hilbert scheme Hilbd (A4) admits generically nonreduced
components for all d ≥ 21.

Prior to Theorem 1 it was not known whether Hilbd (A4) or Hilbd (A5) are
reduced for all d . It remains an open question whether Hilbd (A3) is nonreduced for
d high enough and whether this scheme has generically nonreduced components,
see [19, Problem XIV].
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There are three main steps of the argument. First, the locus LH is closed for
the functions H as in theorem. Moreover, it is contained in a dominant Białynicki-
Birula cell, which implies that on an open subset U ⊆ Hilb15+s (A4) containing
LH , the Hilbert scheme admits a retraction π : U → UGm which maps any point
[Spec(S/I )] ∈U to Spec(S/in(I )), where S = k[x1, . . . , x4] and in(I ) is the ideal of top
degree forms.

Second, primary obstruction yields quadratic equations for the fibre

π−1([Z ]) ⊆ (
THilb15+s (A4),[Z ]

)
<0 .

Third, for a chosen [Z0] ∈ LH we computer-check using Macaulay2
that the quadrics alone cut out a 4-dimensional scheme in the affine space(
THilb15+s (A4),[Z0]

)
<0. It follows that dimπ−1([Z0]) ≤ 4. The fibre π−1([Z0]) is a cone

and has a translation action by A4, so the fibre is equal to {Z0 + v | v ∈A4} as a set
and hence LH contains an open neighbourhood of [Z0], so this locus is a compo-
nent. A syzygetic argument shows that the containment TLH ,[Z ] ⊆ THilb15+s (A4),[Z ] is
strict for every [Z ] ∈LH , hence LH cannot be generically reduced.

1.2. Open questions and possible generalizations

Consider now Hilbd (An) and the unique very compressed Hilbert function H = Hn,d

given by the condition that there exists a δ such that

Hn,d (i ) =


(n+i−1

i

)= dimk[x1, . . . , xn]i for i < δ
0 for i > δ
d −∑δ−1

i=0

(n+i−1
i

)
for i = δ

The locus LH ⊆ Hilbd (An) is irreducible and closed also in this more general case.
We then have three possibilities for a general [Z ] ∈LH :

SMOOTH the scheme [Z ] has only trivial negative tangents, so LH is a component and
[Z ] is a smooth point of Hilbd (An) on this component,

DEFORMS the scheme [Z ] has nontrivial negative tangents and some of them “integrate”,
that is, the fibre π−1([Z ]), which is a cone, contains more points than just
An . In this case LH is not an irreducible component and without additional
information we cannot say much about whether its points are reduced in
Hilbd (An).

NONRED the scheme [Z ] has nontrivial negative tangents and π−1([Z ]) is, as a topolog-
ical space, equal to An . In this case LH is a generically nonreduced compo-
nent.

EXAMPLE 1. By [5] the case SMOOTH occurs for example for H = (1,4,3). The
case DEFORMS occurs for example for H = (1,4,4). The case NONRED occurs for H
as in Theorem 1.
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We stress that above we look at a general point of LH . This makes a differ-
ence: for example for H = (1,6,6) the case SMOOTH occurs, so LH is a generically
smooth component, however Szachniewicz [34] found an embedded component
of Hilb13(A6) inside LH . It is a completely open problem to understand whether
having an embedded component is typical or exceptional for LH which fall into
the SMOOTH case.

One motivation to discuss the more general situation is the case n = 3, the
Hilbert scheme of A3. Taking d = 96 and H = H3,96 we get that LH is too big to fit
in the smoothable component of Hilb96(A3), see [14]. A syzygetic argument, see
Lemma 1 below, also shows that the case SMOOTH cannot hold. Moreover, it is
known that the fibre π−1([Z ]) for a general [Z ] is cut out by quadrics only. Actually,
this holds whenever (T 2

[Z ])<−2 = 0, where T 2
[Z ] ⊆ Ext1(IZ ,OZ ) is the Schessinger’s

functor, see [13, Chapter 3]. It is possible to obtain the quadrics explicitly using
Macaulay2. However, the Gröbner basis computation necessary for determining
dimπ−1([Z ]) is out of reach, at least using standard algorithms. We warn the reader
that it is not clear, even intuitively, whether we should expect NONRED or DEFORMS
in this case, since it may be that LH lies in the closure of a compressed (not very
compressed) component similar to the ones discussed in [15].

The question about H = (1,4,10, s) in [1] is also formulated for s = 10. In this
case one could try the approach above, however there are 50 negative tangents (see
Lemma 1 below) and the approach is infeasible on our hardware. Of course, perhaps
this is only a question of computational cost, however we prefer to leave the case
s = 10 open, in the hope that it will stimulate further progress on understanding the
Yoneda multiplication in Ext•(OZ ,OZ ) and in particular the primary obstruction.

2. Acknowledgements

We would like to thanks the Editors, in particular Ada Boralevi, for making this
volume possible. We also thank the organizers of the GC workshop: Ada, Enrico,
Paolo, and Roberto for this serene and productive time. The comments of the
anonymous referee were helpful as well.

3. Preliminaries

We work over a field k of characteristic zero. The characteristic assumption will be
used mostly for justifying the computations (we believe that the result holds for
most characteristics). Let S = k[x1, . . . , xn] be a polynomial ring and An = Spec(S).
For a subscheme Z ⊆An we denote by IZ its ideal and by OZ = S/IZ its coordinate
ring.

PROPOSITION 1. The tangent space to [Z ] ∈ Hilbd (An) is given by
HomS (IZ ,OZ ). This space is canonically isomorphic to Ext1

S (OZ ,OZ ).

Proof : A self-contained proof for HomS (IZ ,OZ ) can be found in [32]; also the Ext
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functor naturally appears there. The isomorphism

HomS (IZ ,OZ ) → Ext1
S (OZ ,OZ )

follows from the long exact sequence obtained by applying HomS (−,OZ ) to 0 →
IZ → S →OZ → 0.

Further in the paper, when discussing HomS (−,−) and Ext•S (−,−), we drop
the subscript S from the notation.

If IZ is presented as

S⊕d2 → S⊕d1 → IZ → 0,

then Hom(IZ ,OZ ) is the kernel of the natural map Hom(S⊕d1 ,OZ ) → Hom(S⊕d2 ,OZ ).
Computing this kernel is best performed with a computer.

We propose one example, which is straightforward, but it will be important
in the following. Recall that when IZ is graded, also the tangent space HomS (IZ ,OZ )
is graded with

HomS (IZ ,OZ )i =
{
ϕ : IZ →OZ | ϕ((IZ ) j ) ⊆ (OZ )i+ j for all j

}
.

LEMMA 1. Suppose that [Z ] ∈ Hilb15+s (A4) is given by a homogeneous ideal
IZ and that OZ is very compressed with Hilbert function (1,4,10, s). Suppose further
that IZ is generated by cubics. Then

dimHom(IZ ,OZ )0 = (20− s)s and dimHom(IZ ,OZ )−1 ≥ 4s2 −55s +200.

Proof : By assumption, the presentation of IZ is

S(−5)β⊕S(−4)4·(20−s)−35 → S(−3)20−s → IZ → 0.

Let us first look at degree zero. If we consider the full linear space Homk(IZ ,OZ )0,
then any relation between generators of IZ is mapped to (OZ )≥4 = 0, so
Homk(IZ ,OZ )0 = Hom(IZ ,OZ )0.

Let us now look at degree one. By similar considerations, for every linear map
ϕ ∈ Homk(IZ ,OZ )−1, the image of S(−5)β is zero and the image of S(−4)4·(20−s)−35 is
contained in the s-dimensional space (OZ )3. Thus, the relations in the presentation
yield at most s ·(4 · (20− s)−35) linear-algebraic conditions on the images of minimal
homogeneous generators and so

dimHom(IZ ,OZ )−1 ≥ 10 · (20− s)− s · (4 · (20− s)−35) = 4s2 −55s +200,

as claimed.

PROPOSITION 2 (Very compressed loci). Let H be any very compressed Hilbert
function and δ be the largest index such that H(δ) ̸= 0. Then the very compressed
locus LH is closed in Hilbd (An), isomorphic to An ×Gr(H(δ),

(n−1+δ
δ

)
) and has di-

mension

n +
(

n −1+δ
δ

)
−H(δ).
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Proof : A point [Z ] ∈ Hilbd (An) lies in LH if and only if, first, the support of [Z ] is
a single point z and, second, the ideal IZ is contained in mδ

z . The first condition
is closed and the second is closed provided that the first one is satisfied. The
description of LH as a product is immediate, see [34, Proposition 2.27].

3.1. Białynicki-Birula decompositions

The general theory of Białynicki-Birula decompositions is beautiful but quite com-
plicated, see [20,21,35]. We would like to apply it to the standard scalar torus action
on the Hilbert scheme. We will see below that in this special case things simplify
considerably. Therefore, we gather below only the necessary facts and restrict to
the affine case and to the positive Białynicki-Birula decomposition, that is, when
considering the limit at t → 0.1

The following allows us to reduce to considering the affine case.

PROPOSITION 3 ( [33], [20, Proposition 5.3(2)]). Suppose that X is a quasi-
projective scheme. Then there is a open cover {Ui } by affine Gm-stable schemes.
Moreover, for every such cover the Białynicki-Birula decomposition X + of X is covered
by the Białynicki-Birula decompositions U+

i of Ui .

Next, a Gm-action on an affine scheme Spec(A) is the same as a Z-grading on
the algebra A. In this case, the Białynicki-Birula decomposition can be characterised
explicitly as follows.

PROPOSITION 4. Let X = Spec(A) be an affine scheme with an action of Gm .
Then, the positive Białynicki-Birula decomposition X + of X is a closed subscheme
X + given by the ideal generated by A<0. The fixed locus of X is given by the ideal
generated by {A<0}∪ {A>0}. The composition

A

A<0 · A+ A>0 · A
≃ A0

(A<0 · A)0
,→ A≥0

(A<0 · A)≥0
≃ A

A<0 · A

gives a morphism π : X + → X Gm . The canonical closed embedding s : X Gm → X + is a
section of π. We obtain the following diagram, where π and s are closed embeddings

X + X

X Gm

θ

πs

Thus, for every x ∈ X Gm , the fibre π−1(x) is given by spectrum of an N-graded algebra
B ≃ A

A<0·A+(mx )0·A , which satisfies B0 = k.

Proof : See for example [20, Proposition 4.5, Example 4.6].

1Be aware that in some articles by the author, notably [17], the sign X+ denotes the negative
Białynicki-Birula decomposition, that is, the one coming from considering limt→∞.
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For a homogeneous maximal ideal m in a Z-graded ring A, the cotangent
space at [m] ∈ Spec(A) is the subquotient m/m2, so is also naturally graded. The
tangent space at [m] is also graded, the weights are opposite.

EXAMPLE 2. In the setup of Proposition 4, take x ∈ X Gm (k). Then the cotan-
gent space at x ∈ X + is the non-negative part of the cotangent space of x ∈ X .
Dualising, we obtain that

dθ : TX +,x → TX ,x

identifies TX +,x with (TX ,x )≤0, the non-positive part of TX ,x .

The weights of the tangent space are crucial for comparing X + and X , as the
following proposition says.

PROPOSITION 5 ( [20, Proposition 1.6]). Let X be a separated scheme locally of
finite type (for example, this holds if X is quasi-projective). Assume that x ∈ X Gm (k)
is such that dθx is surjective (that is, an isomorphism). Then up to restricting to a
Gm-stable affine neighbourhood of x we can assume that θ is an isomorphism.

3.2. Białynicki-Birula decomposition of the Hilbert scheme of points

Let Gm = Spec(k[t±1]) be a one-dimensional torus and consider its action

Gm ×An →An

by rescaling: λ · (x1, . . . , xn) = (λx1, . . . ,λxn) for every k-point (x1, . . . , xn) ∈An(k) and
λ ∈ k× =Gm(k). For every closed subscheme Z ⊆An and λ ∈Gm(k) we obtain a new
closed subscheme λ ·Z given by the closed embedding

(3.1) Z An An .λ·
≃

When we view a point as a closed subscheme, both definitions agree. A subscheme
Z is a Gm-fixed point if and only if its ideal IZ is homogeneous.

Construction (3.1) generalizes readily to the case when Z is closed in An ×S,
for any scheme S. This yields an action Gm ×Hilbd (An) → Hilbd (An), which on
k-points agrees with (3.1).

For any set A of d monomials in S, consider the locus UA ⊆ Hilbd (An) which
consists of [Z ] ∈ Hilbd (An) such that A spans OZ . These loci are open and Gm-
stable, hence the corresponding Białynicki-Birula cells U+

A cover (Hilbd (An))+, see
Proposition 3. The loci above are important for the computational aspects, see for
example [26].

We would like now to understand when Proposition 5 can be applied in the
case of Hilbert schemes, so we are interested in the weights on the tangent space.

LEMMA 2. Let [Z ] ∈ Hilbd (An) be a Gm-fixed point. Then (THilbd (An ),[Z ])>0

vanishes if and only if OZ is very compressed.
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Proof : Take S = k[x1, . . . , xn]. Suppose first that OZ is very compressed. Then there
exists an s such that IZ ⊆ S≥s and (OZ )>s = 0. A tangent at Z of strictly positive
degree i corresponds to a homomorphism ϕ : IZ →OZ such that ϕ((IZ ) j ) ⊆ (OZ ) j+i .
The source is nonzero only for j ≥ s, but for such a j we have i + j > s, so the target
is zero. It follows that ϕ= 0.

Suppose now that OZ is not very compressed. This implies that there exists
an s such that Is ̸= 0 and (OZ )≥s+1 ̸= 0. Pick a set of minimal generators of IZ and
let g be an element of lowest degree. Pick a socle element h ∈OZ of highest degree.
Then deg(h) ≥ s +1 > s ≥ deg(g ). There exists a homomorphism ϕ : IZ →OZ which
satisfies ϕ(g ) = h and sends all other minimal generators to zero. It follows that ϕ is
homogeneous of strictly positive degree, equal to deg(h)−deg(g ).

3.3. Primary obstructions

Primary obstructions govern the order two part of deformation theory and can be
computed explicitly. We discuss them below.

Consider two tangent vectors at a point [Z ] ∈ Hilbd (An). They yield maps

ϕi : Spec

(
k[εi ]

(ε2
i )

)
→ Hilbd (An),

for i = 1,2 and two elements

ϕ1,ϕ2 ∈ THilbd (An ),[Z ] ≃ Ext1 (OZ ,OZ ) .

The two tangent vectors span an at most 2-dimensional space and the correspond-
ing morphism is

ϕ12 : Spec

(k[ε1,ε2]

(ε1,ε2)2

)
→ Hilbd (An),

which restricts to ϕ1, ϕ2 in the natural way. We may ask when ϕ12 does extend to
a map ϕ̃12 from Spec

(
k[ε1,ε2]/(ε2

1,ε2
2)

)
. Deformation theory [8, Chapter 5] implies

that an extension exists if and only if an obstruction

obϕ12,ϕ̃12 ∈ Ext2(OZ ,OZ )

vanishes. The key observation is that we can describe the obstruction explicitly.

THEOREM 2 ( [22, Theorem 4.18]). The obstruction obϕ12,ϕ̃12 is equal to

ϕ1 ◦ϕ2 +ϕ2 ◦ϕ1,

where ◦ denotes Yoneda’s multiplication in Ext•(OZ ,OZ ) applied to ϕ1,ϕ2 ∈
Ext1(OZ ,OZ ).

Let µ : Sym2 Ext1(OZ ,OZ ) → Ext2(OZ ,OZ ) be given by

µ(ϕ1 ·ϕ2) :=ϕ1 ◦ϕ2 +ϕ2 ◦ϕ1.
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Consider its transpose

µ∨ : Ext2(OZ ,OZ )∨ → (
Sym2 Ext1(OZ ,OZ )

)∨ ≃ Sym2 (
Ext1(OZ ,OZ )∨

)
.

As explained in [22, §4.2], Theorem 2 yields the following corollary. Recall that
Ext1(OZ ,OZ )∨ is the cotangent space at [Z ] ∈ Hilbd (An).

COROLLARY 1. Consider the complete local ring (ÔHilbd (An ),[Z ],m[Z ]). Its trun-
cation to second order satisfies

ÔHilbd (An ),[Z ]

m3
[Z ]

≃ Sym• Ext1(OZ ,OZ )∨

Im
(
µ∨ : Ext2(OZ ,OZ )∨ → Sym2 Ext1(OZ ,OZ )∨

)+ (
Ext1(OZ ,OZ )∨

)3 .

3.4. Primary obstructions and Białynicki-Birula decompositions

As written, Corollary 1 does not directly involve the dimension of the local ring.
Moreover, we would like to apply it for the fibre of the Białynicki-Birula decompo-
sition. Both subtleties “cancel out”: restriction to the fibre gives us an N-grading
which allows to pass from the third neighbourhood to the full complete local ring.

PROPOSITION 6. Let [Z ] ∈ Hilbd (An) be a Gm-fixed k-point and consider its
Białynicki-Birula fibre Spec(A). Assume that the subspace(

THilbd (An ),[Z ]
)
≤−2

is zero. Then there is a surjection of graded algebras

Sym• (
Ext1(OZ ,OZ )<0

)∨
Im(µ∨ :

(
Ext2(OZ ,OZ )<0

)∨ → Sym2
(
Ext1(OZ ,OZ )<0

)∨
)
↠ A.

Proof : By Proposition 3 we already know that there is an open Gm-stable neigh-
bourhood [Z ] ∈U ⊆ Hilbd (An) such that the Białynicki-Birula fibre π−1([Z ]) is con-
tained in U+. Using Proposition 4 we conclude that π−1([Z ]) is a spectrum of an
N-graded algebra B with B0 = k.

We now employ Corollary 1. To make the notation lighter, we put E :=
Ext1(OZ ,OZ ). The complete local ring B̂ of [Z ] ∈ Spec(B) is a quotient of the com-
plete local ring of [Z ] ∈ Hilbd (An). Hence, also the truncation B̂/m3 is a quotient of
the truncation of

ÔHilbd (An ),[Z ]

m3 ≃ Sym• E∨

Im
(
µ∨ : Ext2(OZ ,OZ )∨ → Sym2 E∨)+ (E∨)3 .

The cotangent space of [Z ] ∈ Spec(B) has no nonpositive weights, so B̂/m3 is in fact
a quotient of

Sym• (E<0)∨

Im
(
µ∨ :

(
Ext2(OZ ,OZ )<0

)∨ → Sym2 (E<0)∨
)
+ (

(E<0)∨
)3
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We now lift this from infinitesimal second order to a more global situation using the
N-grading. Consider the map of graded rings

p : Sym• E<0 → B.

By Example 2, this map is an isomorphism on cotangent spaces. Since B is N-graded
with B0 = k, the map p is a surjection, by induction on the degree. Moreover, again
thanks to the grading and to the fact that all E<0 = E−1, we obtain an isomorphism
B̂/m3 ≃ B/B≥3.

We summarize the situation on a commutative diagram

Sym• E<0 B

Sym• (E<0)∨

Im
(
µ∨ :

(
Ext2(OZ ,OZ )<0

)∨ → Sym2 (E<0)∨
)
+ (

(E<0)∨
)3

B̂

m3

B

B≥3

≃ ≃

This shows that the image p(Imµ∨) in B2 is zero. The claim follows.

3.5. Computational input

As mentioned in the introduction, currently there is not enough knowledge about
the Ext algebra to perform a conceptual analysis of the primary obstruction. In this
section we include a somewhat brute-force check of specific examples.

The package MatricesAndQuot is available as an auxiliary file for the arXiv
version of [22]. Needless to say, many alternatives exist, in particular the compu-
tation can be performed using Ilten’s VersalDeformations package [16] or Lella’s
HilbertAndQuotSchemesOfPoints.m2 package [25] or the framework [2].

PROPOSITION 7 (Key computational output). Let H = (1,4,10, s) For every
s = 6,7,8,9 there is an example of [Z ] ∈LH ⊆ Hilb15+s (A4) such that the algebra

Sym• (
Ext1(OZ ,OZ )<0

)∨
Im(µ∨ :

(
Ext2(OZ ,OZ )<0

)∨ → Sym2
(
Ext1(OZ ,OZ )<0

)∨
)

is 4-dimensional.

Proof : This is an explicit Macaulay2 computation. See code below. We work over
characteristic 17 for efficiency. By semicontinuity the same result (for the ideals
given by obvious lifts of generators) is true in characteristic zero. See [24, (10.12)-
(10.13)] for a detailed discussion of this method.

S = (ZZ/17)[x_1 .. x_4];
loadPackage("MatricesAndQuot", Reload=>true);
I9 = ideal(x_2*x_3^2, x_2^2*x_3+x_1*x_4^2+x_4^3,
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x_1^2*x_2+x_1*x_3^2+x_2*x_4^2,
x_1^3+x_2^2*x_4+x_2*x_4^2, x_3*x_4^2, x_1^2*x_4,
x_1*x_2*x_4+x_3^2*x_4+x_1*x_4^2, x_1*x_2*x_3+x_3^3+x_1^2*x_4,
x_2^3+x_2*x_3*x_4+x_4^3, x_1^3+x_2^3+x_3^2*x_4,
x_1^2*x_3+x_1*x_2*x_4+x_2*x_4^2);
assert(degree I9 == 24); -- case (1,4,10,9)
assert(dim primaryObstruction(S^1/I9) == 4);
I8 = I9 + ideal(x_1*x_2^2);
assert(degree I8 == 23); -- case (1,4,10,8)
assert(dim primaryObstruction(S^1/I8) == 4);
I7 = I8 + ideal(x_1*x_3^2);
assert(degree I7 == 22); -- case (1,4,10,7)
assert(dim primaryObstruction(S^1/I7) == 4);
I6 = I7 + ideal(x_1^2*x_3);
assert(degree I6 == 21); -- case (1,4,10,6)
assert(dim primaryObstruction(S^1/I6) == 4);

The total computation time is a few minutes, the case I9 takes most of it.

3.6. Proof of Theorem 1

We proceed to the proof of our main theorem. Recall that we consider Hilbert
functions H = (1,4,10, s) for s ∈ {6,7,8,9}.

Proof : [Proof of Theorem 1] We follow the strategy outlined in the introduction. Fix
an s, let d = 1+4+10+ s, and pick a point [Z ] ∈LH as in Proposition 7. The fibre
π−1([Z ]) is connected as it is a cone. The group scheme (A4,+) acts on the fibre
π−1([Z ]) by translations. From this and from dimπ−1([Z ]) = 4 it follows that the
fibre is, as a set, equal to the (A4,+)-orbit of the cone point [Z ]. By semicontinuity
of fibre dimensions, the same holds for fibres near [Z ]. It follows that, as a set, LH

contains an open neighbourhood of [Z ].

From Proposition 2 and Lemma 1 it follows that for every point [Z ′] ∈LH , the
tangent spaces to Hilbd (A4) and LH differ already in degree −1. This can happen
only if the component of the Hilbert scheme that topologically is equal to LH has
no smooth points, so it is generically nonreduced.

To obtain generically nonreduced components of Hilbd (A4) for d ≥ 21 con-
sider a scheme Z as above for d = 21 and enlarge it to a scheme

Z ⊔ ⊔
d−21

Spec(k)

embedded (in any way) into A4.
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