
Rendiconti Sem. Mat. Univ. Pol. Torino
Vol. 82, 1 (2023), 47 – 70

N. Chiarli-S. Greco-R. Notari*-M.L.S. Spreafico*

TORSION–FREE SHEAVES AND ACM SCHEMES

Dedicated to the memory of Gianfranco Casnati

Abstract. In this paper we study short exact sequences 0 →P →N →JD (k) → 0 with
P ,N torsion–free sheaves and D closed projective scheme. This is a classical way to
construct and study projective schemes. In particular, we give homological conditions on
P and N that force D to be ACM, without constrains on its codimension. As last result,
we prove that if N is a higher syzygy sheaf of an ACM scheme X , the scheme D we get
contains X .

1. Introduction

Homological methods have proved to be very useful in studying projective schemes
(see [1,4,9,19] among the many papers where such methods have been applied). For
example, many information on the geometry of a closed scheme X ⊆Pr are encoded
in the minimal free resolution of the saturated ideal IX of X . Homological methods
are used also to construct schemes with prescribed properties (see [2, 12, 14, 16, 20]
in connection with liaison theory and its generalizations). For example, in [14], M.
Martin–Deschamps and D. Perrin gave a homological construction of the ideal of a
curve C in P3 with a prescribed Hartshorne–Rao module and of minimal degree. In
more detail, given a graded Artinian R := K [x, y, z, w ]–module M with minimal free
resolution

0 → L4 → L3 → L2 → L1 → L0 → M → 0,

they show how to compute a free graded R–module P such that the cokernel of a
general injective map γ : P → N := ker(L1 → L0) is isomorphic to the saturated ideal
of a locally Cohen–Macaulay curve C ⊂ P3, up to a shift in grading, that is to say,
they produce a short exact sequence

(1) 0 → P
γ−→ N → IC (k) → 0.

An analogous sequence was used first by J.P.Serre in [19] to construct sub-
canonical curves in P3. To this end, he considered a rank 2 vector bundle N , a
global section s whose zero–set has codimension 2, and the corresponding map

O
s→N . The image of the dual map N ∨ →O is the ideal sheaf of a subcanonical

curve C ⊂P3. J.P. Serre’s construction was generalized to construct codimension 2
schemes in Pr (see [7], [18], among others). For example, in [9], R. Hartshorne con-
sidered sections, whose zero–set has codimension 2, of reflexive rank 2 sheaves on
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P3. In this new and more general setting, the constructed schemes were generically
locally complete intersection curves.

While studying the construction of minimal curves by M. Martin–Deschamps
and D. Perrin given in [14], we applied it to syzygy modules of 0–dimensional
schemes of P3 instead of syzygy modules of graded Artinian R–modules. The curves
we produced were all arithmetically Cohen–Macaulay. To understand why the curves
share this unexpected property, we were led to consider all the previous apparently
different constructions from the same point of view, getting as result a quite general
construction of arithmetically Cohen–Macaulay schemes of arbitrary codimension.
For particular choices, we construct arithmetically Cohen–Macaulay schemes con-
taining a given scheme with the same property but of larger codimension.

We outline the structure of the paper. In section 2, first of all we describe
some properties of torsion–free coherent sheaves, and their cohomology. Then,
we get some bounds on the projective dimensions of N and P in terms of the
codimension of D and of the cohomology of its ideal sheaf JD . Finally, we recall
the well known result of Martin–Deschamps and Perrin, described in [14], about
maximal subsheaves which allows us to assure that the cokernel of a given injective
map P →N is an ideal sheaf.

Section 3 is the heart of the paper. At first, we give some conditions on the
coherent torsion–free sheaves N and P to assure that the short exact sequence (1)
ends with the ideal sheaf of a closed arithmetically Cohen–Macaulay subscheme
D of Pr of codimension 2+pd(P ), where pd(P ) is the projective dimension of
P . Moreover, we show that the construction characterizes the couple (D,P ) in
the sense that starting from an arithmetically Cohen–Macaulay scheme D and a
torsion–free coherent sheaf P , we can construct a sheaf N fulfilling our conditions.

In the codimension 2 case we give a geometrical description of our construc-
tion associating to any non–zero element of H 0(D,ωD (c)) an extension as (1). This
is a new reading of the analogous result of [19], for coherent torsion–free sheaves,
without bounds on the rank of N . We show also that some schemes we obtain in
our setting cannot be obtained with Hartshorne’s construction, and conversely. So,
the two constructions are not the same one.

Section 4 is devoted to solve the problem of finding a codimension s closed
scheme D containing a given codimension t (> s) scheme X , them both arithmeti-
cally Cohen–Macaulay. We end the section with some examples.

2. Preliminary results

Let K be an algebraically closed field, and let R = K [x0, . . . , xr ] be the graded polyno-
mial ring. Let Pr = Proj(R) be the projective space of dimension r over K . If X ⊆Pr

is a closed scheme, we denote by JX its ideal sheaf in OPr and by IX its saturated
ideal in R, and it holds IX = H 0∗(Pr ,JX ).

By R–module (sheaf, resp.) we mean “graded R–module" (“coherent OPr –
module", resp.). If F is a R–module we denote by F the corresponding sheaf,
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namely F := F̃ .

We recall that a local ring A is Cohen–Macaulay if dim(A) = depth(A). A ring
A is Cohen–Macaulay if AM is Cohen–Macaulay for every maximal ideal M⊂ A. A
scheme X is Cohen–Macaulay if the ring OX ,x is Cohen–Macaulay for every closed
point x ∈ X . A closed scheme X ⊆Pr is arithmetically Cohen–Macaulay (ACM, for
brief) if the coordinate ring RX = R/IX is a Cohen–Macaulay ring. This is equivalent
to say that H i∗(JX ) = 0 for 1 ≤ i ≤ dim(X ).

For any finitely generated R–module P we denote by pd(P ) the projective
dimension of P, i.e., the length of the minimal free resolution of P ( [5], Theorem
19.1 and the previous Definition).

Let D ⊆Pr be a closed scheme, and let ID ⊆ R be its saturated ideal. If

0 → Ft →···→ F2 → F1 → ID → 0

is the minimal free resolution of ID , with t ≤ r, and P is the kernel of F1 → ID , then
we have a short exact sequence

0 → P → F1 → ID → 0

which is equivalent to the minimal free resolution. The R–module P is a torsion–free
finitely generated R–module with projective dimension pd(P ) = pd(ID )−1. We can
also consider the short exact sequence

0 →P →F1 →JD → 0

obtained by considering the sheaves associated to the modules in the former se-
quence. Of course, P is a torsion–free sheaf, and F1 is dissocié, according to the
following definitions.

DEFINITION 1. A R–module M is torsion–free if every non–zero element of R
is a non zero–divisor of M .

A sheaf F on Pr is torsion–free if F (U ) is a torsion–free OPr (U )–module for
every open subset U ⊆ Pr , or equivalently, Fx is torsion–free over OPr ,x for every
x ∈Pr .

DEFINITION 2. Let F be a sheaf on Pr . We say that F is dissocié of rank s if

F =⊕s
i=1OPr (ai )

for suitable integers a1, . . . , as .

Of course, if F is a free R–module, then F = F̃ is dissocié. Conversely, if F is
dissocié, then H 0∗(F ) is a free R–module.

Generalizations of the approach consist in relaxing the strong hypothesis
“dissocié" on F1. Hence, let us consider the short exact sequence

(2) 0 →P
γ−→N →JD (k) → 0
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with P torsion–free, and k ∈ Z. Standard arguments allow us to prove that N is
torsion–free, as well. So, the weakest hypothesis on N is torsion–free. On the other
hand, short exact sequences are classified by Ext1

OPn
(JD ,P ).

As we are interested in sequences of sheaves, it will help to have the analogue
for sheaves of the minimal free resolution and of projective dimension of a graded
finitely generated module.

By ( [8], Ch. II, Corollary 5.18), we have that any sheaf P admits a dissocié
resolution, namely a resolution by dissocié sheaves. We need to be more precise on
this point, and so we begin with some preliminaries.

REMARK 1. We recall some facts about associated points. For more details
see e.g. ( [15], Ch. 3), where the case of (ungraded) modules is dealt with. Extending
to sheaves is straightforward.

(i) Let F be a sheaf. A (not necessarily closed) point y ∈Pr is associated to
F if there is an open affine U = Spec(A) ⊆Pr containing y such that the prime ideal
of A corresponding to y is associated to the A-module Γ(U ,F ); this is equivalent to
say that depthOPr ,y

(Fy ) = 0.

(ii) The set Ass(F ) of the associated points to F is finite.

(iii) Any form f of degree n avoiding all elements of Ass(F ) induces by

multiplication an injective morphism F
· f−→F (n). Hence a general form of degree

n has this property.

(iv) ( [3], Exercise 20.4.21) The graded R- module H 0∗(F ) is finitely generated
if and only if Ass(F ) contains no closed points, if and only if depthOPr ,x

(Fx ) > 0 for
every (closed) x ∈Pr .

Now, we prove that every sheaf has a dissocié resolution of finite length. We
recall that all sheaves we consider are coherent, as stated at the beginning of the
present section.

LEMMA 1. Let F be a sheaf and let M be a graded submodule of H 0∗(F ). Then

(a) any general linear form induces by multiplication an injective map M → M(1);

(b) if M is finitely generated then pd(M) ≤ r ;

(c) F admits a dissocié resolution of length ≤ r .

Proof. (a) follows easily from Remark 1(iii).

(b) By (a) we have depth(M) ≥ 1 and the conclusion follows by the Auslander-
Buchsbaum formula ( [5], Exercise 19.8).

(c) Since F is coherent we have F = M̃ , where M is a suitable finitely ge-
nerated graded submodule of H 0∗(F ) ( [8], Ch. II, proof of Theorem 5.19). The
conclusion follows from (b), because we get a dissocié resolution of F by sheafify-
ing the minimal free resolution of M .
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Following ( [6], Section 2), we define the minimal dissocié resolution of a
coherent sheaf.

DEFINITION 3. Let P be a sheaf such that P := H 0∗(P ) is finitely generated.
Let

0 → Hd →···→ H0 → P → 0

be the minimal free resolution of the R–module P . We name minimal dissocié
resolution of P the exact sequence

0 →Hd →···→H0 →P → 0

obtained by sheafifying the minimal free resolution of P. (Recall that P̃ =P by ( [8],
Ch. II, Proposition 5.4)).

Moreover, we define the projective dimension of P as pd(P ) := pd(P ).

REMARK 2. It is known that there exist many submodules of P = H 0∗(P )
whose associated sheaf is P : in fact, it is enough that such a submodule M agrees
with P for some large degree on. Of course, the sheafification of a minimal free
resolution of M is still a dissocié resolution of P , and no map is split. However,
the resolution of M is longer than the minimal one. In fact, from the short exact
sequence of modules

0 → M → P → P/M → 0,

we get that pd(M) = r, because P/M is an Artinian module. Hence, pd(M) ≥ pd(P ),
as we claimed.

REMARKS 1. (i) Clearly pd(P ) = 0 if and only if P is dissocié.

(ii) pd(P ) ≤ r whenever defined (Lemma 1(b) applied with M = H 0∗(P )).

The next Lemma gives a bound for the projective dimension of a torsion-free
sheaf.

LEMMA 2. Let P be a torsion-free coherent sheaf on Pr , and let P = H 0∗(P ).
Then:

(a) P is finitely generated;

(b) P torsion-free;

(c) P is a subsheaf of a coherent dissocié sheaf;

(d) pd(P ) = pd(P ) ≤ r −1.

Proof. (a) It follows easily from Remark 1(iv).

(b) Any non zero form f ∈ R of degree n induces, by multiplication, an

injective morphism P
· f−→ P (n), and consequently an injective homomorphism

P
· f−→ P (n).
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(c) By (a) and (b), P is a torsion–free R-module and hence it is a graded
submodule of a free R–module L. Then, P = P̃ is a subsheaf of L := L̃ and the
claim follows.

(d) By (c) there exist a sheaf F and an exact sequence 0 →P →L →F → 0,
whence an exact sequence of R-modules:

0 → P → L → M → 0,

where M is a graded submodule of H 0∗(F ). By Lemma 1(b) we have pd(M) ≤ r ,
whence pd(P ) ≤ r −1. By (a), Definition 3 applies and the proof is complete.

From now on, every R–module will be finitely generated, and so we shall skip
this assumption.

It is possible to describe the cohomology of a coherent sheaf, as we said
before.

LEMMA 3. Let r ≥ 3, let P be a R–module and let P = P̃ be its associated sheaf.
Suppose d = pd(P ) < r. Then:

(a) H 0∗(P ) = P ;

(b) H i∗(P ) = 0 for 1 ≤ i ≤ r −d −1;

(c) H r−d∗ (P ) ̸= 0.

(d) If P is any torsion-free sheaf with d := pd(P ), then (b) and (c) hold.

Proof. We prove claims (a), (b), (c) together, by induction on d .

If d = 0, the sheaf P is dissocié and the claims hold by ( [8], Ch. III, Theorem
5.1).

If d = 1 we have a non–split exact sequence

0 → L1 → L0 → P → 0

with L1 and L0 free. By passing to sheaves, we get a non–split exact sequence

(3) 0 →L1 →L0 →P → 0,

whence Ext1(P ,L1) ̸= 0. It follows easily that Ext1(P ,OPr (k)) ̸= 0 for some k ∈ Z.
On the other hand by duality and properties of Ext we get H r−1(Pr ,P (−k − r −
1)) ∼= Ext1(P (−k − r −1),ωPr ) ∼= Ext1(P ,OPr (k)), whence (c). Since (a) and (b) are
immediate from the exact sequence (3), the statement holds for d = 1 as well.

Assume now d ≥ 2. We have an exact sequence

0 → P1 →G → P → 0

where G is a free R−module and P1 is a R–module with pd(P1) = d −1. In fact, it is
enough to consider the first short exact sequence that can be obtained from the
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minimal free resolution of P, as explained before. By taking the sheaves associated
to each item, we get the short exact sequence of sheaves

(4) 0 →P1 →G →P → 0.

By induction, we may assume that H 0∗(P1) = P1, H i∗(P1) = 0 for 1 ≤ i ≤ r−(d−1)−1 =
r −d , and that H r−d+1∗ (P1) ̸= 0.

By assumption, d < r, and so r −d ≥ 1. In particular, H 1∗(P1) = 0.

By taking the cohomology sequence associated to (4) and using the assump-
tions on the cohomology of P1 we get the conclusion.

To prove (d), set P := H 0∗(P ). Then by definition and by Lemma 2 we have
d = pd(P ) < r . Since P̃ =P the conclusion follows by (b) and (c).

The previous Lemma allows us to generalize Horrocks’ splitting criterion
( [18], Theorem 2.3.1) to torsion–free sheaves, with a completely different proof (see
( [1] Corollary 1.3) for another generalization to locally–free sheaves).

COROLLARY 1. A torsion–free sheaf P over Pr is dissocié precisely when
H i∗(P ) = 0 for i = 1, . . . ,r −1.

Proof. Assume H i∗(P ) = 0 for i = 1, . . . ,r −1, and set d := pd(P ). By Lemma 3(d) we
have H i∗(P ) = 0 for i = 1, . . . ,r −1−d and H r−d∗ (P ) ̸= 0. This is possible only if d = 0,
i.e. if P is dissocié. The converse is clear.

Now, we consider the short exact sequence (2). Our first result relates the
codimension of D and the projective dimension of P .

PROPOSITION 1. Let D ⊆Pr be a closed scheme of codimension s, with s ≥ 2,

and let P a R–module with pd(P ) = d . If s −2 > d , then Ext j
OPn

(JD (k),P ) = 0 for

j = 1, . . . , s −2−d .

Proof. We prove the claim by induction on d .

If d = 0, that is to say P is a free module, then there exist a1, . . . , an ∈Z such
that P =⊕n

i=1R(−ai ). By using standard properties of Ext groups, we have

Ext j
OPn (JD (k),P ) =⊕n

i=1Ext j
OPn

(JD (k),OPr (−ai )) =
=⊕n

i=1Ext j
OPn

(JD (k +ai − r −1),ωPr ) ∼=
∼=⊕n

i=1H r− j (Pr ,JD (k +ai − r −1)) =
=⊕n

i=1H r− j−1(D,OD (k +ai − r −1)) = 0

as soon as r − j−1 > r −s by Grothendieck’s vanishing Theorem ( [8], Ch.III, Theorem
2.7), where ωPr =OPr (−r −1) is the canonical sheaf of Pr . Hence, Ext j (JD (k),P ) = 0
for j = 1, . . . , s −2 and for every k ∈Z, and the claim holds for d = 0.
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Assume d > 0 and the claim to hold true for every R–module with projective
dimension d −1. As in the proof of Lemma 3, we consider the short exact sequence

0 → P1 →G → P → 0

with G free and P1 of projective dimension d −1. By applying Hom(JD (k),−) to the
sheafified sequence, we get the exact sequence

Exti (JD (k),G ) → Exti (JD (k),P ) → Exti+1(JD (k),P1) → Exti+1(JD (k),G ).

From the first part of the proof, we get that Exti (JD (k),G ) = Exti+1(JD (k),G ) = 0 for
every k and for i = 1, . . . , s−3. From the induction assumption, Exti+1(JD (k),P1) = 0
for every k and for i = 0, . . . , s −2−d . Hence, Exti (JD (k),P ) = 0 for every k ∈Z and
for i = 1, . . . , s −2−d as claimed.

A direct consequence of the previous Proposition is that we can predict if N
is the direct sum of P and ID . In fact it holds:

COROLLARY 2. Let D ⊆Pr be a closed scheme of codimension s ≥ 2, and let P
be a R–module satisfying s −2 > pd(P ). Then, the only extension of JD (k) with P

is the trivial one, for every choice of k ∈Z. Consequently if there is a non–split exact
sequence (2), we must have s ≤ pd(P )+2.

Proof. The previous Proposition shows that Ext1(JD (k),P ) = 0 and the claim fol-
lows.

Now, we take into account the cohomology of D to get a bound on the
projective dimension of N .

PROPOSITION 2. Let D ⊂ Pr be a closed scheme, and let P ,N be torsion–
free sheaves such that the short sequence (2) is exact. If pd(N ) ≥ pd(P )+2, then

H r−pd(N )
∗ (JD ) ̸= 0.

Conversely, if H j
∗(JD ) ̸= 0 for some j ∈ Z with 1 ≤ j ≤ r − 2−pd(P ), then

pd(N ) ≥ pd(P )+2.

Proof. By Lemma 2, we have that pd(P ) and pd(N ) are strictly smaller than r. By
taking the long exact cohomology sequence associated to (2), we get

H i
∗(P ) → H i

∗(N ) → H i
∗(JD ) → H i+1

∗ (P ).

From Lemma 3, we know that H j
∗(P ) = 0 for j = 1, . . . ,r −pd(P )−1, and so H i∗(N ) ∼=

H i∗(JD ) for i = 1, . . . ,r −pd(P )−2.

If pd(P )+2 ≤ pd(N ) < r, then 1 ≤ r −pd(N ) < r −pd(P )−1. It follows that

H r−pd(N )
∗ (N ) ∼= H r−pd(N )

∗ (JD ) and we get the claim by Lemma 3.

Assume now that H j (JD (k)) ̸= 0 for some k ∈ Z and some j such that 1 ≤
j ≤ r −pd(P )− 2. Hence, H j

∗(N ) ̸= 0. Again by Lemma 3, r −pd(N ) ≤ j and so
pd(N ) ≥ pd(P )+2.
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REMARK 3. In the second part of the previous Proposition, the hypothesis
on j implies that pd(P ) ≤ r −3. This last inequality is not automatically fulfilled. In
fact, let D ⊆Pr be a locally Cohen–Macaulay curve with H 1∗(JD ) ̸= 0. Let

0 →Gr →···→G2 →G1 → ID → 0

be the minimal free resolution of ID and let P = ker(G1 → ID ). Then, pd(P ) = r −
2 = pd(ID )−1, and pd(G1) = 0. Hence, we cannot apply the previous Proposition
to the short exact sequence 0 → P → G1 → ID → 0. Nevertheless, it could exist a
different short exact sequence 0 →Q → N → ID → 0 with pd(Q) = r −3. In this case,
pd(N ) = r −1. Notice that r −3 is the smallest projective dimension allowed for the
first item of the sequence, because of the codimension of D.

REMARK 4. The case considered in the previous Proposition, namely
pd(N ) ≥ pd(P )+2, occurs in the N –type resolution of the ideal sheaf of a locally
Cohen–Macaulay curve in P3 ( [14], Ch. II, Section 4). In that case, P is dissocié and
pd(N ) = 2, where N is the second syzygy module of the Hartshorne–Rao module
(graded Artinian R–module) of the curve, up to a free summand.

Now, we stress some consequences of the previous Proposition that we’ ll
use in next sections.

COROLLARY 3. Consider an exact sequence (2) where D has codimension s ≥ 2.
If D is ACM and the sequence is non-split we have

(5) pd(N ) ≤ pd(P )+1.

Proof. By Corollary 2 the non–splitting of the sequence (2) implies that s ≤ pd(P )+
2. If pd(N ) ≥ pd(P )+2, then H r−pd(N )

∗ (JD ) ̸= 0 by Proposition 2. On the other hand,

r −pd(N ) ≤ r − s and so H r−pd(N )
∗ (JD ) = 0 because D is ACM. The contradiction

proves that pd(N ) ≤ pd(P )+1.

REMARK 5. If pd(N ) ≤ pd(P )+1, we can only prove that H i∗(JD ) = 0 for
i = 1, . . . ,r −pd(P )−2. Hence, D could not be an ACM scheme if s < pd(P )+2.

A further problem related to the sequence (2) is the following: given the
modules P and N , and an injective map P → N , when is the cokernel an ideal
sheaf? This problem was considered in [14], and we resume their results.

At first, we recall the definition and some properties of the maximal sub-
sheaves, generalizing to Pr the one given for sheaves on P3 ( [14], Ch. IV, Définition
1.1). In literature, maximal subsheaves are also named saturated sheaves (e.g.,
see [11]).

DEFINITION 4. Let M ⊂N be OPr –modules. M is a maximal subsheaf of N

if for all subsheaves M ′ ⊂N with rank(M ) = rank(M ′) such that M ⊆M ′ ⊆N , we
have M =M ′.
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The interest in such subsheaves lies in the following properties.

PROPOSITION 3. Let M ⊆N be OPr –modules. Consider the following proper-
ties:

(a) M is maximal;

(b) N /M is torsion–free;

(c) N /M is torsion–free in codimension 1;

(d) N /M is locally free in codimension 1;

(e) N /M has constant rank in codimension 1;

( f ) N /M is locally a direct summand of N in codimension 1.

Then, (a) ⇔ (b) ⇒ (c) ⇔ (d) ⇔ (e) ⇒ ( f ). Furthermore, if N is torsion–free and M is
locally free, they all are equivalent.

Proof. The statement was proved for sheaves on P3 in ( [14], Ch. IV, Proposition
1.2),but the proof works without changes also for sheaves on Pr .

Moreover, in the proof, the authors proved also the existence of maximal
dissocié subsheaves of a sheaf N .

As explained in ( [14], Ch.IV, Remark 1.3(c)), in P3, if N is a rank n +1 vector
bundle, and M is a rank n dissocié maximal subsheaf of N , then N /M is a rank 1
torsion–free sheaf, and so it is an ideal sheaf tensorized times det(N )⊗det

(
M−1

)
.

Moreover, if N is not dissocié, then the ideal sheaf defines a curve.

3. A construction of ACM schemes

In this section, we consider two coherent torsion–free sheaves P and N and an
injective map γ : P →N , and we study the scheme D whose ideal sheaf is isomor-
phic to coker(γ), as in [14]. We limit ourselves to consider only the case D has the
largest codimension to have a non–split exact sequence (2) (see Corollary 2) and
N to have the largest projective dimension to allow D to be an ACM scheme (see
Corollary 3). In more detail, we collect the hypotheses on P and N in the following

(H .1) P is torsion-free and s := pd(P )+2 ≤ r ;

(H .2) N is torsion-free and pd(N ) ≤ pd(P )+1;

(H .3) the polynomial

p(t ) :=−χ(N (t −k))+χ(P (t −k))+
(

t + r

r

)
has degree r − s for some k ∈Z.

(H)
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We remark that, in view of Definition 3 and Remark 1, the condition about
the projective dimensions required in (H.1) and (H.2) means that P := H 0∗(P ) and
N := H 0∗(N ) have, respectively, minimal free resolutions

0 →Gs−1
∆s−1−→ Gs−2

∆s−2−→ . . .
∆2−→G1 → P → 0

and

0 → Fs
δs−→ Fs−1

δs−1−→ . . .
δ2−→ F1 → N → 0.

REMARKS 2. (i) We allow F j = 0 for some j in the minimal free resolution of
N . In such a case, F j+h = 0 for every h ≥ 0.

(ii) Condition (H.3) implies that rank(N ) = rank(P )+1, because the rank
of F is equal to r ! times the coefficient of t r in χ(F (t)). Moreover, recalling that
OPr (a) has degree a and that the degree is additive on exact sequences, we have
that k = deg(N )−deg(P ).

Now, we describe the geometric properties of the schemes that can be ob-
tained from such torsion–free sheaves.

THEOREM 1. Let P and N be torsion–free coherent sheaves that fulfil the
hypotheses (H). Assume that there exists an injective map γ : P →N whose image
is a maximal subsheaf of N . Then there exists a codimension s = 2+pd(P ) scheme
D, closed and ACM, whose ideal sheaf fits into the short exact sequence (2) with
k = deg(N )−deg(P ). Moreover, the sequence 0 → P → N → ID (k) → 0 is exact.

Proof. The cokernel of γ is a rank 1 torsion–free sheaf F . Let F∨∨ be its double dual.
Since F is torsion–free, the natural map F →F∨∨ is injective. By ( [9], Corollary
1.2 and Proposition 1.9), F∨∨ ∼=OPr (h) for some h ∈Z, and so F ∼=JD (h) ⊆OPr (h),
i.e. we have an exact sequence

0 →P
γ−→N →JD (h) → 0.

Clearly h = deg(N )−deg(P ) = k, and hence the above sequence coincides with (2).
Now, by Remark 2, (ii), k is the integer occurring in the polynomial p(t) of (H.3),
then p(t ) is the Hilbert polynomial of D , whence dim(D) = r − s by (H.3). Moreover,
(H.2) and the second part of Proposition 2 imply that D is ACM. Finally, by (H.1)
we have pd(P ) ≤ r −2, whence r −pd(P )−1 ≥ 1. Then Lemma 3(d) implies that
H 1∗(P ) = 0 and the last statement follows.

REMARK 6. The map γ : P →N induces a map of complexes between the
minimal free resolutions of P and N . Let γi : Gi → Fi be the induced map. Of course,
γi ◦∆i+1 = δi+1 ◦γi+1, for each i ≥ 1. Hence, a resolution of ID (k) can be obtained
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via mapping cone from (1), and it is

(6) 0 →
Gs−1

⊕
Fs

εs−→
Gs−2

⊕
Fs−1

εs−1−→ . . .
ε3−→

G1

⊕
F2

ε2−→ F1 → ID (k) → 0

where εi : Gi−1 ⊕Fi →Gi−2 ⊕Fi−1 is given by(
∆i−1 0

(−1)iγi−1 δi

)
, for i ≥ 2.

We remark that ε2 : G1 ⊕F2 → F1 is represented by the matrix (γ1,δ2).

By general results on free resolutions, it is clear that the minimal free reso-
lution of ID (k) can be obtained by cancelling the free modules corresponding to
constant non–zero entries of any matrix representing the map εi , i = 2, . . . , s.

REMARK 7. If there exists an injective map γ : P → N whose image is a
maximal subsheaf of N of rank rank(P ) = rank(N )−1, then the general map in
Hom(P ,N ) has the same property.

Before studying further the properties of the construction, we give an exam-
ple to illustrate it.

EXAMPLE 1. In P4 = Proj(R = K [x, y, z, t ,u]), let C1 and C2 be plane curves of
degrees d and e, with e < d , whose saturated ideals are

IC1 = 〈x, y, f1〉 IC2 = 〈t ,u, f2〉
where f1 ∈ K [z, t ,u]d , f2 ∈ K [x, y, z]e . Moreover, we assume that f1 − zd , f2 − ze ∈
〈x, y, t , u〉. Let C =C1 ∪C2. It follows from the assumptions that C is a degree d +e
curve, not ACM because H 1∗IC

∼= R/〈x, y, t ,u, ze〉. We adapt an argument by [20] to
choose the sheaves N and P so that our construction provides an ACM curve D
containing C .

Let N be the sheaf associated to the first syzygy module of H 0∗(OC ). An easy
computation shows that the minimal free resolution of N is

0 →
O (−e −2)

⊕
O (−d −2)

δ3−→

O2(−2)
⊕

O2(−e −1)
⊕

O2(−d −1)

δ2−→

O4(−1)
⊕

O (−e)
⊕

O (−d)

δ1−→N → 0,

where O is the structure sheaf of P4 and the maps are represented by the matrices

δ2 =



y 0 0 0 f1 0
−x 0 0 0 0 f1

0 u f2 0 0 0
0 −t 0 f2 0 0
0 0 −t −u 0 0
0 0 0 0 −x −y

 δ3 =



0 f1

f2 0
−u 0

t 0
0 −y
0 x

 .
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Furthermore, let P be defined by the exact sequence

0 →O (−3)
∆2−→O2(−2)

∆1−→P → 0

where ∆2 is represented by the matrix

∆2 =
(

l2

l1

)
with l1, l2 linear forms intersecting along a plane.

It is evident that both P and N are torsion–free, with projective dimensions
1 and 2, respectively. Hence, they fulfil the conditions (H .1) and (H .2) with s = 3. A
straightforward computation shows that, for k = 1, the polynomial p(t ) is equal to
t(d + e +2)+1− (e

2

)− (d
2

)
, and so it has degree r − s = 4−3. Hence, condition (H .3)

is fulfilled, too. Now, we want to give a map γ : P → N , such that its image is
a rank 1 maximal sub–sheaf of N . By lifting γ to the minimal free resolutions of
the two sheaves, we get the two maps γ1 : O2(−2) → O4(−1)⊕O (−e)⊕O (−d) and
γ2 : O (−3) →O2(−2)⊕O2(−e −1)⊕O2(−d −1), that verify

δ1 ◦γ1 = γ◦∆1 and δ2 ◦γ2 = γ1 ◦∆2.

With some non difficult computations, it is possible to prove that for each choice of
the maps a : O (−1) →O4(−1) and b : O2(−2) →O2(−2), we get a map of complexes
by setting

γ= δ1| ◦a, γ1 = a ◦∆1 +δ2| ◦b, γ2 = b ◦∆2

where δ1| is the restriction of δ1 to O4(−1) and δ2| is the restriction of δ2 to O2(−2).
As P is the sub–sheaf of O (−1) spanned by Im(∆1), for general a, Im(γ) is a maximal
sub–sheaf of N , because for a rank 1 sheaf the maximality condition is equivalent
to the vanishing locus of the generator to have codimension at least 2. The curve D
is then defined by the ideal

ID = 〈xt , y t , xu, yu, f2(a1x +a2 y), f1(a3t +a4u)〉

where a is represented by the transpose of the matrix (a1, a2, a3, a4).

Once we have constructed a closed ACM scheme D of codimension s as
cokernel of a short exact sequence (2), we can construct the minimal free resolution
of ID and it is

0 → Hs
σs−→ . . .

σ2−→ H1
σ1−→ ID → 0

where Hi = ⊕n∈ZR(−n)hi (n). Let K = ker(σ1). Then, the ideal sheaf JD is also the
cokernel of the short exact sequence

(7) 0 →K
j−→H1

σ1−→JD → 0.

Now we compare the two sequences (2) and (7).
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PROPOSITION 4. Let D ⊆Pr be an ACM scheme of codimension s and let (7)
be as above.

(i) If there is a sequence (2) with pd(P ) = s −2 then there exists a map ψ :
K →P such that N is the push–out of P and H1.

(ii) Conversely, let P be a torsion–free coherent sheaf with pd(P ) = s−2. Then,
for every map ψ : K →P there exists a short exact sequence (2) whose third item is
JD .

Proof. (i) Up to twisting the sequence (2), we can assume that k = 0. The minimal
free resolution of ID is

0 → Hs
σs−→ . . .

σ2−→ H1
σ1−→ ID → 0,

and so σ1 maps the canonical bases of H1 onto a minimal set of generators of ID .
The surjective map N →JD induces a surjective map N = H 0∗(N ) → ID because
pd(P ) = s −2 implies that H 1∗(P ) = 0 (see Lemma 3). Hence, we have a well defined
map H1 → N given on the canonical bases of H1 and extended by linearity. So, there
exists a map ϕ : H1 →N . It is straightforward to check that ϕ maps the kernel of
σ1 to the image of P , and so ϕ induces a map ψ : K →P . At the end, there exists
a commutative diagram

0 → K
j -H1

-JD → 0

ψ

?

ϕ

?
0 → P - N -JD → 0

where the last map is the identity of JD . From the universal property of the push–
out (see ( [17], Ch. 3, Theorem 11) for the definition and the properties of the
push–out), it follows that N is the push–out of H1 and P as claimed.

(ii) As soon as we fix a map ψ : K → P , we can construct the same com-
mutative diagram we considered in the first part of the proof. In more detail, let
q : K →H1 ⊕P be defined as j on the first summand and as −ψ on the second
one. Then, the sheaf N satisfies N = H1 ⊕P /im(q), and is torsion–free of rank
rank(P )+1. The second row of the commutative diagram above gives the short
exact sequence 0 → P → N → ID → 0 because H 1∗(P ) = 0 by Lemma 3. Hence,
pd(N ) ≤ pd(JD ) = pd(P )+1, and the proof is complete.

REMARK 8. If ψ= 0, then N =P ⊕JD , and the sequence is not interesting.
On the other hand, if ψ is an isomorphism, then N ∼=H1 and once again we get
nothing new.

Summarizing the above discussed results, we have that if we start from two
sheaves N and P satisfying our hypotheses, we can construct codimension s ACM
schemes, and conversely, given a codimension s ACM scheme D and a torsion–free
sheaf P , we can construct a sheaf N fulfilling the conditions we ask.
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Starting from two given torsion–free sheaves N and P , there are constrains
on the ACM schemes we can obtain.

PROPOSITION 5. In the same hypotheses as Theorem 1, let D ⊂Pr be a codi-
mension s ACM closed scheme whose ideal sheaf fits into a short exact sequence

0 →P →N →JD (k) → 0

for some k ∈ Z. Then, the minimal number of generators of ID is not larger than
rank(F1) while the free modules Hi that appear in the minimal free resolution of
ID (k) are direct summands of Fi ⊕Gi−1.

Proof. We constructed a free resolution of ID (k) in Remark 6. The minimal free
resolution of ID can be obtained from this last one by cancelling suitable summands.

As a consequence of the hypotheses (H), to construct ACM schemes of codi-
mension s ≥ 3, we have to consider a torsion–free sheaf P satisfying pd(P ) > 0,
that is to say, P non–dissocié. On the other hand, if the codimension of D is 2,
then P is dissocié. In this case, we have a more geometric interpretation of the
construction, and it can be compared with Serre’s construction (Hartshorne’s one,
respectively) when N is a rank 2 vector bundle (reflexive sheaf, respectively).

PROPOSITION 6. Let D ⊂Pr be a codimension 2 ACM closed scheme, and let c
be an integer such that H 0(D,ωD (c)) ̸= 0. Then, for every non–zero ξ ∈ H 0(D,ωD (c))
we can construct a short non-split exact sequence

0 →OPr (c − r −1) →N →JD → 0

with N torsion–free, of rank 2 and pd(N ) ≤ 1.

Proof. By Serre’s duality for Pr ( [8], Ch. III, Theorem 7.1), we get Ext1(JD ,OPr (c −
r −1)) ∼= H r−1(Pr ,JD (−c))′. From the inclusion D ,→Pr , we get H r−1(Pr ,JD (−c))′ ∼=
H r−2(D,OD (−c))′, and again by Serre’s duality on D ( [8], Ch. III, Theorem 7.6 and
Proposition 6.3(c)), we have the further isomorphisms Ext1(JD ,OPr (c − r −1)) ∼=
Hom(OD (−c),ωD ) ∼= H 0(D,ωD (c)). Hence, every non–zero ξ ∈ H 0(D,ωD (c)) can be
thought of as an extension of JD with OPr (c − r −1) and so as a non–split short
exact sequence

0 →OPr (c − r −1) →N →JD → 0.

The sheaf N has rank 2, and it is torsion–free. Moreover, if

0 →H2
ϕ−→H1 →JD → 0

is the minimal dissocié resolution of JD , there is a natural surjection
Hom(H2,OPr (c − r − 1)) → Ext1(JD ,OPr (c − r − 1)), and so there exists a map
ψ : H2 → OPr (c − r −1) that does not factor through ϕ : H2 → H1 whose image
in Ext1(JD ,OPr (c − r −1)) is equal to ξ. By using standard results from homological
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algebra, we get that N is the push–out of H1 and OPr (c − r −1) via (ϕ,−ψ). Hence,
the resolution of N with dissocié sheaves is

0 →H2
(ϕ,−ψ)−→ H1 ⊕OPr (c − r −1) →N → 0

and so N has projective dimension less than or equal to 1.

REMARK 9. From the proof of the previous Proposition, we get that pd(N ) =
0 if and only if H2 =OPr (c − r −1), i.e. D is a complete intersection scheme.

REMARK 10. We can easily modify the proof to get sheaves N of larger rank:
it is enough to consider c1, . . . ,cn ∈Z such that H 0(D,ωD (ci )) ̸= 0 for at least a ci . As
in the proof of the previous Proposition, ⊕n

i=1H 0(D,ωD (ci )) ∼= Ext1(JD ,⊕n
i=1OPr (ci −

r −1)) and so a non–zero element ξ ∈ ⊕n
i=1H 0(D,ωD (ci )) can be considered as an

extension of JD with P = ⊕n
i=1OPr (ci − r −1), and we can construct N as in the

proof.

REMARK 11. In comparing Proposition 6 with Serre’s and Hartshorne’s con-
structions mentioned above, it is evident that the hypothesis on N strongly affects
the properties of the constructed scheme. For example, when N is a rank 2 re-
flexive sheaf, as in Hartshorne’ s setting, the associated schemes are generically
locally complete intersection. In fact, the locus where the reflexive sheaf N is not
locally free has codimension ≥ 3 ( [3], Corollary 1.4 and Theorem 4.1) for the case of
curves in P3). The properties of the associated schemes show that the constructions
are not the same one. In fact, following Proposition 6, it is possible to construct
ACM schemes which are locally complete intersection at no point, while if N is
reflexive and D is the associated scheme, the locus of the points of D where D is
not locally complete intersection has codimension ≥ 1 in D. On the other hand, all
the schemes constructed via Proposition 6 are ACM, while the ones associated to
reflexive sheaves can have non–zero cohomology.

Now, we show how to construct ACM codimension 2 schemes which con-
tain the first infinitesimal neighborhood of another ACM codimension 2 scheme.
They are candidates to have no points at which the scheme is locally complete
intersection.

PROPOSITION 7. Let Y be an ACM codimension 2 scheme and let N =JY ⊕
JY . Then, every codimension 2 ACM scheme D we obtain from the construction
above contains the first infinitesimal neighborhood of Y . Moreover, D is not locally
complete intersection at any point of Y .In particular it is not generically locally
complete intersection.

Proof. For the first statement, it is enough to prove that ID ⊂ I 2
Y .

Let 0 →L1
ϕ−→L0 →IY → 0 be the minimal dissocié resolution of IY . Let

ϕ be represented by a matrix A. Hence, the maximal minors of A generate the ideal
IY .
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Let P = OPr (−m) and let γ : P → N be a general map whose image is a
maximal subsheaf of N . Let γ′ : P →L0 ⊕L0 be a lifting of γ.

The ideal ID is generated by the maximal minors of the matrix

M =
(

A O C ′
O A C ′′

)
where the last column represents γ′. Every maximal minor of M can be computed
by Laplace rule with respect to the last column, and so it is a combination of the

maximal minors of the block matrix

(
A O
O A

)
, whose maximal minors generate

the ideal I 2
Y .

Let now x ∈ Y and set S :=OPr ,x . We have an exact sequence of S-modules

0 → S →Nx →JD,x → 0.

It is easy to see that Nx needs at least four generators whence JD,x needs at least
three generators. Since D has codimension 2 it cannot be a complete intersection
at x.

REMARK 12. The easiest case we can consider is when the scheme Y is the
complete intersection of two hypersurfaces. In this case, the scheme defined by I 2

Y
is ACM of codimension 2 and it can be obtained from the previous construction.

For large m, and a general lifting γ, the scheme D constructed in the previous
Proposition properly contains the first infinitesimal neighborhood of Y , with a
residual part not supported at Y . For example, let Y be the line x = y = 0. For a
general γ : R(−2) → R2(−1)⊕R2(−1), D has degree 6, and is the union of the first
infinitesimal neighborhood of Y and a twisted cubic curve meeting Y at two points.

A similar result holds both for the direct sum of s(≥ 2) copies of JY , and for
non–trivial extensions of JY with itself or with twists of another ACM codimension
2 scheme Z , but we do not state them.

Now, we relate extensions associated to divisors that differ by hypersurface
sections.

PROPOSITION 8. Let D ⊂ Pr be a codimension 2 ACM scheme. Let us take
ξ ∈ H 0(D,ωD (c)) and ξ′ ∈ H 0(D,ωD (c +d)) both non–zero, with d ≥ 0, and let

0 →OPr (c − r −1) →N →JD → 0

and
0 →OPr (c +d − r −1) →N ′ →JD → 0

be the associated short exact sequences. Then, there exists a degree d hypersurface
S =V ( f ) that cuts D along a codimension 3 subscheme such that ξ′ = f ξ if, and only
if, there exists a short exact sequence

0 →N →N ′ →OS (c +d − r −1) → 0
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that induces the identity on JD .

Proof. In the proof of previous Proposition, we constructed the sheaf N as push–
out

H2
ϕ - H1

ψ

? ?
OPr (c − r −1) - N

.

Assume that ξ′ = f ξ. The section f ξ ∈ H 0(D,ωD (c +d)) is the image of the
map f ψ ∈ Hom(H2,OPr (c+d−r −1)) in Ext1(JD ,OPr (c+d−r −1)) and so the sheaf
N ′ is the push–out of H1 and OPr (c +d − r −1) via ϕ and − f ψ. From the universal
property of the push–out (see [13], pp. 62), we get the following map of complexes

0 → OPr (c − r −1) - N -JD → 0

f

?

ε

?
0 → OPr (c +d − r −1) -N ′ -JD → 0

and so ε is injective, and coker(ε) ∼=OS (c +d − r −1), as claimed.

Assume now that the short exact sequence

0 →N →N ′ →OS (c +d − r −1) → 0

induces the identity on JD . Standard arguments allow us to lift ε to an injective map
OPr (c − r −1) →OPr (c +d − r −1) whose cokernel is isomorphic to OS (c +d − r −1).
Hence, the map is the multiplication by f , and N ′ is the push–out of H1 and
OPr (c +d − r −1) via ϕ and f ψ. Hence, ξ′ = f ξ, and the proof is complete.

REMARK 13. Let ξ,ξ′ ∈ H 0(D,ωD (c)). By applying the previous Proposition,
we get that ξ and ξ′ are linearly dependent if and only if the sheaves N and N ′
associated to them are isomorphic.

4. ACM schemes from ACM ones

Let X ⊂ Pr be a codimension t ACM scheme. For general choices, s(< t) hyper-
surfaces of large degree containing X define a complete intersection codimension
s ACM scheme containing X . In this section, we discuss the related problem of
finding an ACM codimension s closed scheme D ⊂Pr containing X . Of course, we
make use of the construction described in the previous section.

The main result is the following.

PROPOSITION 9. Let X be a codimension t ACM scheme in Pr with 3 ≤ t ≤ r
and let

(8) 0 → Ft
δt−→ Ft−1 →···→ F2

δ2−→ F1
δ1−→ IX → 0
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be the minimal free resolution of the saturated ideal that defines X . Let N = ker(δt−s )
be the (t − s)–th syzygy module of X , for some s ≥ 2, and let P be a torsion–free
R–module of projective dimension s −2. Assume further that N and P satisfy the
condition (H .3), and that there exists an injective map γ : P → N such that γ(P )
is a maximal subsheaf of N . Then, for every ACM codimension s closed scheme D
constructed as in Theorem 1 there is a short exact sequence

0 → E xt s−2(P ,ωPr ) →ωD (−k) →ωX → 0.

Moreover, D contains X .

Proof. The R–module N is torsion–free, and has no free summand, because it is
computed from the minimal free resolution of IX . Moreover,

0 → Ft
δt−→ Ft−1

δt−1−→ . . .
δt−s+2−→ Ft−s+1 → N → 0

is the minimal free resolution of N and so the projective dimension of N is s −1.
Hence, N and P satisfy all the conditions (H).

Hence, by Theorem 1 there exists a codimension s ACM closed scheme
D ⊂Pr , and an integer k such that

0 →P →N →JD (k) → 0

is a short exact sequence. By applying H om(−,ωPr ) we get

E xt s−2(N ,ωPr ) → E xt s−2(P ,ωPr ) → E xt s−1(JD (k),ωPr ) →
→ E xt s−1(N ,ωPr ) → E xt s−1(P ,ωPr ).

E xt s−1(P ,ωPr ) = 0 because pd(P ) = s−2, while E xt s− j (N ,ωPr ) = E xt t− j (JX ,ωPr )
by definition of N . Hence, E xt s−1(N ,ωPr ) =ωX , and E xt s−2(N ,ωPr ) = 0 because
X is ACM of codimension t ( [8], Ch. III, Proposition 7.5 and Theorem 7.1). Again
by ( [8], Ch. III, Proposition 7.5), E xt s−1(JD (k),ωPr ) =ωD (−k). Summarizing the
above arguments, the construction induces a short exact sequence

0 → E xt s−2(P ,ωPr ) →ωD (−k) →ωX → 0

that relates the dualizing sheaves of X and D. In particular, we can think of ωX as
a quotient of ωD , up to a twist. The annihilator of ωX is JX (see, ( [5], Corollary
21.3)), the one of ωD is JD , and so we get the last claim because it is evident that
the annihilator of ωD (−k) is contained in the one of ωX .

The previous Proposition can be applied in the following case: let N be the
first syzygy module of a zero–dimensional scheme X in P3 and so pd(N ) = 1. When
applying to N the algorithm by M.Martin–Deschamps and D.Perrin for computing
minimal curves in a biliaison class, we get a free module P (pd(P ) = 0) and a general
injective map γ : P → N whose cokernel is, up to a twist, the ideal of a curve D (and
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so the codimension of D is 2). Hence, the hypotheses of Proposition 9 are fulfilled
and the curve D is ACM and contains X .

We rephrase Proposition 5 in the case N is the (t − s)–syzygy sheaf of an
ACM scheme X of codimension t . We recall that the Cohen–Macaulay type of an
ACM scheme X of codimension t is equal to the rank of the free module Ft in a
minimal free resolution of the saturated ideal IX . An ACM scheme X with Cohen–
Macaulay type 1 is said arithmetically Gorenstein (see [10] for equivalent definitions
and properties).

COROLLARY 4. Let X and D be schemes as in Proposition 9. Then, the Cohen–
Macaulay type of X is not greater than the one of D. In particular, D is arithmetically
Gorenstein if and only if X is such.

Proof. The minimal dissocié resolution of N agrees with the one of JX , and so
Ft ⊕Gs−1 appears in a free resolution of ID (k), as it follows from Remark 6. Ft cannot
be cancelled because it maps to Ft−1 and the resolution of IX is minimal, and so
the first claim follows. In particular, Ft is equal to the last free module in a minimal
free resolution of ID (k) if and only if γs−1 : Gs−1 → Ft−1 is split–injective, where γs−1

is induced from γ : P → N . The second statement is straightforward.

For example, if X ⊂P3 is a set of 5 general points, it is arithmetically Goren-
stein with Pfaffian resolution

0 → R(−5) → R5(−3) → R5(−2) → IX → 0.

By applying the previous construction with P = R3(−3), we get that k =−1 and the
minimal free resolution of ID is

0 → R(−5) → R2(−3) → ID (−1) → 0,

so D is a complete intersection curve in P3.

REMARK 14. Among the ACM closed schemes D constructed in Proposition 9
we might not find the ones of minimal degree containing X . For example, let X ⊂P3

be the degree 4 reduced scheme consisting of the vertices of the unit tetrahedron.
With an easy computation, we get that IX is generated by x y, xz, xw, y z, y w, zw,
and its minimal free resolution is

0 → R3(−4) → R8(−3) → R6(−2) → IX → 0.

An ACM curve C of minimal degree containing X is the union of the three lines
V (x, y),V (y, z),V (z, w). The minimal free resolution IC is

0 → R2(−3) → R3(−2) → IC → 0.

It follows that C cannot be obtained from Proposition 9 because the Cohen–
Macaulay types of X and C are 3 and 2, respectively, and this is not possible by
Corollary 4.



Torsion–free sheaves and ACM schemes 67

EXAMPLE 2. In this example, we construct two ACM curves with different
Cohen–Macaulay types starting from the same X .

Let r = 3 and let X be a set of four general points in a plane. Of course, IX

is the complete intersection of a linear form and two quadratic forms, and so its
minimal free resolution is

0 → R(−5) → R2(−3)⊕R(−4) → R(−1)⊕R2(−2) → IX → 0.

If we choose P = R(−3), we get a complete intersection curve D whose mini-
mal free resolution is

0 → R(−5) → R(−3)⊕R(−4) → ID (−2) → 0.

On the other hand, if we choose P = R(−5), we get an ACM curve E whose
minimal free resolution is

0 → R2(−5) → R2(−3)⊕R(−4) → IE → 0.

Both curves are constructed by choosing a general injective map from P to
R2(−3)⊕R(−4).

Summarizing the obtained results, we proved that it is possible to construct
a codimension s ACM closed scheme D containing a given codimension t ACM
scheme X as soon as s < t . Some of the restrictions are: the number of minimal
generators of ID cannot be larger than the number of minimal generators of the
R–module N we used in the construction, and the last free module in a minimal
free resolution of IX is a direct summand of the last free module in a minimal free
resolution of ID (k). A consequence of the restrictions is that there are ACM schemes
containing X that cannot be constructed as explained in Proposition 9 (e.g., see
Remark 14).

The last result we present in this section allows us to reconstruct an ACM
scheme D from a subscheme X of D obtained by intersecting D with a complete
intersection S.

PROPOSITION 10. Let D ⊂Pr be a codimension s ACM scheme with minimal
free resolution

0 → Hs
εs−→ Hs−1

εs−1−→ . . .
ε2−→ H1 → ID → 0,

and let S =V ( f1, . . . , ft ) be a codimension t complete intersection scheme that cuts
D along a codimension s + t ≤ r scheme X . Then, D can be constructed from X as
explained in Proposition 9.

Proof. Let F =⊕t
i=1R(−deg ( fi )). Then, the minimal free resolution of IS is given by

the Koszul complex

0 →∧t F
ϕt−→∧t−1F

ϕt−1−→ . . .
ϕ2−→ F

ϕ1−→ IS → 0
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where ϕi = ∧iϕ and ϕ : F → R is defined as ϕ(ei ) = fi for each i = 1, . . . , t , where
e1, . . . ,et is the canonical basis of F.

Let X = D ∩S, and let IX ⊂ R be its saturated ideal. It is easy to prove that a
free resolution of IX can be constructed as tensor product of the resolutions of ID

and IS (for the definition of the tensor product of complexes see Section 17.3 in [5]).
Hence, it is equal to

0 →Gs+t →Gs+t−1 →···→G1 → IX → 0

where
Gh = ⊕

i+ j=h, i , j≥0
Hi ⊗∧ j F

for h = 1, . . . , s + t , and the map δh : Gh → Gh−1 restricted to Hi ⊗∧ j F → (Hi−1 ⊗
∧ j F )⊕ (Hi ⊗∧ j−1F ) is defined as

δi =
(

εi ⊗1
(−1)i 1⊗ϕ j

)
.

In particular, X is ACM of codimension s + t .

Let N be the kernel of δt , and so a resolution of N is equal to

0 →Gs+t →···→Gt+1 → N → 0.

Moreover, N is torsion–free.

Now, let G ′
t+ j = (H j+1 ⊗∧t−1F )⊕ ·· · ⊕ (Hs ⊗∧t+ j−s F ) for j = 1, . . . , s − 1. Of

course, Gt+ j = (H j ⊗∧t F )⊕G ′
t+ j . Let ∆t+ j : G ′

t+ j →G ′
t+ j−1 be the restriction of δt+ j

to G ′
t+ j , and let P = coker(∆t+2). A free resolution of P is

0 →G ′
s+t−1 →G ′

s+t−2 →···→G ′
t+1 → P → 0.

In fact, it is easy to prove that it is a complex. Furthermore, it is exact, because it is
a sub–complex of the resolution of IX . It is obvious that the inclusion G ′

t+ j →Gt+ j

for j ≥ 1, induces an inclusion P → N . The resolution of the cokernel is

0 → Hs ⊗∧t F → Hs−1 ⊗∧t F →···→ H1 ⊗∧t F → N /P → 0.

But ∧t F ∼= R(−∑t
i=1 deg( fi )) and the maps are εi ⊗1. Hence, N /P ∼=JD (k) where

k =−∑t
i=1 deg( fi ). In particular, from Proposition 3 it follows that P is a maximal

sub–sheaf of N , and so the claim is proved.

REMARK 15. In the previous Proposition, suppose D is a complete inter-
section. Then, X is a complete intersection too and IX is generated by a regular
sequence obtained by taking all the generators of ID and IS .

Reversing this observation, we consider a complete intersection scheme X
generated by a regular sequence of forms ( f0, . . . , fi ), with i ≤ r. Starting from X we
can obtain all the schemes D generated by a subset of generators of X . In particular,
if we take i = r, and f j = x j , j = 0, . . .r, the (r −1)–syzygy sheaf N involved in the
construction is a twist of the tangent sheaf TPr .
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