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C. Fontanari

A QUESTION ON EFFECTIVE STRICTLY NEF DIVISORS

(WITH AN APPENDIX BY ANDREAS HÖRING)

Abstract. We introduce and motivate the following question: Is every effective strictly nef
Cartier divisor on a projective variety big? In the appendix, Andreas Höring produces a
counterexample, thus providing a negative answer.

1. Introduction

Let X be a complex projective variety of dimension n. A Cartier divisor D on X is
called strictly nef if it has strictly positive intersection product with every curve on
X . Every ample divisor is indeed strictly nef, but after the classical examples by
Mumford and Ramanujam (see [7], Chapter I., Examples 10.6 and 10.8) it is well
known that the converse does not hold. On the other hand, a deep conjecture by
Serrano predicts that every strictly nef divisor on a projective manifold becomes
ample after a suitable deformation in the direction of the canonical divisor KX :

CONJECTURE 1. ( [9]) If D is a strictly nef divisor on a projective manifold X
then KX + tD is ample for every t > n +1.

Serrano’s Conjecture 1 holds for surfaces (see [9]), for threefolds with the
unique possible exception of Calabi-Yau’s with D.c2 = 0 (see [9] and [2]), for K-trivial
fourfolds (see [7]), and for projective manifolds of Kodaira dimension at least n −2
(see [2]). Otherwise, Conjecture 1 is still widely open.

A weaker version, involving only effective strictly nef divisors, was indepen-
dently formulated by Beltrametti and Sommese in [1], p. 15:

CONJECTURE 2. ( [1]) Let D be an effective strictly nef divisor on a projective
manifold X . If D −KX is nef then D is ample.

On the other hand, if the strictly nef divisor D is also big, then Conjecture 1
holds for D , just by applying [9], Lemma 1.3:

PROPOSITION 1. If D is a big strictly nef divisor on a projective manifold X
then KX + tD is ample for every t > n +1.

Furthermore, if D −KX is nef then from the ampleness of KX + tD it follows
that also D is ample, hence Conjecture 2 holds for big strictly nef divisors as well:

PROPOSITION 2. If D is a big strictly nef divisor on a projective manifold X
and D −KX is nef then D is ample.
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Finally, also the singular version of Conjecture 1 (see [2], Conjecture 1.3, and
[8], Question 1.4) holds for big strictly nef Q-Cartier divisors. Namely, by applying [8],
Lemma 5.2 and Lemma 5.3, we deduce:

PROPOSITION 3. If (X ,∆) is a projective klt pair of dimension n and D is a big
strictly nef Q-Cartier divisor on X then KX +∆+ tD is ample for every t >> 0.

From this point of view, it is remarkable that all examples known so far of
strictly nef divisors (see in particular [1]) have either negative or maximal Iitaka
dimension. This experimental observation suggests the following question:

QUESTION 1. Is every effective strictly nef Cartier divisor on a projective variety
big?

Even though this is trivially true for surfaces, in higher dimension the answer
turns out to be far less obvious, so it seems wise to adopt a fully agnostic attitude.

As a starting point, we recall that from the case of surfaces it follows a partial
positive result in any dimension (see [3], Proposition 22): if D is a strictly nef Cartier
divisor on a projective variety of dimension n with Iitaka dimension κ(D) ≥ n −2
then D is big. Hence the first instance to be addressed is the one of a strictly nef
divisor D with κ(D) = 0 on a threefold. We point out that, once this case were ruled
out in arbitrary dimension, then the whole picture would become clear. Namely, we
formulate the following a priori weaker question:

QUESTION 2. Does every effective strictly nef Cartier divisor D on a projective
variety X satisfy h0(X ,mD) ≥ 2 for some m ≥ 1?

We show that an affirmative answer to Question 2 would imply an affirmative
answer to Question 1:

THEOREM 1. Assume that every effective strictly nef Cartier divisor D on every
projective variety X of dimension dim(X ) ≤ n satisfies h0(X ,mD) ≥ 2 for some m ≥ 1.
Then every effective strictly nef Cartier divisor on a projective variety of dimension n
is big.

We also present an unconditional result pointing towards the same direction:

THEOREM 2. If D is an effective strictly nef Cartier divisor on a projective
variety and the schematic base locus of |mD| becomes constant for large m then D is
big.

In the opposite direction, by closely following [7], Chapter I., Example 10.8
and [1], Example 1.2, we adapt Ramanujam construction and define an inductive
procedure to build a strictly nef divisor which is effective but not big (see Example
1). This approach works by induction on the dimension of the ambient projective
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manifold and what is needed to obtain a negative answer to Question 1 is indeed
the base of the induction. This is provided in Appendix 3 by Andreas Höring, hence
both Question 1 and Question 2 have a negative answer in any dimension n ≥ 3.

Acknowledgements: The author is grateful to Edoardo Ballico, Fréderic Cam-
pana, Paolo Cascini, and Thomas Peternell for their helpful remarks. The author is
a member of GNSAGA of the Istituto Nazionale di Alta Matematica "F. Severi".

2. The proofs

Proof of Theorem 1. We argue by induction on n, the case n = 1 being obvious. If
D is an effective strictly nef divisor on a projective variety V of dimension n, by
assumption we have h0(V ,mD) ≥ 2 for some m ≥ 1. Let E =∑

ai Ei be an effective
divisor linearly equivalent to mD. Since h0(V ,mD) ≥ 2 there exists i such that
D restricts to an effective strictly nef Cartier divisor on Ei . From the inductive
assumption applied to the projective variety Ei of dimension n −1 we obtain that
the restriction of D to Ei is big. On the other hand, if D is not big then

0 = Dn = mDn = Dn−1.E =∑
ai Dn−1.Ei

Since D is nef and E is effective it follows that Dn−1.Ei = 0 for every i , in particular
the restriction of D to Ei is not big. This contradiction ends the proof.

Proof of Theorem 2. The complement U of the support of the effective strictly nef
Cartier divisor D does not contain complete curves, hence from [7], Chapter II.,
Theorem 5.1 and the Remarks following its statement, we deduce that U is affine.
Now the claim is a direct consequence of Goodman’s criterion ( [7], Chapter II.,
Theorem 6.1), see for instance the statement of Theorem 3.1 in [10]: indeed, it
follows easily from the remarks after the statement of Theorem 2.1 on p. 803 and at
the beginning of the proof of Theorem 3.1 on p. 808.

EXAMPLE 1. Let Y be a projective manifold of dimension n −1 ≥ 3 with an
effective strictly nef divisor D such that Dn−1 = 0.

Define X :=P(OY (D)⊕OY ). If X0 is the zero section of the projection π : X →
Y , then X0 corresponds to the tautological line bundle on X and by arguing as in [1],
Example 1.2, we compute

(2.1) X i
0 = D i−1

X0

for every i with 2 ≤ i ≤ n.

Define E := X0 +π∗D . From (2.1) with i = 2 we deduce

(2.2) EX0 = (X0 +π∗D)X0 = 2DX0 .

Then the following holds:
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(i) E is effective because D is effective.

(ii) E is strictly nef. Indeed, let C be a curve on X .

If C is a fibre of π, then by the projection formula we have E .C = X0.C +
π∗D.C = X0.C +D.π∗C = 1+0 > 0.

If C ⊂ X0, then by (2.2) we have E .C = EX0 .CX0 = 2(D.C )X0 > 0.

If C ̸⊂ X0 and π(C ) is a curve in Y , then by the projection formula we have
E .C = X0.C +π∗D.C = X0.C +D.π∗C > 0 since X0.C ≥ 0 and D.π∗C > 0.

(iii) E is not big. Indeed, we have E n = (X0 +π∗D)n = 0 because π∗Dn = 0,
X0.(π∗D)n−1 = Dn−1

X0
= 0, and X i

0.(π∗D)n−i = 0 for every i with 2 ≤ i ≤ n by (2.1).

3. Appendix by Andreas Höring

Let π :P(V ) →C be a Mumford example, i.e. C is a smooth projective curve of genus
g > 1 and V is a rank two vector bundle on C such that c1(V ) = 0 and

H 0(C ,SmV ) = 0 ∀ m ∈N.

Then it is known [6, Ex.1.5.2] that the tautological class c1(OP(V )(1)) is strictly nef,
but not big. Observe that by Serre duality and Riemann-Roch

h1(C ,V ∗) = h0(C ,KC ⊗V ) ≥χ(C ,KC ⊗V ) = c1(KC ⊗V )+2χ(OC ) = 2(g −1) > 0,

so there exists an extension

0 →OC →W →V → 0

such that the extension class η ∈ H 1(C ,OC ⊗V ∗) is not zero. Let p : X :=P(W ) →C
be the projectivisation, and observe that it contains

Y :=P(V ) ⊂P(W ) = X

as a prime divisor such that [Y ] = c1(OP(W )(1)).

PROPOSITION 4. The prime divisor Y ⊂ X is effective, strictly nef, but not big.

Proof. Let C ⊂ X be an irreducible curve. If C ⊂ Y then

Y ·C = c1(OP(W )(1))|Y ·C = c1(OP(V )(1)) ·C > 0

since c1(OP(V )(1)) is strictly nef. Thus Y is nef and strictly nef on all curves contained
in its support. Clearly Y is not big, since

Y 3 = c1(OP(W )(1))|2Y = c1(OP(V )(1))2 = 0.

Assume now that there exists an irreducible curve such that Y ·C = 0. Since C ̸⊂ Y
this implies that C ⊂ (X \ Y ). Yet η ̸= 0, so by [5, Lemma 3.9] the complex manifold
X \ Y contains no positive-dimensional compact subvarieties of positive dimension,
a contradiction.
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