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ON THE TOTAL REDUCIBILITY OF THE HILBERT CURVE OF SOME

SPECIAL VARIETIES

Dedicated to the memory of Gianfranco Casnati

Abstract. Hilbert curves of quadric fibrations over curves and of scrolls over surfaces
are studied with reference to their total reducibility over Q. The case of del Pezzo man-
ifolds being discussed elsewhere, this completes the picture for polarized n-folds with
unnormalized spectral value n −1.

1. Introduction

Let (X ,L) be a complex polarized manifold of dimension n. The Hilbert curve of
(X ,L) is the affine plane curve of degree n defined by the Hilbert-like polynomial
χ(xKX + yL), where KX is the canonical bundle of X , regarding x and y as complex
variables. This notion was introduced in [2]: the natural expectation is that several
properties of the polarized manifold (X ,L) that one considers are encoded by its
Hilbert curve Γ, as suggested by [2, Theorem 6.1]. In particular, if the nefvalue of
(X ,L) is τ := a

b , with a,b relatively prime positive integers, then Γ is reducible and
contains a −1 parallel lines of prescribed equations as components. Therefore it
becomes important to understand the properties of the residual curve of the union
of such lines in Γ, which is a plane curve, G , of degree n−a+1. This investigation has
been carried out for several manifolds arising in adjunction theory [9], [10], [11], [12].

A question one could ask in particular is the following: when is the Hilbert
curve of a special variety arising from adjunction theory totally reducible over Q (or
over R)? The question comes out naturally in view of [14], where the possibility that
the Hilbert polynomial is totally reducible over Q is investigated for some classes
of Fano manifolds. In general, if X is a Fano n-fold of index ιX polarized by a
positive multiple L = r H , of the fundamental line bundle H (= 1

ιX
(−KX )), the Hilbert

polynomial of (X , H) is

P (z) =χ(zH) = A(z)
ιX −1∏
i=1

(z + i ),

where A(z) is a polynomial of degree n + 1− ιX , whose coefficients, which can
be computed by solving a suitable system of linear equations [13, Lemma 3.1],
are rational numbers. For instance, for Pn we have P (z) = 1

n!

∏n
i=1(z + i ) and for

the smooth hyperquadric Qn ⊂Pn+1, P (z) = 2
n! (z + n

2 )
∏n−1

i=1 (z + i ). Here H denotes
the ample generator of the Picard group of X when it is Z, and OP1×P1 (1,1) when

1The author is a member of GNSAGA of the Istituto Nazionale di Alta Matematica “F. Severi”.

185



186 Antonio Lanteri

X =Q2 (∼=P1 ×P1). Clearly, for any Fano manifold, P (z) is totally reducible over C;
it is also totally reducible over Q for Pn and Qn , due to the above. Notice that this
fact is true also for all Grassmannians [6], but not for all Fano manifolds [14]. Now,
putting z = r y − ιX x one can rewrite P (z) in terms of x and y getting the equation of
the Hilbert curve Γ of (X ,L) in the complex affine plane (x, y). Furthermore, letting
x = 1

2 +u and y = v , we obtain the canonical equation of Γ in terms of coordinates
(u, v), which makes evident the symmetry of this curve with respect to the origin of
the (u, v)-plane; note that this origin corresponds to the half-canonical line bundle,
whose class is the fixed point of the Serre involution acting on Num(X )⊗C [9]. Then,
for

(
Qn ,OQn (r )

)
, r being a positive integer, the polynomial defining the canonical

equation of Γ is

(1) p

(
1

2
+u, v

)
= (−1)n 2

n!
(nu − r v)

n−1∏
i=1

(
nu − r v + n

2
− i

)
.

Hence, in line with what already said, the Hilbert curve of
(
Qn ,OQn (r )

)
is totally

reducible over Q. Looking outside the range of Fano manifolds, the same occurs
when X =P(E ) → B is a projective bundle over a smooth curve B and L f =OPn−1 (r )
for any fibre f = Pn−1 of the bundle projection. Actually, in this case, letting q
denote the genus of B and d = Ln , the canonical equation of Γ is defined by

(2) p

(
1

2
+u, v

)
= (−1)n−1 1

n!

(
n(2q −2)u + d

r n−1 v

)n−1∏
i=1

(
nu − r v + n

2
− i

)
[9, Proposition 2.1]. Note that for (X ,L) = (

Q2,OQ2 (r )
)
, i.e, n = 2 and q = 0, the right

hand sides of both (1) and (2) simply reduce to (2u − r v)2. From the adjunction
theoretic point of view, for r = 1 all the above varieties correspond to the nefvalue of
(X ,L) being τ≥ n [1, Proposition 7.2.2]. Proceeding further for decreasing values of τ,
the only polarized manifold whose nefvalue is between n−1 and n is

(
P2,OP2 (2)

)
[1,

Theorem 7.2.4] (for which τ= 3
2 ), and this case clearly fits into the discussion about

the Hilbert polynomial of Pn . So the obvious question is what happens when the
nefvalue takes on the immediately lower value, namely n −1. By what we said we
can neglect the case of

(
P3,OP3 (2)

)
(in which case τ= 2). Then, assuming that (X ,L)

does not contain (−1)-hyperplanes, so that it coincides with its adjunction theoretic
reduction, condition τ = n − 1 corresponds to three possibilities: i) del Pezzo n-
folds, ii) quadric fibrations over a smooth curve, and iii) scrolls over a smooth
surface [1, Theorem 7.3.2] (see also [4, Theorem 11.8]). Case i) being completely
settled by [14, Section 3], here we focus on cases ii) and iii), and investigating the
total reducibility over Q of the corresponding Hilbert curves is exactly the aim of
this paper.

In Section 2 some common features of the two cases are examined. The
key point is that in both cases the residual curve G is simply a conic, which makes
deciding on the reducibility elementary, at least in principle.

Then, the specific situation of quadric fibrations over curves is dealt with in
Section 3 and the corresponding result, expressed by Theorem 1, solves the problem
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completely: for any adjunction theoretic quadric fibration, the Hilbert curve is
totally reducible over Q if and only if there are no singular fibers.

The case of scrolls over surfaces appears more intricate and is addressed in
Section 4. Here, for technical reasons we have to assume that the vector bundle
giving rise to X is semistable in the sense of Bogomolov, but in spite of this extra
assumption our results are only partial. First of all, the reducibility of G over C (in
two, possibly coinciding, parallel lines) is characterized for adjunction theoretic
scrolls: see Proposition 2. The reducibility over Q, which is more delicate, requires a
case-by-case analysis according to the Kodaira dimension of the base surface S and
is summarized by Theorem 2. A similar analysis is needed to understand when G is
reducible into two transverse lines. For scrolls over a surface S of Kodaira dimension
≤ 1 the result is given by Proposition 3. Unfortunately, when S is of general type we
are only able to establish some restrictions on the numerical characters; however
we provide a significant example in which S has ample cotangent bundle.

Finally, in Section 5, we consider the classical scrolls that are not adjunction
theoretic, which are very few, due to a result of Fujita [5]. It turns out that G , hence Γ,
is totally reducible over Q for all of them except for X =P(

OP2 (2)⊕OP2 (1)
)

polarized
by the tautological line bundle.

2. Common aspects of the two cases

In both cases of quadric fibrations over a smooth curve B and of scrolls over a
smooth surface S, the canonical equation in coordinates (u, v) of the Hilbert curve
Γ of (X ,L) has the following form

p

(
1

2
+u, v

)
= (αu2 +2βuv +γv2 +ε)

n−2∏
i=1

Li = 0,

where α,β,γ,ε ∈ Q and the Li ’s are linear polynomials with rational coefficients,
defining equally spaced parallel lines with the nef-value of (X ,L) as slope and whose
union is symmetric with respect to the origin; in fact Li = (n−1)u−v + 1

2 (n−1−2i ).
Moreover, in both cases we know the explicit expression of the residue polynomial
of degree 2 [11] and [12]. First of all, Γ is totally reducible (over C) if and only if so is
the conic G , whose matrix is

A =
α β 0
β γ 0
0 0 ε

 ,

where γ> 0 (see (5) and (8)). Set ∆ :=αγ−β2. Due to the fact that det A =∆ ε, G is
totally reducible over C if and only if either ∆= 0 or ε= 0. So concerning the total
reducibility over Q of Γ, i.e. of G , we get the following two possibilities:

a) ε= 0 and αu2+2βuv +γv2 = γ(mu−v)(m′u−v) for some rationals m, m′, in
which case the conic G splits into two (possibly coinciding) lines through the
origin, or
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b) αu2 + 2βuv +γv2 = γ(mu − v)2 and ε = −γh2 for some rationals m and h,
in which case G splits into two parallel lines symmetric with respect to the
origin.

Clearly, when both terms ∆ and ε are zero, G consists of a single line with
multiplicity 2.

In case a), ∆=−γ2

4 (m −m′)2, i.e., ∆=−s2 for some s ∈Q. In case b), it is − ε
γ

which is the square of a rational number. In conclusion, we have

PROPOSITION 1. With the notation as above, Γ is totally reducible over Q if
and only if either

a) ε= 0 and ∆=−s2 for some s ∈Q, or

b) ∆= 0 and ε
γ =−s2 for some s ∈Q.

In other words, the condition is that one of the two quantities ∆ and ε
γ

vanishes, the other being the opposite of the square of a rational number. The
above discussion also shows that Γ is totally reducible over R if and only if one of ∆
and ε is zero and the other less than or equal to zero, γ being positive.

3. Quadric fibrations over curves

Let (X ,L) be any quadric fibration over a smooth curve B of genus q and let π : X →
B be the fibration morphism. Consider the rank-2 vector bundle E :=π∗L and let
P :=P(E ). Then X can be described as a smooth divisor of relative degree 2 inside
P . In fact, X ∈ |2ξ− π̃∗B|, where ξ is the tautological line bundle on P , π̃ : P → B
is the bundle morphism extending the fibration π and B is a line bundle on B .
Moreover, ξX = L. From this description we see that KX + (n −1)L = π̃∗A , where
A = KB +detE −B. Let a := degA . Then the following holds [12, §§ 0 and 1, in
particular see Proposition 2].

i) If a < 0 then (X ,L) = (
P1 ×P1,O (2,1)

)
;

ii) if a = 0, then (X ,L) is also a del Pezzo manifold, hence, either

ii-1) n = 2, X is any del Pezzo surface except P2 and L =−KX , or

ii-2) n = 3 and (X ,L) = (
P1 ×P1 ×P1,O (1,1,1)

)
;

iii) if a > 0, then (X ,L) is a quadric fibration in the adjunction theoretic sense [1, p.
81].

As to the canonical equation of Γ we have:

p

(
1

2
+u, v

)
= 2(2u − v)(u − v)
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in case i); in case ii-1), recalling that L =−KX , we have

p

(
1

2
+u, v

)
= 1

2

[
d(u − v)2 + 8−d

4

]
,

where d = K 2
X is the degree of our del Pezzo surface. In particular, since X ̸= P2,

we conclude that Γ is totally reducible over Q if and only if d = 8. Due to the
classification of del Pezzo surfaces, this corresponds to X being either P1 ×P1 or
the Segre–Hirzebruch surface F1: in both cases p( 1

2 +u, v) = 4(u − v)2, see also [14,
Proposition 2.2]. On the other hand, in case ii-2),

p

(
1

2
+u, v

)
= (2u − v)3

[13, Theorem 3.3]. Finally, in case iii) we have [12, Proposition 3]

p

(
1

2
+u, v

)
= (−1)n

n!
f (u, v)

n−2∏
i=1

(
(n −1)u − v + 1

2

(
n −1−2i )

)
,

the residual conic G of Γ having equation f (u, v) = [u v 1]A t [u v 1] = 0, where A,
up to a constant factor, is the matrix

A =
[

A∞ 0
0 (n −1)µ4

]
,

with (see [12, Corollary 4])

A∞ =
[

(1−n)
(
2nc +2e − (n +1)b

)
nc − (n −2)e −b

nc − (n −2)e −b 2e −b

]
,(3)

and

(4) c = 2q −2, e = degE , b = degB.

In particular, a = c +e −b, and µ= 2e − (n +1)b is the number of singular fibers of
π. Recalling the quantities related to the matrix A introduced in Section 2, we have
that

(5) γ= 2e −b = Ln = deg(X ,L) > 0

[12, (3)]. Moreover, ∆= det A∞ and ε= (n −1)µ4 . Now, a straightforward computa-
tion relying on (3) and (4) shows that

det A∞ =−n2a2,

so that ∆=−s2 with s = na ∈Z, and it can never be zero in case iii). Then, det A =
(n −1)µ4 det A∞, hence G is reducible if and only if µ= 0. Moreover, in this case we
have

f (u, v) = 2n
(
(1−n)u + v

)(
cu + e

n +1
v
)

,
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which shows that G is reducible over Q. It thus follows that Γ is totally reducible
over Q in case i), in case ii) when X is a del Pezzo surface of degree d = 8 or
(X ,L) = (

P1×P1×P1,O (1,1,1)
)
, and in case iii) when µ= 0. In particular, concerning

case iii) the above discussion proves the following result.

THEOREM 1. Let (X ,L) be an adjunction theoretic quadric fibration over a
smooth curve B. Then its Hilbert curve is totally reducible over Q if and only if the
fibration π : X → B has no singular fibers.

In particular we can observe that, when reducible, G consists of two distinct
lines cutting at the origin, one of which is parallel to the remaining lines constituting
Γ.

4. Scrolls over surfaces

Now let us focus on the case of scrolls over a smooth surface S. So, let X = P(E )
where E is an ample vector bundle of rank n −1 over S and let L be the tautological
line bundle on X . Sometimes we refer to such a pair (X ,L) as a classical scroll. Note
that E =π∗L, where, here, π : X → S denotes the scroll projection.

Recall that for a vector bundle V of rank r on a smooth surface S the Bogo-
molov number of V is

δ(V ) := (r −1)c1(V )2 −2r c2(V ).

According to [3, Theorem p. 500] if V is H-stable for any ample line bundle H on
S, then δ(V ) < 0 (Bogomolov inequality). This provides a strong notion of instabil-
ity: V is said B-unstable if δ(V ) > 0. Consequently, in accordance with the usual
terminology, we say that V is B-semistable if δ(V ) ≤ 0, properly B-semistable if
equality occurs, and B-stable when the inequality is strict. In particular, if V = A⊕B ,
with A,B ample line bundles, we have c1(V ) = A + B and c2(V ) = A · B , hence
δ(V ) = (A+B)2 −4A ·B = (A−B)2: we thus see that if S is a fibration over a smooth
curve and A−B is a linear combination of fibers, then V is properly B-semistable.

Let δ := δ(E ). Then, according to [11, Sec. 3], the canonical equation of the
Hilbert curve Γ of (X ,L) is defined by

p

(
1

2
+u, v

)
= (−1)n

2(n −2)!
g (u, v)

n−2∏
i=1

(
(n −1)u − v + 1

2

(
n −1−2i )

)
,

the residual conic G of Γ having equation g (u, v) = [u v 1]A t [u v 1] = 0, where A,
up to a constant factor, is the matrix

A =
[

A∞ 0
0 ε

]
,
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with

A∞ =
[

K 2
S + δ

n KS · c1(E )
n−1 − δ

n(n−1)

KS · c1(E )
n−1 − δ

n(n−1)
c1(E )2

(n−1)2 + δ
n(n−1)2

]
,(6)

and

(7) ε= 1

4

(
8χ(OS )−K 2

S − δ

n

)
.

Concerning the other quantities related to the matrix A introduced in Section 2, we
note that

(8) γ= 1

(n −1)2

(
c1(E )2 + δ

n

)
> 0.

Actually, since rk(E ) = n −1, recalling the expression of δ, we have that c1(E )2 + δ
n =

2(n−1)
n

(
c1(E )2 − c2(E )

)
and, in turn, c1(E )2 − c2(E ) = Ln = deg(X ,L) [11, (6)]. Further-

more, ∆= det A∞ is given by

∆= 1

(n −1)2

[(
K 2

S c1(E )2 − (
KS · c1(E )

)2
)
+ δ

n

(
KS + c1(E )

)2
]

.

Set

Φ := K 2
S c1(E )2 − (

KS · c1(E )
)2 and Ψ := δ

n

(
KS + c1(E )

)2,

so that

(9) ∆= 1

(n −1)2 (Φ+Ψ).

As to the term Φ, by the Hodge index theorem we have Φ≤ 0 for any surface S and
any ample vector bundle E , with equality if and only if KS and c1(E ) are linearly
dependent over Q.

Since our motivation is the study of pairs with nef-value n −1, we continue
this section assuming that (X ,L) is an adjunction–theoretic scroll, i.e. KX + (n −
1)L =π∗A , where A is an ample line bundle on S. The canonical bundle formula
immediately shows that

A = KS + c1(E ),

hence this is equivalent to requiring that the adjoint bundle KS + c1(E ) is ample.
This condition is satisfied except for a few classical scrolls, which we will cover in
Section 5.

As to the summand Ψ on the right hand side of (9), we recall that for any
classical scroll (X ,L), A is nef by [17, Theorems 1 and 2] except when (S,E ) =(
P2,OP2 (1)⊕2

)
, in which case A 2 = 1 and δ = 0. Then we always have A 2 ≥ 0 and

according to what we said before, the situations in which equality holds will be
discussed in Section 5.



192 Antonio Lanteri

Now, having assumed that A is ample, it follows that the factor of Ψ consist-
ing of A 2 is strictly positive, hence Ψ= 0 if and only if δ= 0.

From now on in this Section we will assume that

(10) E is B-semistable, i.e.,δ≤ 0.

Under this assumption we have Ψ≤ 0, and equality holds if and only if E is properly
B-semistable.

Summarizing the above discussion, if (X ,L) is an adjunction theoretic scroll,
and (10) holds, then we also have Ψ ≤ 0, equality occurring only for δ = 0. Thus
recalling (9) we obtain

PROPOSITION 2. Let (X ,L) be an adjunction theoretic scroll over S, and assume
that (10) holds; then ∆≤ 0 with equality if and only if E is properly B-semistable and
KS and c1(E ) are linearly dependent over Q.

According to [11, Theorem 4.1], E being properly B-semistable is exactly the
condition ensuring that the conic G itself is the Hilbert curve of the Q-polarized

surface
(
S, 1

rk(E ) detE
)
. Here is some further speculation on the vanishing of ∆.

REMARK 1. If the summand Φ of ∆ and the term A 2 (which is a factor of
Ψ) are both zero, then ∆= 0. In this case we have KS =λc1(E ) for some λ ∈Q and
condition A 2 = 0 reads as (1+λ)2c1(E )2 = 0, hence λ=−1. Therefore A is trivial,
which prevents (X ,L) from being an adjunction theoretic scroll. We will discuss this
case in Section 5.

On the other hand if the summand Φ of ∆ is zero and E is properly B-
semistable, then ∆= 0 as well, but from KS =λc1(E ) with λ ∈Q and the ampleness
of c1(E ) we can simply deduce that K 2

S ≥ 0, with equality if and only if λ = 0, i.e.,
when KS is numerically trivial. We will study this case in detail shortly.

Next look at ε. Letting χ=χ(OS ), (7) becomes ε= 1
4 (8χ−K 2

S − δ
n ). First let us

investigate the case in which G is reducible into two (possibly coinciding) parallel
lines. According to the discussion that led to Proposition 1 it must be ∆= 0, hence
Proposition 2 implies that δ= 0 and KS = λc1(E ) for some λ ∈Q, up to numerical
equivalence. Thus K 2

S =λ2c1(E )2 and, due to the ampleness of E , we see that K 2
S ≥ 0

with equality if and only if λ = 0, i.e. KS is numerically trivial. According to the
Enriques–Kodaira classification, condition K 2

S ≥ 0 implies that χ≥ 0 (in other words,
S cannot be a ruled surface over a curve of genus ≥ 2).

First suppose that λ = 0. In this case (7) shows that ε = 2χ since K 2
S = 0.

Moreover γ = c1(E )2

(n−1)2 by (6). We thus get ε
γ = (n −1)2 2χ

c1(E )2 ≥ 0. Therefore for λ = 0
condition b) in Proposition 1 implies that χ ≤ 0, hence χ = 0 and then it can be
satisfied only when S is either an abelian or a bielliptic surface, KS being numericall
trivial. In this case, since ε= 0, G consists of a line over Q with multiplicity 2.

Next assume that λ ̸= 0. Then K 2
S = λ2c1(E )2 is strictly positive and this
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implies that

(11) S is either a rational surface or a surface of general type.

In both cases χ> 0. From ε= 1
4 (8χ−K 2

S ) and γ= c1(E )2

(n−1)2 we get

ε

γ
= (n −1)2

4

8χ−λ2c1(E )2

c1(E )2 ,

and so condition b) in Proposition 1 is satisfied if and only if 8χ
c1(E )2 −λ2 =−s2 for

some rational number s. Since λ ̸= 0, we can also write c1(E ) = λ−1KS , hence the
above expression can be rewritten as

(12)
ε

γ
= (n −1)2λ2

4

(
8χ

K 2
S

−1

)
.

Thus condition b) in Proposition 1 implies that K 2
S ≥ 8χ. Moreover, s = 0 is equiva-

lent to ε= 0, which exactly means that

(13) K 2
S = 8χ.

Let’s first suppose that s = 0 and recall (11). If S is rational, condition (13) simply
says that S is a Segre–Hirzebruch surface Fe for some e. So, let S = Fe ; by using
the notation as in [7, pp. 379–380], we can write c1(E ) = aC0 +b f with b > ae due
to the ampleness and then c1(E )2 = a(2b − ae). Moreover, since KS = −2C0 − (2+
e) f we have KS · c1(E ) = −2a − (2b − ae). We know that Ψ = 0 since δ = 0, and

then ∆ = 1
(n−1)2 Φ where Φ = −(

2a − (2b −ae)
)2. Therefore s = − 1

n−1 (2a +ae −2b).

So, condition s = 0 is satisfied only for b = a(1+ e
2 ). Since (X ,L) is an adjunction

theoretic scroll, by combining this with the ampleness of A = KS + c1(E ) we get
a > 2 and (a −2)(1+ e

2 ) > (a −2)e. This gives e ≤ 1. Moreover, for e = 0 we get b = a
and then c1(E ) =OP1×P1 (a, a) = a

2 (−KS ); on the other hand, if e = 1 then a must be
even since b is an integer, hence letting a = 2α we get c1(E ) =α(2C0 +3 f ) =α(−KS ).
Furthermore, a ≥ 3 and α≥ 2 in the two cases respectively because A is ample.

On the other hand, if S is of general type then KS is ample, being numeri-
cally equivalent to λc1(E ) (here λ> 0 necessarily). Let η : S → S0 be the birational
morphism from S to its minimal model S0 and suppose that η factors through t
blowing-ups. Then K 2

S = K 2
S0

− t , hence, taking also into account the Miyaoka–Yau

inequality, condition (13) implies that S0 belongs to the region 8χ≤ K 2 ≤ 9χ of the
geographic plane (χ,K 2) and t = K 2

S0
−8χ.

Finally suppose that s ̸= 0. From (12) and the second condition in b) of
Proposition 1 we get that 8χ

K 2
S
−1 is the opposite of the square of a non-zero rational

number. This implies the strict inequality K 2
S > 8χ. Recall (11) again. If S is rational,

this is impossible except when S = P2. On the other hand, if S is of general type,
then KS is ample, and keeping the notation as before, we have that its minimal
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model S0 must satisfy the condition 8χ< K 2
S0

≤ 9χ and the number of blowing-ups

factoring η : S → S0 has to be small enough to preserve the bound K 2
S > 8χ. Here is a

summary of what we proved.

THEOREM 2. Let (X ,L) be an adjunction theoretic scroll over a smooth surface
S with scroll projection π : X → S, and suppose that the ample vector bundle E =π∗L
is B-semistable. Then the Hilbert curve of (X ,L) is totally reducible over Q with
the residual conic G consisting of two parallel lines if and only if E is properly B-
semistable and one of the following occurs:

i)
(
S,c1(E )

)= (
P2,OP2 (a)

)
for some integer a ≥ 4;

ii)
(
S,c1(E )

) = (
P1 ×P1,OP1×P1 (ν,ν)

)
for some integer ν ≥ 3, or

(
F1,ν(−KF1 )

)
for

some integer ν≥ 2;

iii) S is either an abelian or a bielliptic surface;

iv) S is a surface of general type with ample canonical bundle whose minimal
model S0 satisfies 8χ≤ K 2

S0
≤ 9χ and the birational morphism S → S0 factors

through K 2
S0

−8χ blowing-ups;

v) S is a surface of general type with ample canonical bundle whose minimal
model S0 satisfies 8χ< K 2

S0
≤ 9χ and 8χ

K 2
S
−1 is the opposite of the square of a

non-zero rational number.

In particular, note that the two lines constituting G coincide in cases ii) – iv)

because ε= 0 too; on the other hand in case i), (12) gives ε
γ =−( n−1

2a

)2.

Now, still under the hypothesis (10), let us deal with the case where G is
reducible into two transverse lines. In view of Theorem 2 we can suppose that ∆ ̸= 0.
According to Proposition 1 we need to analyze when ε= 0. By (7) this condition is
equivalent to

(14) K 2
S −8χ=−δ

n
,

which implies K 2
S − 8χ ≥ 0, in view of (10). Now, if S = P2, then K 2

S = 9 = 8χ+ 1,

hence ε = − 1
4 (1+ δ

n ) = 0 if and only if δ = −n, in particular this implies that E is
B-stable. On the other hand, since we are on P2, we know that Φ = 0. Moreover,
Ψ = δ

n A 2 = −A 2, hence letting c := degc1(E ), we get A 2 = (
OP2 (c −3)

)2 = (c −3)2.

Therefore the second condition in a) of Proposition 1 is satisfied by taking s = c−3
n−1 .

Suppose S ̸=P2 and let η : S → S0 be a birational morphism from S to either
its minimal model or to a P1-bundle (in case S has negative Kodaira dimension),
and let t ≥ 0 be the number of blowing-ups η factors through. Then K 2

S = K 2
S0

− t , so

if S0 satisfies K 2
S0

≤ Mχ for some positive M , then, a fortiori, K 2
S ≤ Mχ as well. Let

us proceed in our analysis according to the Kodaira dimension κ(S) of S.
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If κ(S) =−∞, then K 2
S = 8χ− t ≤ 8χ, hence equality holds if and only if S = S0

and in this case ε = − δ
4n . So ε = 0 if and only if S is a P1-bundle and δ = 0, i.e. E

is properly B-semistable. Now look at ∆. Since δ = 0 we have Ψ = 0, hence ∆ =
1

(n−1)2Φ. Use notation as in [7, p. 373] again. Recalling that KS =−2C0 + (2q −2−e) f
up to numerical equivalence, where C0 is a fundamental section of minimal self-
intersection −e and q is the genus of B , and writing c1(E ) = aC0 +b f , we get

Φ = K 2
S c1(E )2 − (

KS · c1(E )
)2(15)

= 8a(1−q)(2b −ae)− (
2a(q −1)− (2b −ae)

)2

= −(
2a(q −1)+ (2b −ae)

)2.

Thus the second condition in a) of Proposition 1 is satisfied, with s = 1
n−1

(
2a(q −

1)+ (2b −ae)
)
, provided that it is not zero. It is immediate to check that s = 0 if and

only if
(
S,c1(E )

)
is as in ii) of Theorem 2.

If κ(S) = 0, then K 2
S −8χ≤ 0, which contradicts (14), in view of (10), unless

S = S0 is either an abelian or a bielliptic surface; in these cases K 2
S = 8χ= 0, hence

ε=− δ
4n again. In particular, ε= 0 if and only if E is properly B-semistable. Since Φ

and Ψ are both zero, we get ∆= 0, a contradiction.

If κ(S) = 1, then K 2
S −8χ≤ 0 with equality if and only if S = S0 is an elliptic

quasi-bundle in the sense of Serrano [16], and in this case ε = − δ
4n again. Once

more, ε = 0 if and only if E is properly B-semistable. In this case Ψ = 0, but Φ =
−(

KS · c1(E )
)2 < 0, since K 2

S = 0, c1(E ) is ample and a multiple of KS is effective.

Then ∆=− 1
(n−1)2

(
KS · c1(E )

)2, hence the second condition in a) of Proposition 1 is

satisfied with s = 1
n−1 KS · c1(E ) ̸= 0.

Before moving on to surfaces of general type, we collect the results of the
previous discussion in a statement.

PROPOSITION 3. Let (X ,L) be an adjunction theoretic scroll over a smooth
surface S of Kodaira dimension ≤ 1 with scroll projection π : X → S, and suppose that
the ample vector bundle E =π∗L is B-semistable. Then the Hilbert curve of (X ,L) is
totally reducible over Q with the residual conic G consisting of two transverse lines if
and only if one of the following occurs:

j) S =P2 and E is B-stable;

jj) S is a P1-bundle over a smooth curve, E is properly B-semistable and (S,E ) is
not as in ii) of Theorem 2;

jjj) S is an elliptic quasi-bundle and E is properly B-semistable.

Finally, let κ(S) = 2; recalling the meaning of t we get K 2
S0

= K 2
S + t ≥ 8χ in

view of (14) and (10). Recalling also the Miyaoka–Yau inequality, we thus conclude
that S0 must satisfy the conditions 8χ≤ K 2

S0
≤ 9χ. We have K 2

S0
= 8χ+ t − δ

n by (14)
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again. As a consequence, t = K 2
S0
−8χ+ δ

n and the Miyaoka–Yau inequality shows that

t ≤ χ+ δ
n ≤ χ. In particular, if t = χ, then K 2

S0
= 9χ and E is properly B-semistable:

so, if t = χ, then Ψ = 0, but Φ < 0, since ∆ ̸= 0. On the other hand it seems very
difficult to squeeze out further information on (S,E ) from the second condition in
a) of Proposition 1. This fact invalidates the attempt to summarize the situation in
a meaningful statement for κ(S) = 2. However, here is a non-obvious example.

Example. Let S be a surface with ample cotangent bundle; there is a fairly extensive
literature concerning these surfaces. Set E :=Ω1

S , the cotangent bundle of S. Then
KS = c1(E ). In this case (X ,L) is an adjunction theoretic scroll over a surface of
general type with ample canonical bundle and n = 3. Moreover, Φ = 0, and by
using Noether’s formula we see that δ = 5K 2

S − 48χ. Then δ ≤ −3χ, due to the

Miyaoka–Yau inequality, hence δ < 0 (so E is B-stable). Thus ∆ = 1
4Ψ = 1

3 K 2
Sδ < 0

and ε= 2
3 (9χ−K 2

S ). Therefore ε= 0 if and only if K 2
S = 9χ. As is known, non-ruled

surfaces satisfying this equality are quotients of the unit ball of C2. So, suppose that
S is such a surface. Then Ω1

S is actually ample by a result of Miyaoka [15]. Note that
in this case we get ∆=−(3χ)2. Hence, according to a) in Proposition 1 we conclude
that G is reducible into two transverse lines.

5. The case of classical non-adjunction theoretic scrolls

Here we enlarge the view including scrolls over S which fail to be adjunction theo-
retic in our discussion. According to [5, Main theorem] the pairs (S,E ) giving rise to
such scrolls are those in the following list (which we will refer to as list (∗) in the
sequel):

1) (P2,OP2 (1)⊕3),

2) (P2,OP2 (1)⊕2),

3) (P2,OP2 (2)⊕OP2 (1)),

4) (P2,TP2 ),

5) (P1 ×P1,OP1×P1 (1,1)⊕2), and

6) (S,E ), where S is a P1-bundle over a smooth curve B and E f = OP1 (1)⊕2 for
every fiber f ∼=P1.

Note that 5) also fits into case 6). Moreover, notice that pairs 3), 4), 5) fall within
cases (2), (1), (3) in [14, p. 17] respectively, setting m = 2. So, the conclusion we will
obtain concerning these three pairs could follow from the analysis of the Hilbert
polynomials made in [14, §5]. However, due to the diversity of the approach, we
prefer to discuss all six cases in the list (∗) from the unifying point of view adopted
in this article.

First of all note that δ= 0 in cases 1), 2), 5) of the list (∗), as well as in case 6),
by [10, Proposition 3.5]. On the other hand, δ= 1 in case 3) and δ=−3 in case 4).
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Moreover, in all cases of the list (∗) the adjoint bundle A := KS +c1(E ), introduced
in Section 4, is not ample. In particular, A =OS in cases 1) and 3) – 5), which means
that KS =−c1(E ), hence Φ = 0; in addition, since A 2 = 0, we also have Ψ= 0 and
then ∆= 0 by (9). In case 2) A 2 = 1; however δ=Φ= 0. Thus ∆= 0 also in case 2).
Now look at case 6). Since E f = OP1 (1)⊕2 we know that A = KS + c1(E ) is a linear
combination of fibers (although A ̸=OS , in general). As a consequence, A 2 = 0, so
that Ψ= 0. When is it also Φ= 0 or, equivalently, ∆= 0 ? The answer is provided by
the following more general result.

PROPOSITION 4. Let (S,E ) be as in 6) of the list (∗). Then ∆=−s2 for some
integer s. Moreover, s = 0 if and only if (S,E ) = (

P1 ×P1,OP1×P1 (1,1)⊕2
)

(namely in
case 5)).

Proof : Keeping the notation as in [7, p. 373], the fact that π : S → B is a P1-bundle
implies that KS =−2C0 + (2q −2−e) f , up to numerical equivalence. On the other
hand, c1(E ) = 2C0 +β f for some integer β, up to numerical equivalence again, and
the ampleness of c1(E ) implies (see [7, p. 382])

β>
{

2e if e ≥ 0

e if e < 0 (in which case q > 0).

Specializing (15) by setting a = 2 and b =β we see that Φ=−4(2q−2+β−e)2. Recall
that δ = 0, hence ∆ = 1

4 Φ since E has rank 2. Then, letting s := 2q −2+β− e we
obtain ∆ = −s2. Now, the ampleness conditions above show that s ≥ 0 (note that
for e = q = 0 we have β> 1 because E itself is ample) and this is a strict inequality
unless q = 0, in which case β= e+2. So, if s = 0, then S = Fe and c1(E ) =−KS . Hence
c1(E )2 = 8. Then the assertion follows from [8, Theorem 2.5].

Recalling what we said before about the other pairs in the list (∗) we get

COROLLARY 1. Let (S,E ) be as in the list (∗). Then ∆= 0 exactly for all pairs
1)−5).

As a consequence, for all (X ,L) corresponding to these pairs, the conic G
is reducible over C. To decide about the reducibility over Q we have to look at ε

γ

according to b) in Proposition 1.

Recalling what we said about δ, and noting that in case 6) of the list (∗),
K 2

S = 8(1− q) = 8χ(OS ), a straightforward computation shows that the values of ε

are − 1
4 in cases 1) and 2), − 1

3 in case 3), and 0 in cases 4) – 6). In particular, it
turns out that G is reducible over C also in case 6). In passing let us note that G
is also reducible over R in all cases, according to what we observed at the end of
Section 2. On the other hand, γ= 1 in cases 1) and 2) and 7

3 in case 3). Therefore
the condition implying that G is reducible over Q, namely the second condition in
b) of Proposition 1, is satisfied in all cases except 3) of the list (∗). In particular, G
consists of two parallel lines in cases 1) and 2), of a single line with multiplicity 2 in
cases 4) and 5), and of two transverse lines in case 6), apart from 5).
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