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SOME REMARKS ON BRAUER CLASSES OF K 3-TYPE

Abstract. An element in the Brauer group of a general complex projective K 3 surface
S defines a sublattice of the transcendental lattice of S. We consider those elements of
prime order for which this sublattice is Hodge-isometric to the transcendental lattice of
another K3 surface X . We recall that this defines a finite map between moduli spaces of
polarized K3 surfaces and we compute its degree. We show how the Picard lattice of X
determines the Picard lattice of S in the case that the Picard number of X is two.

Introduction

Let S be a complex projective K 3 surface and let T (S) be its transcendental lattice.
The Brauer group Br (S) of S can be identified with ( [Hu16, §18.1])

Br (S) = Hom(T (S),Q/Z) .

An element α of order p, for a prime number p, in the Brauer group Br (S) then
defines a Hodge substructure Tα(S) of index p in the transcendental lattice T (S),
it is the kernel of α. The isometry classes of these sublattices were determined
in [vG05], [vGK23] for p = 2 and in [MSTV17] for p > 2. In particular, if the Picard
rank of S is one and Pi c(S) =Zh with h2 = 2d , then for any prime number p there
is one class whose lattices are isometric to the transcendental lattice of a K3 surface
of degree 2p2d . We will call these Brauer classes of K3-type.

There is a finite map

κ : M2p2d −→ M2d

between the moduli spaces of polarized K3 surfaces of degree 2p2d and degree 2d
whose fiber over S, with Picard rank one, consists of all X with T (X ) ∼= Tα(S) for
some α ∈ Br (S)p of K3-type. We determine the degree of this map in Proposition
2. Since the Hodge structure T (X ) does not determine X uniquely in general due
to the presence of Fourier-Mukai partners, this degree is not simply the number of
cyclic subgroups in Br (S)p of K3-type.

In case the Picard rank of X is two, its Picard lattice is determined by two
integers b,c and we write Xb,c for such a surface. We use the description of κ to
determine the Picard lattice of Sb,c := κ(Xb,c ). In the Picard rank two case it can
(and does) happen that Xb,c

∼= Sb,c , if so, the determinants of the Picard lattices are
the same. This is an easy necessary, but not sufficient, criterion for the existence of
an isomorphism.

The equality of the determinants occurs exactly when the transcendental
lattice of Xb,c , which is Tα(Sb,c ), is equal to T (Sb,c ). More precisely, consider a family
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of K3 surfaces over a disc with special fiber Sb,c and general fiber a polarized K3 sur-
face S of degree 2d of Picard rank one. Then we can identify H 2(Sb,c ,Z) = H 2(S,Z)
and we have T (Sb,c ) ⊂ T (S). Therefore there is a restriction map on the Brauer
groups and on their p-torsion subgroups. The kernel of this map is the subgroup of
vanishing Brauer classes, any non-zero element in it is called a vanishing Brauer
class ( [GvG24]):

〈αvan〉 = ker(Br (S)p −→ Br (Sb,c )p ) .

Let X be a K3 surface of degree 2p2d with Picard rank one and let S = κ(X )
so that T (X ) has index p in T (S). We denote by αX ∈ Br (S)p an element such that
ker(αX ) = T (X ). A specialization of S to Sb,c then induces a specialization of X
to Xb,c and we have two cyclic subgroups in Br (S)p , one is 〈αX 〉 and the other is
〈αvan〉. These two subgroups coincide exactly when αX is trivial on T (Sb,c ), so when
TαX (Sb,c ) = T (Sb,c ). In Theorem 2 we make these subgroups explicit.

We intend to use these results to study degree eight K3 surfaces Sβ associated
to certain cubic fourfolds in [GvG24, Proposition 5.1.4]. In [KS18], Kuznetsov and
Shinder study the classes generated by K3 surfaces in the Grothendieck ring of
K0(Var/K)[L−1]. They use the geometry of the conic bundles associated to a Brauer
class of K3-type, in particular in the case of a specialization in which this class
vanishes. The very basic results in this paper might give some more insight into
these cases.

1. Brauer groups, vanishing classes and invariants

1.2. Brauer classes and B-fields

We recall, following [GvG24], the main definitions but now for the case of an arbi-
trary prime number p rather than only p = 2.

Let S be a K 3 surface, its transcendental lattice is T (S) := Pi c(S)⊥ in H 2(S,Z).
The Brauer group of S can be identified with (cf. [Hu16, 18.1])

Br (S) = Hom(T (S),Q/Z) .

Since H 2(S,Z) is a selfdual lattice, any such homomorphism α can be defined by
an element B = Bα ∈ H 2(X ,Q), called a B-field representative of α:

α : T (S) −→ Q/Z, t 7−→ B · t mod Z .

Let Br (S)p be the p-torsion subgroup of Br (S) and let α ∈ Br (S)p . Then the
homomorphism α takes values in 1

pZ/Z. A B-field Bα ∈ 1
p H 2(S,Z) is unique up to

1
p Pi c(S)+H 2(S,Z) :

B ′
α = Bα+ 1

p D + c, D ∈ Pi c(S), c ∈ H 2(S,Z) ,
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1.3. Brauer classes, sublattices and invariants: the case p = 2

In case the Picard rank of S is one, the lattices Tα(S) for S ∈ Br (S)p are classified up
to isometry by their discriminant groups. This leads to the following classification,
for p = 2 in Lemma 1 and for p > 2 in Lemma 2. The case p = 2 is presented in a
format similar to the one for p > 2.

LEMMA 1. ( [vGK23, Theorem 2.3]) Let S be a K3 surface such that Pi c(S) =
Zh, h2 = 2d > 0. Let α ∈ Br (S)2, α ̸= 0, and B ∈ 1

2 H 2(S,Z) ⊂ H 2(S,Q) a B-field
representing α.

a) In case 2̸ | d there are three isomorphism classes of lattices Tα(S).

i) Bh ≡ 0 mod Z, in this case there is a unique isomorphism class, of order
220 −1, with discriminant group Z/2dZ⊕Z/2Z⊕Z/2Z,

ii) Bh ≡ 1/2 mod Z, B 2 ≡ 0 mod Z, in this case there is a unique isomor-
phism class, of order 29(210 +1), with discriminant group Z/8dZ,

iii) Bh ≡ 1/2 mod Z, B 2 ≡ 1
2 mod Z, in this case there is a unique isomor-

phism class, of order 29(210 −1), with discriminant group Z/8dZ.

b) In case 2|d there are three isomorphism classes of lattices Tα(S).

i) Bh ≡ 0 mod Z, B 2 ≡ 0 mod Z, in this case there is a unique isomorphism
class of lattices, of order 29(210 +1)−1, with discriminant group Z/2dZ⊕
Z/2Z⊕Z/2Z,

ii) Bh ≡ 0 mod Z, B 2 ≡ 1
2 mod Z, in this case there is a unique isomor-

phism class of lattices, of order 29(210 − 1), with discriminant group
Z/2dZ⊕Z/2Z⊕Z/2Z,

iii) Bh ≡ 1
2 mod Z, in this case there is a unique isomorphism class of lattices,

of order 220, with discriminant group Z/8dZ.

A non-trivial Brauer class α ∈ Br (S)2 is of K3-type if Bαh ≡ 1/2 mod Z and
B 2
α ≡ 0 mod Z ( [vG05, Corollary 9.4], the latter is significant only if 2̸ | d).

In case d = 1, let C6 ⊂P2 be the (smooth) degree six branch curve of the double
cover S →P2. Then the Brauer classes in Br (S)2 correspond to ( [vG05], [IOOV17]):

i) If Bαh ≡ 0, α corresponds to a point of order two p ∈ Jac(C6).

ii) If Bαh ≡ 1
2 and B 2

α ≡ 0, α corresponds to an even theta characteristic on C6.

iii) If Bαh ≡ 1
2 and B 2

α ≡ 1
2 , α corresponds to an odd theta characteristic on C6.
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1.4. Brauer classes, sublattices and invariants: the case p > 2

In case the Picard rank of the degree 2d K3 surface S is one, the lattices Tα(S) for
S ∈ Br (S)p and p > 2 are classified up to isometry by their discriminant groups, of
order 2p2d , d(Tα(S), q), where q = qα is a quadratic form with values in Q/2Z. In
case the discriminant group is cyclic, we denote by v a generator of the discriminant
group, d(Tα(S)) = 〈v〉.

To give the classification, we fix an isomorphism H 2(S,Z) = U 3 ⊕E8(−1)2

such that h = (1,d) ∈U , the first copy of U in the lattice. Then

T (S) = h⊥ =Zv ⊕Λ′, with v = (−1,d) ∈U .

Let w := (0,−1) ∈U . Then w v = 1 and any α ∈ Hom(T (S), 1
pZ/Z) is determined by a

B-field Bα = 1
p (iαw +λα) ∈ 1

p H 2(S,Z) where iα ∈Z and λα ∈Λ′:

α : T (S) −→ 1
pZ/Z, α(zv +λ′) = Bα · (zv +λ′) = 1

p (iαz +λα ·λ′) .

We define cα :=−λ2
α/2 ∈Z and we observe that

Bα ·h = − 1
p iα, λ2

α = −2cα .

LEMMA 2. ( [MSTV17, Theorem 9]) Let S be a K3 surface such that Pi c(S) =Zh,
h2 = 2d > 0. Let p > 2 be a prime number, α ∈ Br (S)p and Bα ∈ 1

p H 2(S,Z) ⊂ H 2(S,Q)
a B-field representing α.

a) In case p ̸ | d, there are three isomorphism classes of lattices Tα(S),

i) the discriminant group is cyclic, so isomorphic to Z/2p2d, and
−2d p2q(v) mod p is a quadratic residue, there are 1

2 p10(p10 +1) such
lattices;

ii) the discriminant group is cyclic, so isomorphic to Z/2p2d, and
−2d p2q(v) mod p is not a quadratic residue, there are 1

2 p10(p10 − 1)
such lattices;

iii) there is a unique isomorphism class of lattices with discriminant group
Z/2dZ⊕Z/pZ⊕Z/pZ and there are (p20 −1)/(p −1) such sublattices.

A Brauer class is of K3-type if the discriminant group is cyclic and −2d p2q(v)
mod p is a square in Z/pZ.

b) In case p|d, there are four isomorphism classes of lattices Tα(S),

i) Bαh ≡ 0 mod Z, the discriminant group is Z/2dZ ⊕ Z/p2Z and cα
mod p is a quadratic residue, there are 1

2 p9(p10 −1) such sublattices;

ii) Bαh ≡ 0 mod Z, the discriminant group is Z/2dZ ⊕ Z/p2Z and cα
mod p is not a quadratic residue, there are 1

2 p9(p10 −1) such sublattices;
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iii) Bαh ≡ 0 mod Z, there is a unique isomorphism class of lattices with
discriminant group is Z/2dZ⊕Z/pZ⊕Z/pZ, there are (p9 + 1)(p10 −
1)/(p −1) such lattices;

iv) Bαh ̸≡ 0 mod Z, in this case there is a unique isomorphism class of lat-
tices with discriminant group Z/2p2dZ, there are p20 such sublattices.

A Brauer class is of K3-type if the discriminant group is cyclic.

1.5. Remarks

The intersection number Bαh ∈ 1
pZ/Z is an invariant of the Brauer class α only in

case p|d . In fact, Bα and Bα+ 1
p h define the same α but (Bα+ 1

p h)h = Bαh + 1
p 2d

which is congruent to Bαh only if p|d .

Moreover, if p|d and Bαh ≡ 0 mod Z, one obtains the invariant B 2
α ∈

( 1
p )2Z/ 1

pZ since any other representative is given by Bα+ 1
p D+c with D = ah ∈ Pi c(S)

and c ∈ H 2(S,Z).

If p ̸ | d , we see that there is a choice of the B-field representative such that
Bαh = 0, that is, Bα ∈ 1

p T (S), any other such representative is then given by Bα+c
with c ∈ T (S).

1.6. Vanishing Brauer classes

Let S be a K3 surface with Pi c(S) =Zh and h2 = 2d . We consider a specialization of
S to a K3 surface S′ with Picard lattice

Pi c(S′) =
(
Zh ⊕ Zk,

(
h2 hk
hk k2

)
=

(
2d b
b 2c

))
for some b,c ∈Z .

We can identify H 2(S′,Z) = H 2(S,Z) and we have T (S′) ⊂ T (S). Thus, there is
a restriction map on the p-torsion subgroups of the Brauer groups:

Br (S)p −→ Br (S′)p .

A non-zero element in the kernel of this map is a vanishing Brauer class ( [GvG24]).

In [GvG24, Proposition 2.1.2 and Corollary 2.1.3] we exhibited a B-field repre-
sentative of a vanishing Brauer class αvan ∈ Br (S)2 which can be easily generalized.
To do so we identify H 2(S,Z) with H 2(S′,Z) such that h ∈ Pi c(S) specializes to the
element with the same name in H 2(S′,Z).

PROPOSITION 1. Let p be a prime number. We denote by αvan ∈ Br (S)p a
vanishing Brauer class for the specialization of (S,h) to S′ as above.
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i) There is an αvan with B-field representative given by

Bvan := 1
p k (∈ 1

p H 2(S,Z)) .

ii) For this αvan ∈ Br (S)p we have

Bvanh ≡ 1
p b mod Z, B 2

van ≡ 2c( 1
p )2 mod Z .

Proof. Notice that 1
p k ̸∈ 1

p Pi c(S)+ H 2(S,Z), hence it defines a non-trivial

class in Br (S)p . But 1
p k ∈ 1

p Pi c(S′) hence 1
p k defines the trivial class in Br (S′)p .

Therefore the Brauer class with B-field representative 1
p k is the vanishing Brauer

class αvan .

2. K3 surfaces of degree 2d and 2p2d

2.1. The Mukai lattice and moduli spaces of sheaves

Let (X , H ) be a polarized K3 surface, with H ∈ Pi c(X ) primitive, of degree H 2 = 2p2d
where d > 0 and p is a prime number. As in [MSTV17, §2.6, §3] we consider the
Mukai vector

v := (p, H , pd) ∈ H̃(X ) := H 0(X ,Z)⊕H 2(X ,Z)⊕H 4(X ,Z) .

The Mukai lattice H̃(X ) has the bilinear form

(r,c, s)(r ′,c ′, s′) := −(r s′+ sr ′)+ c · c ′, so v2 = 0 ,

where c · c ′ is the intersection product of c,c ′ ∈ H 2(X ,Z) and H 0, H 4 are naturally
identified with Z. The Mukai lattice has the weight two Hodge structure defined by
the one on H 2(S,Z). The sublattice of integral (1,1)-classes is thus generated by the
summands H 0, H 4 and Pi c(S) (⊂ H 2). In particular, v is of type (1,1).

From the work of Mukai [Mu84] it follows that the moduli space MX (v) of
sheaves E with

v = v(E ) :=
(
rank(E ),c1(E ), rank(E )+ (1/2)c1(E )2 − c2(E )

)
is a K3 surface S. It is the unique K3 surface for which there is a Hodge isometry
H 2(S,Z) ∼= v⊥/v . This implies that the image of the transcendental lattice T (X ) of
X under the map T (X ) ,→ v⊥ → v⊥/v has finite index in T (S). The Picard ranks of
X and S are thus the same. The sublattice generated by H 0(X ,Z), H 4(X ,Z) and ZH
intersects v⊥ in a rank two sublattice whose image in v⊥/v has rank one. Then
(S,h), where h is a generator of this rank one lattice, is a polarized K3 surface of
degree 2d (cf. the proof of Theorem 1).
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2.2. A map between moduli spaces

This defines a finite map

κ = κv : M2d p2 −→ M2d , (X , H) 7−→ (MX (v),h)

where Me is the coarse moduli space of K3 surfaces of degree e. The case d = 1 was
used by Kondo in [Ko93].

The geometry behind this map is well understood in the case that d = 1,
p = 2: a general K3 surface (X , H) of degree eight determines a K3 surface (S,h) of
degree two as follows. The line bundle H gives an embedding of X as a complete
intersection of three quadrics in P5. The surface S is the double cover of the P2 that
parametrizes the quadrics which is branched over discriminant curve C6 ⊂P2 which
parametrizes the singular quadrics ( [Kh05], [IKh13], [IKh15], [KS18], [MSTV17, 3.2]).

THEOREM 1. Let, for a given d > 0 and prime number p, (Xb,c , H) be a K3
surface of degree 2p2d with Picard lattice

Pi c(Xb,c ) =
(
ZH ⊕ZK ,

(
2p2d b

b 2c

))
.

Let Sb,c := κ(Xb,c ). The K3 surface (Sb,c ,h) of degree 2d has Picard lattice

Pi c(Sb,c ) =



(
Zh ⊕Zk,

(
2d b
b 2cp2

))
if p ̸ | b ,

(
Zh ⊕Zk,

(
2d b/p

b/p 2c

))
if p|b .

Proof. First of all we show that the general Sb,c has a polarization of degree 2d . The
sublattice of (1,1) classes in H̃(Xb,c ) contains the primitive sublattice N generated
by (1,0,0), (0, H ,0), (0,0,1). One easily finds that

N ∩ v⊥ = 〈α := (−1,0,d), β := (2p, H ,0)〉, v = pα+β .

Therefore (N ∩ v⊥)/v ∼=Zh where h is represented by α and h2 =α2 = 2d , and h is
primitive in v⊥/v = H 2(Sb,c ,Z), of type (1,1) and (Sb,c ,h) defines a point in M2d .

The Picard lattice of Sb,c is the image of N +Z(0,K ,0), the sublattice of all
(1,1) classes in H̃(Xb,c ), in H 2(Sb,c ,Z).

(N +Z(0,K ,0))∩ v⊥ = 〈α, β, γ〉 with γ :=
{

(0, pK ,b), p ̸ | b,
(0,K ,b′), b = pb′.

As v = pα+β, the image of this sublattice is generated by the images h,k of α and
γ respectively and one finds the Gram matrices as in the theorem.
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COROLLARY 1. If the K3 surfaces Xb,c and Sb,c are isomorphic, then the prime
number p does not divide b.

Proof. If the surfaces are isomorphic, the determinants of the Gram matrices of
the Picard groups must be the same. This is the case only if p does not divide b.
(In general it is not the case however that if p does not divide b then X and S are
isomorphic, nor that their Picard lattices are isomorphic.)

3. The map κ and Brauer groups

3.1. The cyclic subgroup C ⊂ Br (S) determined by X

For a general (X , H), the transcendental lattice T (X ) = H⊥ maps to a sublattice of
index p in h⊥, in fact H 2 = p2h2. In particular there is an isomorphism T (S)/T (X ) ∼=
Z/pZ and hence there is a surjective map T (S) → 1

pZ/Z whose kernel is T (X ). Thus
S = κ(X ) comes with a subgroup C =CX ⊂ Br (S)p of order p.

The following theorem identifies the subgroup C ⊂ Br (S)p . It also determines
the vanishing Brauer class for a specialization of an (S,h) with Picard rank one to
Sb,c . We recall that one can choose the isomorphism H 2(S,Z) ∼= U 3 ⊕E8(−1)2 in
such a way that h maps to the vector (1,d) in the first copy of U . Then T (S) = h⊥ is
the sublattice

T (S) = ZtS ⊕U 2 ⊕E 2
8 (⊂ΛK 3 := U 3 ⊕E8(−1)2). tS := (−1

d

)
.

In case X has higher Picard rank, let H ·Pi c(X ) = γZ. A result of Mukai
implies that the index of T (X ) in T (S) is GC D(p,γ), as we verify below for the
Picard rank two case.

THEOREM 2. Let (X , H ) be a K3 surface of degree 2p2d with Pi c(X ) =ZH and
let (S,h) = κ(X , H). Then there is an isomorphism H 2(S,Z) ∼=U 3 ⊕E8(−1)2 =U ⊕Λ′
such that

h 7−→ ((
1
d

)
,0

)
, T (S)

∼=−→ (−1
d

)
Z⊕Λ′ ,

and
T (X ) = ker(αX : T (S) −→ 1

pZ/Z, t 7−→ BX ·h mod Z),

where the B-field is
BX := 1

p

((
0
1

)
,0

) ∈ (U ⊕Λ′)⊗Q .

In the specialization of S to Sb,c , the subgroups of Br (S)p generated by αX and
αvan coincide if and only if b is odd.

In case p = 2, the invariants of BX are BX h = 1/2 and B 2
X = 0. If also d = 1, S is

a double plane, the Brauer class corresponds to an even theta characteristic and X is
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a K3 surface of degree eight, moreover, for the specialization of S to Sb,c the vanishing
Brauer class αvan :

i) is αX and corresponds to an even theta for b odd,

ii) corresponds to a theta characteristic for b ≡ 2 mod 4 which is even if c is even,
but αvan ̸=αX , and is odd otherwise,

iii) corresponds to a point p of order two in the Jacobian Jac(C6) for b ≡ 0 mod 4.

In case b ≡ 0 mod 4 the theta characteristic αvan +αX is even/odd exactly when c is
even/odd.

Proof. Up to isometry, there is a unique embedding of Pi c(Xb,c ) in the K3-
lattice ΛK 3 =U ⊕Λ′ with Λ′ =U 2 ⊕E8(−1)2 ( [Ni80, Thm. 1.14.4]). We choose the
isometry such that, for some K ′ ∈Λ′,

H = ((1, p2d),0) ∈U ⊕Λ′, K = ((0,b),K ′) ∈U ⊕Λ′, K 2 = (K ′)2 = 2c .

As Pi c(X ) =ZH we get

T (X ) = H⊥ =ZtX ⊕Λ′, tX :=
( −1

p2d

)
.

Notice that H̃ = (H 0(X )⊕U ⊕H 4(X ))⊕Λ′, let

Ũ := H 0 ⊕U ⊕H 4 ⊂ H̃(X ,Z) ,

where U is the first summand of ΛK 3. Then v = (p, H , pd) ∈ Ũ . As Λ′ ⊂ v⊥ and
〈v〉∩Λ′ = {0}, this unimodular lattice maps isomorphically to the sublattice Λ′ ⊂
v⊥/v = H 2(S,Z). To find the image of T (X ), it remains to find the image in v⊥/v of
(0,(−1, p2d),0) ∈ Ũ ∩ v⊥.

With the notation in the proof of Theorem 1,

Ũ ∩ v⊥ = 〈α= (1,0,−d), β1 = (0,
(

1
0

)
, pd), β2 = (0,

( 0
p
)

,1)〉 .

Notice that

v = pα + β1 + pdβ2, (0, (−1, p2d),0) = −β1 +pdβ2 .

Hence (Ũ ∩ v⊥)/v is generated by the images h,k ′ of α and β2 whereas β1 maps to
−ph−pdk ′ =−p(h+dk ′). The intersection products are h2 = 2d , hk ′ =−1, (k ′)2 = 0.
The sublattice 〈h,k ′〉 ⊂ H 2(S,Z) is isomorphic to U :

〈h,k ′〉 ≃−→ U , h 7−→ (1,d), k ′ 7−→ (0,−1) .

Then (0,(−1, p2d),0) =−β1 +pdβ2 maps to p(h +dk ′)+pdk ′ = p(h +2dk ′) which
maps to p(1,−d) ∈U . So we can choose the isomorphism between H 2(S,Z) and
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ΛK 3 in such a way that h 7→ (1,d) and the image of (0, (−1, p2d),0) maps to p(1,−d).
The image of T (X ) in H 2(S,Z) is then the sublattice

T (X )
≃−→ p

(−1
d

)
Z ⊕ Λ′ (⊂ T (S)) .

Notice that for BX = (0,1) ∈U , we have BX (1,−d) =−1 which implies that ker(BX ) =
T (X ).

A simple computation shows that BX h = 1
p (0,1) · (1,d) = 1

p and B 2
X = 0.

The subgroups generated by αX and αvan are the same if and only if the
inclusion T (Xb,c ) ⊂ T (Sb,c ) is an equality, which is equivalent to these lattices having
the same discriminants. This is again equivalent to the determinants of the Picard
lattices of Xb,c and Sb,c being the same and by Theorem 1 we see that this happens
if and only if p ̸ |b.

The invariants of αvan are determined by the second column of a Gram
matrix of Pi c(Sb,c ) by Proposition 1. A Gram matrix is given in Theorem 1 and
(i)-(iii) follow.

In case Bvan corresponds to a point of order two, the sum Bs := BX +Bvan

corresponds to a theta characteristic. The parity of this characteristic is determined
by B 2

s mod Z. We find B 2
X = 0 and, by Proposition 1, Bvan = (1/2)k with k as in

Theorem 1, hence B 2
van = (1/4)(2c) = c/2. It remains to compute 2BX ·Bvan which

we claim is 0, so that B 2
s = c/2 and the last statement of the theorem is proven.

To verify the claim, we recall that k has representative γ ∈ v⊥ and since
b ≡ 0 mod 4 we have γ = (0,K ,b′) where b = 2b′. With our choice of embedding,
K = ((0,b),K ′) and then γ = (0,(0,b),b′)+ (0,K ′,0) = b′β2 + (0,K ′,0) which maps
to b′(0,−1)+K ′ ∈ U ⊕Λ′ = H 2(S,Z). Hence BX ·Bvan = (0,1) · (0,−b′/2) = 0 since
BX ·K ′ = 0.

3.2. An intrinsic description of the map κ

To define κ : M2p2d →M2d , we used a Mukai vector v . Here we give another way to
define the map, where we use some of the notation from the (proofs of the) previous
results.

Let (X , H) be a polarized K3 surface of degree 2p2d . Recall that in H 2(X ,Z)
we have the sublattices ZH and H⊥ =ZtX ⊕Λ′, their direct sum has index 2p2d in
H 2(X ,Z). To get all of the second cohomology group one has to add the ‘glue vector’
(H + tX )/2p2d . Since the discriminant group (H⊥)∗/H⊥ of H⊥ is cyclic, there is a
unique overlattice, denoted by h⊥, such that H⊥ ⊂ h⊥ has index p. This overlattice
is generated by H⊥ and a tS ∈ h⊥ with ptS = tX . Let Zh be the rank one lattice with
h2 = 2d . Then the overlattice of Zh ⊕h⊥ defined by the glue vector (h + tS )/2d is an
even unimodular lattice and hence is isometric to ΛK 3. This lattice has the Hodge
structure induced by the one on T (X ) ⊂ h⊥ and hence defines a unique polarized K3
surface (S,h) := κ((X , H)) by surjectivity of the period map and the Torelli theorem.
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3.3. FM partners

We consider the fibers of the map κ in the case d = 1, p = 2. Given a general K3
surface (S,h) ∈M2, by Theorem 2 an (X , H) in the fiber over it determines an order
2 subgroup C = ker(αX ) ⊂ Br (S)2. Moreover, the unique non-trivial Brauer class
α ∈ C corresponds to an even theta characteristic on C6. Given an even theta
characteristic on a general C6, this invertible sheaf has no non-trivial global sections
and using [Be00] one obtains a K3 surface X of degree 8 from a resolution of this
sheaf. Since there are 29(210 +1) even theta characteristics on the genus 10 curve
C6, this number is also the degree of κ : M8 →M2.

For a general d ≥ 1 and a prime number p however, the order p subgroup
C = ker(αX ) ⊂ Br (S)p only determines the sublattice

TC = TαX (S) := ker(αX : T (S) −→ 1
pZ/Z) ,

with the induced Hodge structure from T (S). To obtain a K3 surface X , one must
embed TC primitively into a K3 lattice, which can be done only if αX , and thus C , is
of K3-type, and even then the embedding need not be unique up to isometry.

PROPOSITION 2. Let (S,h) ∈M2d be a polarized K3 surface with Pi c(S) =Zh
and h2 = 2d. For a prime number p, the cardinality of the fiber of κ : M2p2d →M2d

over (S,h) is

♯κ−1(S,h) =


1
2 p10(p10 +1) if d = 1,

p10(p10 +1) if p ̸ | d ,d > 1,

p20 if p|d .

A polarized K3 surface (X , H) is in the fiber κ−1(S,h) if and only if T (X ) is Hodge
isometric to a sublattice of index p of T (S).

Proof. We give two proofs. The first using lattices and the Torelli theorem, the
second uses volumes and was shown to us by I. Barros.

If (X , H) ∈ κ−1(S,h) then T (X ) is an index p sublattice of T (S), hence it is
defined by an order p subgroup of K3-type of Br (S)p . Conversely such a subgroup
C defines a sublattice TC of index p that can be primitively embedded into the K3
lattice, that is, this sublattice is isometric to H⊥ for some (X , H) if C is of K3-type.

The ‘forgetful’ map that associates to a polarized K3 surface (X , H), with
H 2 = 2p2d , the Hodge structure H⊥ defines a map from M2p2d →M T

2p2d
which is

finite and has degree equal to the number of FM partners of X for a K3 surface X
with Pi c(X ) =ZH . This number is ( [Og02, Proposition 1.10])

|F M(X )| = 2τ(p2d)−1,

where τ(p2d) is the number of prime factors of p2d . Thus, given the Hodge structure

TC , there are 2τ(p2d)−1 K3 surfaces X with T (X ) ∼= TC . However, there are also 2τ(d)−1

K3 surfaces S′ with T (S′) ∼= T (S).
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In particular, if p|d then τ(d) = τ(p2d) and thus, given TC , each S′ with
T (S′) ∼= T (S) determines a unique X ′ with TC

∼= T (X ′). The same is true if d = 1:
τ(1) = τ(p2) = 1.

If however p ̸ | d and d > 1 then τ(p2d) = τ(d)+1 and thus S′ determines two
K3 surfaces X ′.

The degree of the map, for p = 2, p > 2 then follows from [vGK23, Theorem
2.3] and [MSTV17, §2.6] respectively, which gives the number of subgroups C of
K3-type.

For the second proof, we use the Hirzebruch-Mumford volumes of the moduli
spaces computed in [GHS07, §3.5]:

volH M (M2d ) = (
d

2
)10

∏
p|d

(1+p−10) · |B2B4 . . .B20|
20!!

, (d > 1)

and for d = 1 one has the same formula multiplied by 2. Then the degree of κ is:

volH M (M2p2d )

volH M (M2d )
=


1
2 p10(p10 +1) if d = 1,
p10(p10 +1) if p ̸ | d ,d > 1,

p20 if p|d .

(In [MSTV17, §2.7, Remark], it is stated that, based on a result of Kondo, for
d = 1 the degree of κ is p10(p10 +1), but this is not correct.)

4. Examples

4.1. K3 surfaces with a line

We consider some special cases of κ : X2p2d 7→ S2d with Picard rank two. In the
literature we found the cases

(d , p) = (1,2), (1,3), (2,2), (2,3), (3,2) .

We consider these cases where moreover X has a line. Then X = X1,−1 in the
notation of Theorem 1, so b = 1. The Picard lattices of X1,−1 and S1,−1 have the
same determinant by Corollary 1. We then consider whether the K3 surfaces X1,−1

and S1,−1 are isomorphic, which is not always the case as we will see.

Since the determinants are the same, we have the equality of the Brauer classes
αX = αvan ∈ Br (S), that is, the Bauer class αX ∈ Br (S1,−1) defining X1,−1 (up to
possible FM partners) is trivial. It would be interesting to see explicitly a rational
section of the specialization of the conic bundles with Brauer class αX on a general
S to S1,−1 in this case. Such conic bundles are quite explicitly known in some of the
examples.
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4.2. X8 and S2 : square determinants

We consider first the K3 surfaces Xb,c of degree 8 = 2p2d with d = 1, p = 2, such that
the Picard lattice has determinant D which is a square: D =−det(Pi c(X8)) = b2−16c .
In that case Xb,c has a genus one fibration given by a divisor class E with E 2 = 0.

In [KS18, Lemma 3.10] it is shown that there are infinitely many D =
−det(Pi c(X8)) = b2 −16c for which Xb,c and Sb,c , with b odd, are not isomorphic,
even if the Picard lattices have the same determinant. For this they consider the
case D = m2 for an odd integer m, for example take b = m and c = 0. There is an
isomorphism Xb,c

∼= Sb,c if and only if r 2 −Ds2 =±8 has an integer solution accord-
ing to [MN03]. This can now be written as r 2 − (ms)2 =±8 and if one takes ms > 3
then |r 2 − (ms)2| > 8 for any r ̸= ±ms, hence the result.

A simple geometric example where these surfaces are not isomorphic is thus
the case that X is a smooth complete intersection of three quadrics that contains a
rational normal cubic curve. Then X = X3,−1 and K is the class of the cubic curve:

Pi c(X3,−1) =
(
ZH ⊕ZK ,

(
8 3
3 −2

))
, D =−det(Pi c(X8)) = 25,

and X3,−1 ≇ S3,−1, in fact, the Picard lattices are not isometric. From Theorem 1 we
have

Pi c(S3,−1) =
(
Zh ⊕Zk,

(
2 3
3 −8

))
∼=

(
Zh ⊕Ze,

(
2 5
5 0

))
, e := h +k .

If the Picard lattices were isometric, there should also be a (−2)-class, like K , in
Pi c(S3,−1). However, (xh+ye)2 = 2x2+10x y = 2x(x+5y) and this is −2 only if either
x = 1, x +5y =−1 or x =−1, x +5y = 1, however both are impossible for (x, y) ∈Z2.

On the other hand, in the cases D = 1,9, one can take X1,0 and X3,0 re-
spectively and these are isomorphic to S1,0, S3,0 respectively since (r, s) = (±3,±1),
(r, s) = (±1,±3) give solutions to r 2 −Ds2 =±8. These two cases are well-known.

For D = 1 the two Picard lattices are both isomorphic to the hyperbolic plane U and
X1,0

∼= S1,0 since the glueing of U to T (X ) = T (S) is just a direct sum. These surfaces
have a unique elliptic fibration. (see [MN03, Proposition 3.2.1]).

In the case D = 9 the surface X3,0
∼= S3,0 is a K 3 surface of bidegree (2,3) in P1 ×P2.

See [MN03, Proposition 3.2.1], [vG05, §5.8], [Be22]), [IKh13, Proposition 3.7]).

The classical association X8 7→ S2, already mentioned in §3.3, is studied in
(the list is surely not complete) [IKh13], [IKh15], [Kh05], [KS18], [MN03], [MSTV17].

4.3. X16 with a line and S4

For d = 2, p = 2 one has X2p2d = X16. We assume that this surface contains a line L.
Then X16 = X1,−1 and with K the class of the line:

Pi c(X1,−1) =
(
ZH ⊕ZK , M16 =

(
16 1
1 −2

))
.
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From Theorem 1 one finds

Pi c(S1,−1) =
(
Zh ⊕ Zk,

(
4 1
1 −8

))
.

The two Picard lattices are isomorphic:{
h = H −2K ,
k = −H +3K ,

{
H = 3h +2k,
K = h +k,

and det(Pi c(X16)) = det(Pi c(S4)) = −33. To show that X1,−1
∼= S1,−1 it suffices

to show that the glueing of the Picard lattice to the transcendental lattice is
unique up to isomorphisms. That again follows from the surjectivity of the map
O(Pi c(X1,−1)) →O(DP ) where DP is the discriminant group of Pi c(X1,−1). In fact,
let

S :=
(
19 64
8 27

)
, then SM16S t = M16 ,

so that S ∈ O(Pi c(X16)). The discriminant group of the Picard group is generated
by δ := (2,1)/33 and one finds that δS ≡ 23δ. Since Z/33Z ∼= Z/3Z×Z/11Z, with
23 7→ (−1,1), we see that −I ,S ∈O(Pi c(X16)) generate O(DP ).

Geometrically, the isomorphism X1,−1 → S1,−1 is given by the ‘double projec-
tion’ from the line L ⊂ X1,−1 ⊂ P9. First one projects from the line: φH−K : X16 →
X ′

12 ⊂ P7, notice that (H −K )2 = 12. The image of L is a rational normal curve of
degree (H −K )K = 3 which spans a P3 ⊂P7. Projection from the span of the normal
curve induces the map φH−2K : X16 → S4 ⊂P3, the image of L is a quintic rational
curve in the quartic surface S4 since (H −2K )K = 5.

See [IR05], [IR07], [MSTV17, §3.4], [vGK23, 5.3] for geometrical aspects of the
map X16 7→ S4.

4.4. X18 with a line and S2

For d = 1, p = 3 one has X2p2d = X18 and S2d = S2. Assume that X contains a line,
then X = X1,−1 and

Pi c(X1,−1) =
(
ZH ⊕ZK ,

(
18 1
1 −2

))
,

therefore

Pi c(S1,−1) =
(
Zh ⊕ Zk,

(
2 1
1 −18

))
.

The two Picard lattices are isomorphic and have determinant −37, for example an
isomorphism is: {

h = 2H −5K ,
k = −5H +13K ,

{
H = 13h +5k,
K = 5h +2k .



Some remarks on Brauer Classes of K 3-type 141

The two K 3’s are also isomorphic since the (sufficient) conditions in [MN04, Theo-
rem 3.1.5] are satisfied. More precisely, there exists h1 ∈ Pi c(X18) such that h2

1 = 2p
and h1H ≡ 0 mod p (here p = 3), for example h1 = H +3K .

Another way to see this is to notice that, since the order of the discriminant
groups is 37, a prime number, the orthogonal group of the discriminant lattice of
the Picard groups is {±1}. Thus the glueing of the Picard lattice to the transcendental
lattice is unique and the surfaces are isomorphic.

See also [MSTV17, §3.3] for the map X18 7→ S2.

4.5. X24 with a line and S6

For d = 3, p = 2 one has X2p2d = X24 and S2d = S6. Assume that X contains a line,
then X = X1,−1 and the Picard lattices of X and S1,−1 have the Gram matrices

P24 =
(
24 1
1 −2

)
, P6 =

(
6 1
1 −8

)
.

The determinants are −49, so we are in the case of square determinants as in §4.2.
Let e = h +k in Pi c(S1,−1), then e2 = (h +k)2 = 6+2−8 = 0. Then h,e is a basis of
the Picard lattice of S1,−1 and

(xe + yh)2 = x2e2 +2x yeh + y2h2 = 14x y + 6y2 .

Notice that there is no (−2)-vector in this lattice since y(7x+3y) =−1 has no integer
solutions. Therefore the Picard lattices are not isometric and hence X1,−1 ̸∼= S1,1.

The case X24 7→ S6 was studied in detail in the recent paper [KM23].

4.6. X36 with a line and S4

For d = 2 and p = 3 one has X2p2d = X36, which has genus 19, and S2d = S4. This
case was considered in [KM23, §1.2], see also [BBFM23, Remark 4.16]. Assume that
X contains a line, then X = X1,−1 and the Picard lattices of X and S1,−1 have the
Gram matrices

P36 =
(
36 1
1 −2

)
, P4 =

(
4 1
1 −18

)
.

The determinants are −73. The Gram matrices are equivalent:

SP36S t = P4, S =
(

57 272
136 649

)
,

hence the Picard lattices are isomorphic. Since the orthogonal group of the dis-
criminant group, which is Z/73Z, is {±1}, the glueing of the Picard lattice to the
transcendental lattice is unique. Thus X1,−1

∼= S1,−1.
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