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BETWEEN ARITHMETIC AND ALGEBRA: 
IN THE SEÀRCH OF A MISSINO LINK 

THE CASE OF EQUATIONS AND INEQUALITIES 

Abstract. Following the claims about the operational/structural duality of 
mathematical co nceptions, (Sfard, 1991) we notice that the majority of mathematical 
notions draw their meaning from two kinds of processes: the primary processes, 
namely the processes from which the given notion originated, and secondary processes 
- those for which instances of this notion serve as an input. Abstract objects act 
as a link between these two kinds of processes, thus seem to be cruciai for our 
understanding of the corresponding notions. Pseudostructural conceptions are the 
conceptions which develop when the student, unable to think in the terms of abstract 
objects , uses symbols as things in themselves and, as a result, remains unaware of 
the relations between the secondary and primary processes. In the case of equations 
(or inequalities), which in this paper are used as an illustration for the above claims, 
the primary processes are the arithmetic operations encoded in the formulae, the 
secondary processes are those which one must perform on equations in order to solve 
them, and the abstract objects behind the symbols are the truth-sets. Pseudostructural 
thinking is witnessed whenever there is an evidence that the propositional formulae 
are conceived just as strings of semantically void symbols, for which the formai 
transformations used to find the solution are the only source of meaning. This 
approach to algebraic symbolism seems deceitfully dose to the views on algebra 
endorsed by such mathematicians as Peacock, deMorgan and Hilbert. The difference 
between this and our students' positions is thus carefully studied and explained. Our 
empirical study carried out among secondary school pupils has shoWn that in the 
algebra, pseudostructural conceptions may be more widely spread than suspected. 

When secondary school students deal with variables and parameters, when they 

look at such expressions as 2rc(5 — x2) or y/a — 6, when they solve standard equations or 

inequalities - what are the objects that they see with their mind's eye and manipulate in 

their heads, what are the reasons for the decisions they make? 

It is our aim in this paper to make a step toward a better understanding of students' 

understanding of algebra. The questions we ask are not as straightforward as one may 
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think, and we will not satisfy ourselves with the simple answers that may be concocted 

out of what can be found in student's notebooks and on standard tests. Student's thinking 

is much more complex than can be deduced from the circumstantial evidence of written 

records. To make our point, let us begin with a brief account of what happened one day 

between a certain teacher and his pupil. 

A 16 year old girl - let us cali her Ella - was asked to solve a standard quadratic 

inequality: 

x 2 + z + l < 0 

At this stage, Ella could solve any linear inequality and was quite familiar with quadratic 

functions and their graphs. The girl approached the problem eagerly and within a few 

minutes produced the following written account of her efforts: 

(1) zi,2 = - ^ ~ = 2 " 

(2) T = {} 

(according to the notation used in schools, T signifìed the truth set of the inequality, namely 

the set of ali the numbers the substitution of which instead of x turns the inequality into a 

true proposition). 

There can be little doubt about the correctness of Ella's solution. Indeed, the fact 

that the roots x\ and x<i cannot be found implies that the parabola f(x) = x2 + x + 1 does 

not intersect the z-axis. Since its vertex is the minimum of the function, the whole curve 

is placed above the a>axis and therefore the inequality f(x) < 0 does not hold for an x. 

Was the written solution the only source of teacher's insight into Ella's thinking, 

he would certainly reward her efforts with a high score. As it happened, however, he 

talked and listened to Ella when she was working on the problem, and the things he heard 

prevented him from praising her. Let us have a look at a fragment of this dialogue. 

Ella: [After she wrote line (1) above] There will be no solution for x, 

because here [points to the number under the J sign] I've got a 

negative number. 

Teacher: O.k., so what about the inequality? 

E.: So the inequality isn't true. It just cannot be... 

T.: Do you know how to draw the parabola..? 

E.: The parabola of this [expression]? But there is no y here... how can 

one draw parabola when there is no y1 

T: Do you know the relationship between a parabola and the solutions of 

such an inequality as this? 
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E.: Of an inequality? No. Only of an equation. But maybe it is the same. 
Let's suppose that this is equal zero [points to the inequality symbol 
and makes a movement as if she was writing "=" instead of "<"]. But 
now can there be a parabola if there is no result here [points to the 
expression she wrote in (1)], no solution? 

T.: So what is your final answer ? What is the solution of the inequality? 
E.: There is no solution. 

We believe this little example is quite enough to convince anybody that there is 
much more to student's thinking than implied by his or her written solutions to standard 
problems. Thus, we can only applaud Davis (1989), for his critique of the current research 
on learning algebra: "Many - really most - studies focus on what student writes and largely 
ignore what that student thinks. Yet, what student thinks is much more fundamental than 
what the student writes". In this paper, we shall try to listen very carefully to what the 
student has to say while asked explicitly about the meaning of such basic algebraic notions 
as "solution", "admissible operation" or "equivalent equations". Then, in an attempt to 
have a glimpse into what is going on in the learner's head while he or she is engaged in an 
algebraic activity, we shall take a detailed account of his or her reactions to both routine 
and non-standard problems. 

1. Preliminary reflections on understanding algebra 

If the teachers had time to talk to the students in the way we did while preparing the 
material for this paper, they would soon realize that even the most successful of their pupils 
may be less than satisfied with their own understanding of algebra. Here is an excerpt of 
a dialogue we led with a sixteen year old Rina, after she had given an expert performance 
in solving a system of linear equations. 

Inteviewer: Okey, you did it beautifully. Now, let me ask you something. You 
said you multiplied the second equation by 2 and you subtracted the 
result from the first one. Why is it permitted to do such thing? 

Rina: ...I don't know. 
I.: Make an effort, say whatever you think. 
R.: I never really thought about it. 
L: Didn't it bother you? 
R.: It did, but I stili don't know. "* 
L: Maybe you can now think about something. Any idea? 
R.: [Remains silent; then, with an embarrassed smile:] No... 

The above conversation proves that Rina's understanding was instrumentai rather 
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than relational. While introducing mese terms in 1976, Skemp explained that instrumentai 

understanding should beinterpreted as "having rules without reasons" - as the kind of 

comprehension which expresses itself in a technical protìciency (which Rina obviously 

possessed) not accompanied by the ability to explain the algorithms in any way (which was 

also the case with Rina). In contrast, relational understanding was described as the ability 

to produce some kind of justification to the rules at hand. 

Before we proceed any further, let us stop for a moment to ask two preliminary 

questions. First, if the student is able to solve any kind of equation or inequality that he or 

she is ever likely to tackle, how important is it that he or she can also justify the procedure? 

Second, if we insist on relational understanding of algebra, what kind of comprehension of 

algebraic concepts should we be prepared to accept as satisfactory? 

It is relatively easy to give an answer to the first question. Except for a long list of 

arguments against "rules-without-reasons" listed by Skemp himself, let us point out to what 

seems to us the most obvious shortcoming of this kind of understanding: without an ability 

to give some kind of explanation to the formai algebraic procedures, the students are not 

very likely to be able to cope either with non-standard questions or with more advanced 

algebraic ideas which will be introduced to at least some of them in the future. In the 

following sections, wewill illustrate this claim with many examples. 

Answering the second question is a much more demanding task, and we will devote 

the remaining part of this paper to a discussion of this problem. 

/ / . Explaining algebra as building links between primary and secondary processes 

While speaking in favor of relational understanding of algebra we imply that we 

want our students to be able to relate the formai algebraic procedures to the previously 

developed system of concepts. This is exactly what one expects when he or she requires an 

explanation to a given rule or notion. In the case of algebra, the connection must be made 

between the algebraic manipulations and the underlying arithmetical processes. Indeed, at 

the secondary school level the only way to justify the operations we perform on equations is 

to ground the formai transformations in the numerica! computations which they symbolize 

and generalize. For instance, the transition from, say, 3x + 7 = 2x — 5 to 3x = 2x — 12 

can only be explained by saying that whatever number is substituted instead of x, the first 

equality holds if and only if the other holds, and therefore subtracting 7 from both sides of 

the equation does not alter its solution. The manipulation we performed on the equation is 

an algebraic operation, while the fact that the equality relation is preserved under subtraction 

of a number is a property of arithmetical processes. The meaning and soundness of the 

algebraic procedure is thus inherited from the underlying numerical calculations. 

Let us pause for a moment to put the things into a broader context. Let us think about 
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the construction of mathematical knowledge in general. The relationship between algebraic 

manipulation and numerical computations exemplifies the way in which more advanced 

mathematical concepts usually relate to those from which they evolved. As was argued in 

much more detail elsewere (Sfard, 1991; Sfard and Linchevski, 1993), mathematics may be 

viewed as a hierarchical structure in which new layers are often constructed by subjecting 

some well-known computational procedures to more general, higher-level processes. This 

mechanism may be observed time and again both in history and in individuai learning. Thus, 

when focusing our sight on a given mathematical idea, we may usually make a distinction 

between primary and secondary processes. For instance, such process as division of an 

integer by an integer is primary with respect to the idea of a rational number, while the 

arithmetical operations on rationals are secondary processes. When the notion of function 

is considered, the sequence of numerical operations necessary to compute the values of a 

function are primary processes, whereas procedures which may be applied to a function as 

a whole (e.g. adding or composing, deriving or integrating) are secondary processes. In 

the case we are now dealing with we will use the term primary processes when referring 

to arithmetical procedures hiding behind the formulae, whereas the algebraic manipulations 

themselves will be called secondary processes. In ali these cases it is clear that in order to 

apply the secondary processes in a meaningful way, one must be able to relate them to the 

primary processes. 

The above distinction will help us now to put our fìnger on the abilities that constitute 

mastery in algebra. When we scrutinize the way an expert deals with formulae, equations, 

and inequalities, we soon realize that his or her capacity far focusing on the right kind of 

processes and the deftness in making transitions from one level to another is at the core of 

his or her fluency in the formai language of algebra. 

As strange as it may seem at the first glance, the ability to temporarily act in an 

authomatic, "unthinking " mode, namely to perforai secondary processes without constantly 

worrying about their justification is what makes symbolic algebra so powerful a tool for 

solving complex computational problems. Or, as Whitehead (1911, p. 59) forcefully put it, 

It is a profoundly erroneous truism, repeated by ali copybooks and by eminent people when 
they are making speaches, that we shòuld cultivate the habit of thinkihg about what we are 
doing. The precise opposite is the case. Civilisation advahces by extending the number of 
important operations which we can perforai without thinking about them. 

In the case of algebra, performing "without thinking" means doing the formai 

manipulations without constantly keeping hvmind their deeper, arithmetical interpretations. 

The advantages of this mode of action are obvious: it loosens the cognitive stress and 

vastly increases the capacity for solving complex problems (think about solving a very 

complicated equation when constantly thinking about the primary meaning of the symbols 

- the numéric computations represented by the formulae). The necessity, however, to be 
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able to act solely at the secondary (formai) level is only one side of the story. True, the 

genuine "operations of thought" may sometimes be postponed for a very long time. They 

are "like cavalry in a battle - they are strictly limited in number, they require fresh horses, 

and must only be made at decisive moments" (ibid). Nevertheless, even though rare, they 

are indispensable. Thus, when the suspension of primary meaning becomes permanent, 

when no return is ever made to the primary processes, the advantage turns into handicap. 

When a person becomes a captive of the "automatic" mode, when he or she looses his or her 

ability of referring to the primary processes when such reference would be appropriate, his 

or her performance displays ali the characteristics listed by Skemp as typical of instrumentai 

understanding. 

1.2 Abstract objects as links between primary and secondary processes 

In this section some thought will be given to the nature of the links through which the 

back and forth movements between the primary and secondary processes become possible. 

When a student tries to solve a problem by performing formai algebraic operations, 

a question may be asked what are the entities that are being manipulated. The simplest 

answer would be that algebraic procedures are directed at formulae, at symbols. Obviously, 

there is some truth to such statement, but contrary to the belief held by many students, 

it is certainly not the whole truth. Were it the formai expression and that expression 

alone which dictates the actions to be taken, how could we account for the fact that on 

different occasions the same formulae are manipulated in different ways? How could we 

explain why an equation such as px 4-1 — q = 3x -f 2 will sometimes lead to the answer 

"x = (q + l)/{p - 3) for any q and any p ^ 3", and sometimes to the claim that p must be 

equal 3 and q must be equal —1? The difference stems from the diversity of interpretations 

that may be given to the same expressions. In the above equation, we may refer to the 

component formulae, px + 1 — q and 3x + 2, in at least two different ways: we may treat 

them as expressing certain unknown numbers, and we may interpret them as representing 

two linear functions. In the first case we are asking about the value of x (expressed in 

terms of parameters p and q) which makes the equality hold; in the second we are looking 

for the values of the parameters p and q for which the two functions are equal. 

The meaning we confer on algebraic formulae is what binds together the primary 

(arithmetical) and secondary processes (symbol manipulations). Whatever the interpretation 

of a symbolic expression given to it in the course of formai manipulations, the referents 

we point to are some kinds of abstract objects. Indeed, whether we view the formula as 

denoting a certain (albeit unknown) number or as representing a function, we are referring 

'to'a permanent entìty which, on one hand, is a product of arithmetical operations and, on 

the other hand, may serve as an input to an algebraic procedure. We may say, therefore, 
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that abstract objects act as links between primary and secondary processes. 

We are now in the position to add a new element to our list of skills which constitute 

mastery in algebra. In the last section we stressed the importance of automatization of the 

secondary processes, namely of the ability to temporary suspend the primary meaning for 

the sake of effective manipulations. At the same time we explained why the primary 

processes cannot be forgotten altogether and must be brought back to one's mind from time 

to time in the process of problem solving. Now we can complete the picture. Since abstract 

objects are the mental devices which mediate between the primary and secondary processes, 

they certainly must play a centrai role in algebraic problem solving. It is through them that 

the (secondary) operations performed on formai algebraic expressions become meaningful. 

Indeed, how could we justify the fact that we subtract 2x from both sides of the equation 

15 -f 2x = 6x - 1 if we were not able to view 15 + 2x, 6x — 1, and 2x not only as short 

prescriptions for certain computations but also as the results of these computations? And 

in the case of px + 1 - q = 3# H- 2, how could we account for the operations which led 

us to the result p = 3,q = - 1 , if we were not able to assume the functional approach 

to the expressions px + 1 - q and 3x + 2? Examples may be brought (see e.g. Sfard 

and Linchevski, 1994) showing that to solve one problem, ali the possìble approaches may 

be necessary. While coping with equations and inequalities, a person must be able to go 

back and forth between operational approach, when his or her thought concentrates on 

processes (those represented by algebraic expressions or those performed on them), and 

structural approach, when he or she focuses on the abstract objects hiding behind the 

symbols. Thus, the next important component of mastery in algebra is the flexibility of 

approach - the ability to quickly alternate between different modes of thinking and different 

interpretations of algebraic expressions (see also Sfard, 1991; Gray & Tali, 1991; Sfard & 

Linchevski, 1994; Moschkovich, et al., 1993). 

1.3 When the link is missing: pseudostructural (semantically debased) conceptions 

The flexibility of student's algebraic thinking develops gradually (see Sfard & 

Linchevsky, 1994). When a person is introduced to algebraic symbolism for the first 

time, his or her understanding of the symbols is far from being as versatile as that of an 

expert. Many studies (see also Sfard, 1987; Filloy & Rojano, 1985, 1989) have shown that 

the beginners tend to conceive algebraic expressions in a purely operational way, namely 

as concise prescriptions for certain computations. It must usually take quite a while before 

the student is able to think about a formula also in a structural way. Seeing such an 

expression as 3x+2 as both a computational process and the product of this process is only 

the beginning. After the ability to view a string of symbols as a name for a number has 

been developed, the students have stili a long way to go until they can address the letters in 

the formulae as variables rather than unknowns and until they can see the functions hiding 
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behind the formulae. In other words, of the two structural ways of dealing with algebraic 

exprèssions, the functional approach is more advanced than the "fixed-value" approach. 

Although this fact may often escape teacher's attention, the realization that an 

algebraic formula can be treated not only as a chain of computational operations but also 

as a produci of these operations may not come easy to a young learner. When we come 

to think about it, we findout that the difficulty is hardly surprising. To use our favorite 

metaphor, asking the pupils to treat a prescription for a computational procedure as a résult 

of this procedure is almost like an attempt to convince them that a receipt for a cake is a 

cake itself! The term reification was introduced to denote the switch in pupil's conception 

which is necessary to turn a process into an object (the word encapsulation, used by some 

other writers, seems to nave a similar meaning; see e.g. Dubinsky, 1991). A steadily 

growing bulk of empirical findings confirms what can easily be explained on a theoretical 

basis (see Sfard, 1991): that reification is inherently difficult, and that many students never 

develop a fully-blown structural conception of the most important mathematica! concépts 

taught at schools, the concepì of function being probably the most problematic of ali. 

A failure to see the abstract objects behind algebraic formulae would often turn into 

a serious handicap for a learner. In the absence of the elements which are necessary to give 

a deeper meaning to symbol manipulations, the rules of algebra are doomed to be perceived 

as àrbitrary and having no reasons and student's understanding can only be instrumental. 

The pupil, unable to fathom the nature of the abstract entities which serve as inputs and 

as outputs to the procedures he or she performs, would often develop conceptions which 

we once decided to cali semantically debased ór pseudostructural (see also Sfard, 1992). 

When the signs on the pàper do not seem to stand for any conceivable entity different 

from the signs themselves, the signifier becomes the signified. In other words, the student 

focuses on symbolic exprèssions as such, without looking for their hidden sense. There is a 

long list of behaviors which can be regarded as indicative of such direct, one-dimensional, 

approach to algebraic formulae. Here is a collection of phenomena which constitute the 

syndrome called pseudostrucutral conception. 

1. When algebraic symbols are treated as things in their own right, not standing 

for anything else, the forni of the expression becomes the sole basis for judgments and 

decisions. To justify his or her choices, the student should have recourse to the undrlying 

rules of arithmetic; instead, she or he would Iean heavily on the external features of the 

formula at hand. 

EXAMPLE. Here is an excerpt from our conversations with a sixteen year old 

student whom we asked to check an equivalence of different pairs of equations. The boy 

was requested to decide whether the two equations, (x - 2)2 = 0 and 4x - 11 = 2x — 7 

were equivalent or not. Here is what he said to us: "I try to see whether I have here the 
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same elements... I open the brackets [in the first equations; obtains x2 — 4x + 4 = 0]. I 

have 4 here, which is 4x, and x2... and there will be nothing like that here [points to the 

second equationj. So these two equations are not equivalent." 

2. For those who cannot see beyond the symbols, the secondary operations would 

seem arbitmry and unjustified. The disciplined student will accept them as the rules of the 

game played by mathematicians and by those who are supposed to behave like ones. This 

is certainly what can be inferred from the statements of Rina whom we quoted in section 1 

above. The study presented in the next sections abounds in additional evidence for pupils 

inability to see algebraic techniques in a more meaningful way. 

3. If a sign serves also as its own referent, there is little hope that the student will 

be able to see different representations of the same mathematical concept as equivalent. 

One of the most obvious symptoms of this kind of weakness is the the well documented 

and widely deplored difficulty with graphical interpretation of algebraic expressions. Many 

researchers have pointed out to the fact that high percentages of students are reluctant to 

use visual means while solving algebraic problems. More often than not, it seems that the 

pupils are totally unaware of the relation between analytical and graphical representations 

of functions (Markovitz et al. 1986; Dreyfus & Eisenberg, 1987; Even, 1988; Schoenfeld 

et al, 1993). The behavior of Ella, whom we quoted in the opening of this paper, aptly 

illustrates our present claim. The following episode shows how much confused a student 

may become when asked to link his knowledge of linear functions and their graphical 

representations with what she knows about linear equations. 

EXAMPLE. At the Urne we talked to the sixteen year old Orly, she was already 

supposed to be skillful in drawing the graphs of linear functions. Indeed, when we presented 

her with an equation y — kx-1 and asked for an example of a shape which can be obtained 

from it (in the Gartesian piane) by choosing a certain vai uè of k, she draw a straight line 

with -1 and -0.5 as y- and rr-intercepts, respectively. Here is an excerpt form the dialogue 

which followed the production of the graph. 

Interviewer: Can you explain the relationship between this drawing and our 

equation? 

Orly: This [the picture] is a graphical representation of this [the equationl. 

I.: What does it mean? 

O.: That ali the x's... That every number we substitute here [in the 

equation] must be one of the points on the graph. For example, if 

the graph intersects here [points to the a>intercept], in -0.5, and here 

[points to the ?/-intercept] in -1, then this must give a true [!] solution 

to the equation. 
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I.: What do you mean? Gould you explain? Where do we substitute -1 

and-0.5? 
O.: Instead of the x and the y. Here we have -0.5 [points to the x-

intercept], and here we have the -1 [points to the y-intèrcept], so we 

put -0.5 instead of x and -1 instead of y. 

L: But these two numbers are not... They come from two different 

points... 

O.: What do you mean? So what that these are two different points? 

It didn't take much time to bring Orly to realize the problem. After a while she was 

able to straighten things up and to decide that one point on the line rather than coordinates 

of two different points should be considered as a solution of the equation. Nevertheless, _ 

our brief exchange shows how superfìcial was her understanding of the nature of the bond 

between the equation and the graph of its truth set. 

4. It was stressed several times that mathematical objects - these elusive flgments of 

the human mind - are vitally important for our mathematical thinking. As we explained in 

our earlier writings, one way of describing their role is to mention the fact that with the help 

of abstract objects many pieces of knowledge may be brought together to form a unifled 

compact whole. To put it differently, mathematical objects tie together facts, concepts and 

rules which otherwise would be stored in separate compartments of our memory. From a 

mathematical object, like from a root, a tree-like scheme would arise. Into this scheme new 

facts and problems can easily be incorpcrated on the force of certain common patterns which 

link them to the entity in question. In the absence of abstract objects, such scheme cannot 

be constructed and, as a result, the student would not know how to handle non-routine 

problems, even if he or she has already learned the relevant facts and the appropriate 

methods of solution. He or she just would not recognize the connection. Hence, the pupil 

would feel that new method must be devised to cope with the situation. Since inventing 

new techniques is not an easy task, many students would rather slip into a simpler mode 

of action: he or she would just ignore the differences between the problem at hand and 

those standard tasks he or she tackled in the past. The method used in the former cases 

will now be applied to the new kind of situation in a mechanical way, while superfìcial 

futures of the symbols guide the student in his or her choice of an algorithm for solution. 

We observed this kind of behavior in the Ella's case: the girl applied the formula for the 

roots of quadratic equation automatically, only because they were brought to her mind by 

certain external features of the inequality she was presented with. Sometimes, even most 

obvious discrepancies and absurdities would not make the students realize the inadequacy 

of the method they have been using. 
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EXAMPLE. There is the phenomenon we witnessed time and again in our 

interviews (we nave no doubt it is known only too well to every teacher): a student, 

when eonfronted with the inequality x2 — x — 6 > 0, would often give the following 

answer: x\^ > 3, - 2 . Pupil's failure to explain the result would not shake his or her belief 

that this was the correct answer. 

5. The symbols would not always suffice as a substitute for their abstract referents. 

In some situations, the student would feel that certain intangible things must be summoned 

up if one wants to make sense of the problem at hand. For instance, it is rather difficult 

to talk about equivalence of equations if one does not focus on the invariants of algebraic 

manipulations - on those mathematical objects which are requested to remain unaffected 

by the transition from one of the equations to another. When no appropriate abstract being 

is available, a total confusion may result. Student's bewilderment would express itself in 

messy statements, in which different kinds of entities are mentioned at random and mistaken 

for each other. We cali this kind of confusion out-of-focus phenomenon (OOF, for short). 

EXAMPLES. In our interviews we listened very carefully to the students when 

they solved equations and inequalities, when they tackled questions about equivalence of 

equations, and when they tried to define such terms as "solution of an equation" and 

"equivalent equations". The blurred language used by a big proportion of our interlocutors 

disclosed their inability to focus on the right kind of mathematical entities. 

The pupils would often say "equation" when what they really meant was one of the 

component formulae (like in "For this [inequality] to be true, one equation must be bigger 

than the other), they would define a truth set as "the x" (instead of saying it is the set ofthe 

values of x which turn the formula into a true proposition), they would define the solution 

process as a procedure in the end of which "one gets a true proposition" (instead of saying 

that what is found is the substitution which turns the equation into a true proposition), etc. 

We may talk about an out-of-focus behavior also when an object at hand is described 

in terms which do not seem adequate to the given context. 

EXAMPLE. Sixteen year old Dina was solving a singular system of equations. 

Some of her utterances clearly showed how uncertain she was about the nature of the 

mathematical object she was supposed to handle. When "the x disappeared" from one of 

the equations (she was left with the expression —1=4) and she was asked to explain the 

implications, the girl used the expressions "equation exists", and "equation is true" as if 

they both were synonymous with the claim "equation has a solution." 

Dina: The system disappears. 

I.: What do you mean? 
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D.: That it doesrt't exist. It is not true. 
L: But it is written nere, so what does it mean that it doesn't exist? 
D.: It is written, but it is not true. 

2. Probing students' understanding of algebra: can they see the links between primary 
and secondary processes? 

After the above theoretical considerations, the most naturai thing to do is to ask 
how flexible is student's understanding of algebra in practice, and how common are 
pseudostructural conceptions after several years of schooling. As we already observed 
in the introductory remarks, such questions can only be answered through "flne-grained -
analysis" (see Schoenfeld et al., 1993) of students utterances and by dose inspection of the 
ways in which the learners tackle algebraic problems. 

To have a dose look at student's understanding of algebra we decided to combine 
several methods of investigation. Three questionnaires were prepared in which the subjects 
were asked either to answer direct questions on the meaning of basic algebraic concepts or 
to solve series of non-routine problems (we decided to avoid the regular textbook exercises 
to prevent students from giving automatic answers from which very little may usually 
be learned about the respondent's conceptions). The questionnaires were applied to 280 
students in three integrative secondary schools in Jerusalem (for more detailed description 
of the examined population, see Figure 1). To have a closer look at the conclusions 
obtained from this triple study and to check additional conjectures which we were able 
to formulate on the grounds of our results, we followed the written tests with a series of 
clinical interviews. 

Before the study and its results are presented, let us give some background 
information about the way algebra is taught in Israeli schools. 

FIG. 1: THE POPULATION 

Grade Age Number of groups Number of students 

NINTH 14-15 4 97 

TENTH 15-16 5 112 

ELEVENTH 16-17 3 71 

TOTAL 12 280 
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The path that must be followed by the student is roughly presented in Figure 2. 

FIG. 2: HOW ALGEBRA IS TAUGHT IN ISRAELI SGHOOL - BASIC CONCEPTS 
(after Maschler, M., 1976, 1978) 

CONCEPT DEFINITION EXAMPLES 

NUMERICAL 
FORMULA 
(NC) 

Combinàtion of numerals, 
variables, operators, brackets, 
and other symbols such that if 
the variables are substituted with 
numbers, a number results. 

i) 3a 
ii) Sx2 -5(a; + 2) 

iii) (a;7 - 2)/(2z - 1) 

PROPOSITIONAL 
FORMULA 
(PF) 

Combinàtion of numerals, 
variables, operators, brackets, 
equality and inequality signs, other 
symbols, and words, such that 
when variables are substituted^ 
instead of numbers, a proposition 
(true or false) results. 

i) 3x > 12 
ii) (a+b)2 = o2+2aò+62 

iii) x2 4- 5x + 6 = 0 
iv) z 2 + l = 0 

TRUTH SET 
(TS) 

The set of ali the substitutions 
(numbers, pairs of numbers, triples 
of numbers, etc.) that turn the 
given PF into a true proposition. 

In the above examples: 
i) {x : x > 4} 

ii) JR 

iii) { - 3 , - 2 } 

iv)l) 
EQUIVALENCE 
OF PFs 

Two Pfs (equations, inequalities, 
systems of equations or 
inequalities) are equivalent if 
they nave the same variables and 
the same truth set. 

i) 3x -f 5 = x — 1 and 
3x = x — 6 

ii) -7x > -14 and 
x < 2 

PERMISSIBLE 
OPERATIONS 

An operation on PF which turns it 
into an equivalent PF. 

i) subtraction of a 
number from both 
sides of PF (like in 
example i above) 

ii) division of both sides 
of an inequality by the 
same negative number 
and reversion of the 
inequality sign (like in 
ii above) 
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As can be seen from this, concise description, equations and inequalities are 

introduced as two different, but closely related, instances of a single mathematical notion: 

propositional formula (PF, from now on). The idea of PF is introduced as early as seventh 

grade, and equations and inequalities are then brought and dealt with simultaneously. Every 

PF has its truth-set (TS, for short), namely the set of ali the substitutions that turn this PF 

into a true proposition. Any two PFs with the same truth sets are cali ed equivalent. Solving 

equation or inequality means finding its TS. As a consequence of this approach, even the 

solving procedures are described in set-theoretic terms: to solve, say, an equation E, one 

must find the simplest possible PF which is equivalent to E. To summarize, this is a good 

example of a structural approach: a mathematical notion (PF) is explained in terms of 

abstract objects (truth-sets). 

This modem method has, no doubt, much appeal for those who are able to appreciate 

the unifying power of propositional formula. Indeed, this simple idea ties together a large 

bulk of definitions and procedures and thus organizes the whole of basic algebra into a 

neat, coherent, elegant whole. On the face óf it, such top-down (from general to particular) 

approach should be easier for the learner than the alternative bottom-up method. 

We should not forget, however, that the notion of propositional formula, just because 

of its generality and great abstractness, dòes not yield easily to the kind of interpretation 

the student may need in order to nave a good grasp of the idea. More often than not, 

abstract mathematical concepts become meaningful only in relation to those mathematical 

ideas which they are supposed to generalize. In the above scenario, the ideas which justify 

the concept of propositional formula and which màke it significant appear later than the 

concept itself. In a sense, therefore, our teaching sequence reverses what seems to be a 

'naturai' order. This impression becomes even stronger when we look at the Històry of 

algebra. The notion of propositional formula appeared only at the advanced stage in the 

development of the domain, and it served as a means for summarizing and simplifying the 

existing knowledge about equations and inequalities, rather than as a point of departure for 

building this knowledge. This leads to the question whether our 'upside down', structural-

to-operational approach may be really meaningful for the students. We shall explore this 

question on the following pages. 

2.1 First enquire: drawing a general picture of students' conceptions 

With the help of three different questionnaires we intended to draw a first sketchy 

picture of students' understanding of algebra. 

First study: students check equivalence of equations and inequalities 

Sinee our objective was to track down pseudostructural conceptions, it seemed the 
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right move to draw the bead on the concept of equivalence. Although no procedure is 

mentioned in its definitiort, we expected that in order to decide whether two PFs are 

equivalent, some students would look for transformations by which one of the PFs could 

be turned into the other. In a previous study devoted to this notion (Steinberg et al., 1991) 

the researchers reported that usually, "the students could assess the equivalence quickly by 

observing that one equation was derived from the other by some transformation." By itself, 

this result cannot yet be regarded as an evidènce for pseudostructural conceptions. Such 

conclusion would become justifìed only if we could show that the student uses the criterion 

of transformation automatically and never returns to the underlying processes and abstract 

objects in order to verify his conclusions. We decided, therefore, that as a tool for spotting 

pseudostructural conceptions we should use non-standard pairs of PFs which, in the case 

of such automatic behavior, would lead to inconsistency with the defìnition of equivalence. 

To construct the set of items presented in Figure 3, we looked for four pairs of 

equations (and four pairs of inequalities) that would represent ali the possible combinations 

of two parameters: equivalence according to the structural defìnition on one hand, and, on 

the other hand, possibility to transform one of the PFs in into the other by help of symbolic 

manipulations. Let us have a closer look at each of the categories. 

FIG. 3: THE FIRST QUESTIONNAIRE AND ITS RESULTS 

TRANSFORMABLE (T) NON-TRANSFORMABLE (-T) 

item item IA NA item item IA NA 

EQUI­
VALENT 
(E) 

a 

b 

Ax-\l = 2x-l 
Ax = 2x + 4 

5x + A< ll(a; + 2) 

4 < 6 z + 22 

9 

18 

2 

11 

e 

d 

4 Z - 1 1 = 2 : E - 7 

(x- 2)2 = 0 

5a; + 4 < l l (z + 2) 

Ax + 5 > x - 4 

68 

54 

15 

19 

NOT 
EQUI­
VALENT 

(-E) 

e 

f 

(3z- l ) (2a ; -5) = 
x{3x - 1) 
2x + 5 = x 

Ax2 > 9 
2x > 3 

28 

45 

17 

43 

g 

h 

7x + 2 = 3x + 1 
Ax = 5 

3x + 2 < 1 - 7x 
5(x - 1) > 6 

8 

9 

17 

35 

IA: % of answers which are inconsistent with the defìnition of equivalence 
NA: % of students who gave no answer 
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While (E,T) and (-E,-T) (items a,b and g,h, respectively) consist of quite 

standard examples (pairs which either satisfy or do not satisfy both the requirement of 

equivalence and that of formai transformability), the remaining two groups were expected 

to pose a diffìculty for some pupils. 

In (—E,T) (items e,f)» the PFs in a pair are not equivalent in spite of the fact that 

one of them may be formally transformed into the other. Clearly, there is a contradiction 

between these two conditions, so at least one of them must only seem to be satisfied. 

Indeed, neither the division of both sides by 3x - 1 (example e), nor the extraction of the 

square root from both sides of inequality ( /) is a permitted operation. Nevertheless, our 

experience as teachers taught us that some students do use this kinds of operations without 

the necessary precautions. Such behavior can be interpreted as an indication of student's 

inability to go back to the primary processes in order to verify their decisions. 

The category (E, —T) (items c,d) is also non-standard, and to some people may . 

seem counterintuitive: the PFs are equivalent according to the criterion of equal truth-sets, 

but no "naturai" sequence of elementary operations would transform one of them into the 

other. 

For a researcher, curiosities and non-standard examples create rare opportunity for 

probing student's understanding of different concepts. By exposing thè student to such 

deceptive examples like those in category (—E,T) and to such unexpected (some would 

say unnatural) ones like those in (E, —T), we hoped to assess their readiness to go beyond 

standard procedures and to think in terms of the underlying processes and abstract objects. 

In this context, their answers to the question about equivalence were less important than 

the verbal explanation they were required to give in order to justify their decisions. . 

The questionnaire was administered to our sample of 280 students of different ages 

(see Figure 1). Althoùgh there were some subtle differences between the results obtained in 

various subgroups, ali the fìndings clearly indicated the same tendency. Because of this, and 

because of space limitations, we shall report here only the general results. By the time the 

study was carried out, ali the pupils nave already had quite a long experience with the topics 

on which our questions were focused. For ali of them, solving equations and inequalities 

was a basic skilì, an indispensable ingredient of their everyday mathematical activity. Even 

so, in items e, d, f, and g, relatively high percentages of the respondents gave answers which 

were inconsistent with the definition of equivalence (see Figure 3). Thus, according to our 

expectations, the students' behavior in categories (-E,T) and (£7, -T) indicated that for 

many of them, the formai transformability was practically the only criterion for equivalence. 

Moreover, the answers to the questions e and f showed that the decisions whether a given 

transformation is permissible or not had often been quite arbitrary, and certainly had not 

been based on any requirements regarding underlying processes and objects (it should be 
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noticed that in item e, the percentage of answers inconsistent with the definitions was 

substantially lower than in e, d, and f; this can probably be explained by the fact that 

careless division of both sides by an expression containing the variable is one of those 

common mistakes against which teachers repeatedly warn their students). 

The arguments with which the students justified their answers are summarized in 

Figure 4. The findings seem to reinforce the impression that for many respondents, an 

equation or inequality was nothing more than a string of symbols which can be mànipulated 

FIG. 4: ARGUMENTS GIVEN BY THE RESPONDENTS 

TO SUPPORT THEIR ANSWERS 

EQUATIONS INEQUALITIES 

item T S F OOF NA item T S F OOF NA 

(E,T) a 30 22 11 5 31 b 20 28 9 2 41 

{E,~T) e 52 29 4 4 12 d 47 19 4 3 27 

(-E,T) e 40 16 9 2 33 f 41 16 9 7 26 

(-E,-T) g 20 23 16 3 38 h 20 18 6 3 53 

T: argument based on an attempt to formally Transform one PF into the other 
S: argument based on full Solution of PFs and comparison of the results 
F: argument based on the similarity or differences in the Form of both PFs 
OOF: Out-Of-Focus response 
NA: No Argument 

according to certain arbitrary rules. Of those pupils who did explain ; their decisions, the 

majority used the transformability as a criterion. Many others leaned on purely external 

features of the PFs, such as partial similarity and partiàl difference between their component 

formulae. Under the title "out-off-focus arguments" we have collected ali the responses in 

which different mathematical entities have been confused (for example, two sides of the 

same equation has been compared in order to answer the question about the equivalence 

between this equation and another). Although some of the above arguments could be given 

also by a student who fully adopted the structural approach, in majority of cases they may 

only be interpreted as indicative of pseudostructural conceptions. Indeed, more often than 

not, they have been brought to support an incorrect claim about equivalence of two PFs. 

The possibility that student's understanding was merely instrumentai cannot be dismissed 

even in those cases in which the respondents solved both equations and compared the 
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solutions. Although this is exactly what should be done according to the definition of 

equivalence, the respondent's actionscould sometimes be dictated by a habit rather than 

by the deep relational comprehension. 

. Ali this shows students' inability to relate permissible operations to the truth set of 

an equation and, in consequence, to the primary processes underlying these concepts. This 

is in a perfect agreement with the results obtained by Steinberg, Sleeman, and Katorza 

(1991), according to which "many students are not sure that an equation that has been 

derived by a valid transformation has the same solution or are unable to recognize when 

an equation has been transformed in a way that does not alter the answer." 

Second study: students talk about the meaning of algebra 

Since no questioning technique seems to stand alone as a method of discovering the~ 

ways students think about abstract mathematical concepts, we decided to supplement the 

non-standard equivalence problems with two other types of questionnaire. Both of them 

were ariswered by the same 280 secondary-school pupils who participated in the first part 

of our study. 

In the investigation which will be presented in this section, the respondent was 

directly interrogated on the meaning of such basic algebraic notions as solving an equation, 

permissible operation, equivalence of equations. The questionnaire consisted of four types 

of sentences which had to be completed by the student. Each of these sentence-types was 

first applied to equations and then to inequalities (see Figure 5). Let us have a quick 

glance on the categories into which students' responses were classified. First, ali of them 

were crudely divided into two groups: non-informative answers on the one hand, and the 

answers which seemed to convey a reasonably clear message as to the way the respondent 

thinks about propositional formulae, on the other hand. In the first category, except for the 

cases in which there was no answer at ali (NA), two sub-categories have been distinguished: 

tautological statements, namely the answers which added no information (T) and the out-of-

focus statements (OF) in which the respondent confused several mathematical entities. The 

informative responses had been divided into sub-categories according to the centrai idea 

through which the students tried to explain the concept of question. Three such ideas were 

identified: truth set (TS), formai transformations (FT), and "the answer" - the expression 

or number which is produced by the solving procedure (AN). 

According to the numbers presented in Figure 5, the high occurrence of the non­

informative answers is probably the most significant of our findings. This phenomenon 

cannot be explained just by saying that the respondents' effort was not sincere enough 

- in ali but two of the items, more than two thirds of the students (and sometimes as 

much as 90%) did try to give an answer. Nevertheless, they were not able to produce 

more than out-of-focus utterances such as "Two equations are equivalent when there is an 
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equality between two sides" (item 4E); or tautological statements such as "The operations 

are permitted because without them we wouldn't be able to solve inequalities" (21) or just 

"This is the nature of mathematics" (2E). Ali this implies once again that for the majority of 

students, solving equations and inequalities is not a very meaningful activity. The numbers 

show that this claim applies to inequalities even better than to equations. 

FIG. 5: THE DISTRIBUTION OF ANSWERS (in %) TO THE QUESTIONNAIRE 

ON THE BASIC CONCEPTS RELATED TO EQUATIONS AND INEQUALITIES 

N = 280, E •= equation, I = inequality FOCUS ON NON-INF. 

ITEM TS FT AN OF TA NA 

1. To solve an equation [inequality] 
means 

E 

I 

3 

1 

62 

1 

7 

15 

7 

50 

8 13 

30 

2. Such operations as adding the same 
number to both sides of an equation 
[inequality] are permitted because.... 

E 

I 

19 

12 

12 

7 ; : 

11 

14 

37 

23 

21 

44 

3. When we solve an equation [inequality], 
in the end we arri ve at 

E 

I 

4 

2 

1 63 

19 

10 

38 

12 

8 

10 

33 

4. Two equations [inequalities] are 
called equivalent if 

E 

I 

4 

2 

1 

1 

45 

21 

35 

36 

2 

1 

13 

39 

Let us now try to decipher the message conveyed by the responses which we 

classifìed as informative. Perhaps the next most striking finding is the very low occurrence 

of strictly structural answers (TS) - the answers which define an equivalence of PFs as 

an equality of their truth sets. Since this is the way the subject has been taught to our 

respondents at school, it did not seemed unreasonable to expect this would be a frequent, 

if not the leading, kind of answer. 

In some of the items, and especially in the first, the students preferred to focus on 

formai transformations. For example, they claimed that to solve an equation or inequality 

means "to play with both its sides" or "to simplify it as much as possible" (1E). Thus, they 

clearly identified the solution with an algebraic process (with what must be done) rather than 

with its product (with the result we want to get). At the same time it should be noted that 

no evidence was found to show that the pupils had more than a superficial understanding of 

the secondary processes. In response to the question why the formai operations on PFs are 
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permitted (item 2), many of the pupils gave such answers like "because they are performed 

on both sides" or "because they make the equation simpler and easier to solve". No real 

justifìcation of the "permissible" operations was suggested, so in the eyes of the pupil the 

laws of equations solving were clearly not more than arbitrary "rules of the game". 

This impression becomes even stronger when we consider yet another type of 

utterances - those that focus on "getting the answer" or on "finding the x" (category AN). 

Although such statement as "When we solve an equation, we arrive at x" (item 3E) may be 

regarded as based on the pre-Vitean way of understanding letters in equations (as unknowns 

rather than as variables instead of which any number may be substituted), the other results 

suggest an alternative interpretation. Indeed, in the answers grouped in AN category, the 

students never tried to explain the nature of "the x" ("the answer"). For example, none of 

them mentioned that what is found is the number for which the equality holds. Thus, it 

seems plausible that for at least some of the respondents the regular elementary formulae, 

namely the expressions of the form "x =number" or "a; >number", were not more than 

"halting signals", mere signs that the process of solving an equation or inequality carne to 

its end. 

Third study: students tackle singularities 

Our next step was to test the tentati ve conclusions from the former study by watching 

more closely the ways the pupils apply the knowledge in some special situations. Our 

supposition that the learners interpret an expression of the form "# =number" just as a sign 

which signalizes the completion of a solution process gave rise to the hypothesis that the 

pupils will not be able to cope with singular PFs - the PFs in which the variable disappears 

at a certain stage of the solution process. Indeed, if the students are "programmed" to see a 

problem as solved only when a certain expression is obtained, then in a situation in which 

such expression does not appear at ali they will feel lost and helpless. 

An experienced teacher does not need a systematic research to know that this 

conjecture is probably true. An exemplary evidence was provided to us recently by a 

teacher who reported less than 15% rate of success on a test consisting of three items -

ali of them systems of linear equations with truth set equal to {} (no roots) or to the set 

of ali the possible substitutions. The 20 tenth-graders to whom the test was administered 

were otherwise quite successful. When faced with the singularities, some of them wrote 

sentences like "There is no logie to it" or "Something went wrong here", and stressed their 

exasperation with many exclamation marks. Reportedly, this was not their first encounter 

with singularities. 

To get a clearer picture of the situation, we designed a test of our own in which 

the respondents were asked to decide whether certain pairs of PFs were equivalent or not 
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(Figure 6). Ali the PFs were singular, with TS equal to or to R. Since any two PFs belonging 

to the same pair had identical truth set, ali the pairs should be regarded as equivalent. In 

the light of our previous fìndings, however, we expected that when the singular PFs are 

concerned, our respondents would be more inclined than ever to look for the possibility of 

transforming one PF into the other (they just would not be able to base their responses on 

"final answers" of the usuai type). An adequate transformation could easily be found in 

only naif of the cases. 

The results presented in Figure 6 seem to confimi our suppositions with particular 

force. The percentage of the answers consistent with the defition of equivalence never 

exceeded 65%, and in three out of the four cases of non-transformable couples the scores 

were as low as 10-11%. These numbers are even lower than those obtained in our first 

study, which was a priori assessed as harder. 

FIG. 6: THE QUESTIONNAIRE ON SINGULAR PFs AND ITS RESULTS (in %) 

N = 280 TRANSFORMABLE NON-TRANSFORMABLE 

ITEM IA NA ITEM IA NA 

< > 

ai (x + 2)2 = x 
x2 + 3a; + 4 = 0 

51 10 Ci 

e2 

x2 + 1 = 0 
x 2 + 5 = 0 

x2 + 3x + 4 = 0 
2(x + 1) = 2x + 5 

82 

60 

8 

29 
< > 

0 2 5(3x - 1) > 15x + 7 
15x> 15aj + Ì2 

24 11 C3 (a; + 3)2 + 2 < 0 
5x -2>hx 

61 28 

0 0 

6i Qx - 2 = 3(2z - 5) + 13 
Qx - 15 = 3(2rr - 5) 

14 25 di 6x - 2 = 3(2x - 5) + 13 
(x-2)(x + 2) = x2 - 4 

32 16 

0 0 
b2 x{x+l) + 3> x 

x2 + 3 > 0 
19 20 d2 x2 + 3 > 0 

2x + 5 > 2(x + 1) 
59 24 

IA - the answers which are inconsistent with the definition of equivalence 
NA - no answer 

2.2 Second enquire: A closeup on students' conceptions 

So far, our studies have shown what the students cannot do rather than what they 

think and imagine while dealing with equations and inequalities. From what we saw we 

concluded that in spite of the carefully designed curriculum, the learners do not seem to 

follow the path they are supposed to make while building their conceptions, and they do not 
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understand algebraic con structs and procedures in the way dictated by textbook definitions. 

First and foremost, many ofthem do not see how the secondary processes grow out of the 

rules of arithmetic. 

When describing students' perception of the secondary processes, we said it was 

"not very meaningful". It is our goal now to make a revision of this utterance. Saying that 

any kind of mathematica! activity is not very meaningful in the eyes of a student is neither 

revelational nor informative. In fact, it is not even quite correct. To use Davis' (1988) 

statement, "students usually do deal with meanings, and when instructional programs fail 

to develop appropriate meanings, students develop their own meanings - meanings that 

sometime are not appropriate at ali." (p. 9) In other words, there must be some inner 

logie, some consistency, to the actions performed by the learners and to the decisions they 

make while solving equations and inequalities. In a series of interviews that followed ~ 

the studies presented in the previous section we tried to fathom the nature of students' 

idiosyncratic algebra. To be more precise, we aimed at fìnding the meanings conferred by 

the students on algebraic procedures. As we stated already more than once, for the majority 

of learners, algebraic manipulations do not draw their justification from being generalized 

laws of arithmetic. If so, the question arises what kind of alternative links glue algebraic 

concepts and procedures intò a coherent whole. 

Through the interviews with 14-16 year olds we were able to put our flngers on a 

few salient traits of algebraic conception shared by many learners. In the remainder of this 

section we shall present what is probably the most popular vision of secondary processes. 

1. Arbitrariness 

Historically, algebra emerged as a generalization of arithmetic. This is also the way 

we try to present it to a student. In order to make the rules of algebra meaningful to 

the learner, we reach outside the algebra itself, to a more primitive world of numerical 

computations. As was shown above, this attempt to justify one system with the help of 

another is often far from successful. Many students tend to view algebra as a world in 

itself, with ali its objects and procedures subjected to certain internai laws, existing only 

within the boundaries of this world, independently of any external factors. 

Although in these circumstances the origins of the rules of algebra may seem 

arbitrary, once they are established and accepted they create a consistent system. Algebraic 

manipulations are considered as ways of making formai expressions simpler. For example, 

in the case of an equations with a variable x, the procedure we choose is aimed at obtaining 

an expression of the form "# =number". It does not matter very much what is the meaning 

of this final formula. As we already observed, its main significance stems from the fact 

that it signalizes the end of the solving procedure. In the study reported in the last section 
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we saw that many students could not cope with equations which do not lead to this typical 

"halting signal". In our interviews we could have a closer glimpse at this phenomenon. 

We noticed that whenever x disappeared before an elementary expression was reached, the 

students tended to declare non-existence of a solution regardless of the exact shape of the 

x-free formula obtained in the end. 

EXAMPLE. While faced with the system of equations with parameter k\ 

kx — y — \ 

x-y = 3 

15 year old Mariella declared that "k cannot be equal 1 because then this [x and y] will 

disappear and there will be no solution." 

Needless to say, interpreting the disappearance of of the variable as an absence of 

solutions would often result in a false answer. 

EXAMPLE. When asked about the equivalence of the following two equations: 

( I - 3 ) ( I + 3 ) = X 2 - 9 and (x + 2)2=x 

16 year old Ronnen (R) opened the brackets of the first equation and obtained x2 — 9 = 

x2 - 9. 

R.: The different elements cancel each other.... There is no... there are 

no... let's see whether in the second equation we get the same. 

The boy opened the brackets in the second equation, brought it to the canonical form 

x2 + 3x + 4 = 0, tried to solve and found out that it had no solutions. 

R.: There are no solutions to this equation. So, these two are equivalente 

It seems to me that both of them have no solutions. They both are 

cancelled, in the end. 

In such cases as the those presented above a functional approach is needed to interpret 

the result of transformations. Indeed, one must think about an equation as a comparison 

of functions in order to realize that its truth set is R. Both Mariella and Ronnen evidently 

lacked the necessary flexibility of thinking. 

2. Intuitive acceptability 

Although the rules of algebra seem arbitrary, they are intuitively acceptable. Students 

often justify secondary operations by saying that they don't change the equation. 

Indeed, many people feel that the permissible operations leave equation "unchanged" 

and they explain it by stating that whatever is done to both sides of PF "preserves the 

balance". The learner may be unable to explain the nature of this balance or to pinpoint the 
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aspects which remain unaffected by the permissible operations. Here, she or he may run 

into difficulties similar to those experienced by a person who tries to explicate the principles 

of face recognition. The inability to explain, however, doés not necessarily undermine the 

strong intuitive belief that as long as the same operation was performed on both sides of 

an equation, the equation remained "the same". This intuition is often based on an analogy 

with the rules of arithmetic rather than on a their conscious generalization. 

EXAMPLE. 15 year old Naomi (N) added a number to both sides of an equation. 

She stated that the resulting equation was eqùivalent to thè originai. 

L: Why are these two equations eqùivalent? 

N.: When I adda number to both sides I don'tchange anything, because it 

is balanced... It's like when I have a fraction, say 4/8. If I divide [the 

nominator and denominator] by 4,1*11 get the same value: 1/2 = 4/8. 

It's the same, it's eqùivalent. 

The conviction that any operation "preserves the balance" as long as it is performed 

on both sides of a PR is, in a sense, primary and does not seem to require further justifìcation. 

Naturally, it would often lead to a faulty judgment. 

EXAMPLE. Dina (see the last example) was judging the equivalence of 4x2 > 9 

and 2x > 3. 

D.: I think that they are eqùivalent, because if we take a root from this 

one [4x2 > 9], we get this one [2x > 3], And I think that it's o.k. to 

do this, so they are eqùivalent. 

"I.: What does it mean that they are eqùivalent? Could you explain? 

D.: That in the beginning they were the same, this equation was exactly 

the same as this one. Some operation was performed that turned this 

one into something else. But it is, in fact, the same equation. 

She chose to point to the "sameness" of the two equations to justify the 

transformation, even though she was well aware of the "officiai" reason for the equivalence: 

I.: So this is the meaning of the notion of equivalence? 

D.: No. Equivalence means that the unknown is the same. 

This last example shows the power of intuition with particular clarity. Dina's own 

conception of equivalence was so strong that she never felt a need to verify her intuitive 

judgments with the criteria suggested by the formai definition. 

3. Justifìcation by purpose 

When "the rules of the game" are established and accepted, it is possible to to find a 

more "tangible" justifìcation of the operations performed on PFs. One way of doing this is 
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to say that the transformations lead to the purpose we have in mind while solving equations: 

they simplify the PF and make us closer to an expression of the form "a; =number." If so, 

any operation which does not result in a simpler formula would usually be dismissed. 

EXAMPLE. 13 year old Danna (D), who just learned to solve simple linear 

equations, was presented with the problem: 

112 = 12a;-+28 

and said that she will subtract 28 from both sides. An interesting exchange with the 

interviewer (I) followed: 

L: Why do you want to subtract 28 and not, say 12:r? 

D.: You can't subtract 12x. How would you do this? If you had here [on 

the left side] 17a;, for example, and here [on the right] \2x, then you 

could subtract 12x from both sides. You can only subtract Ylx from 

both sides when there is x on both sides. When there is x only on 

one side we can't [do it, because] we won't reach any result. 

L: What do you mean by "we can't". That it is not allowed or just that 

it would not be helpful? 

D.: [After a long pause] Perhaps we can do it... maybe it is not forbidden. 

For the same reason, any operation that would simplify a PF if performed on its 

both sides runs a good chance of being accepted as permissible. Here is a representati ve 

example showing the common consequences of the confusion between the legality of the 

a transformation and its effectiveness. 

EXAMPLE. 15 year old Erez (E), was solving an equation 

( 3 s - l ) ( 2 a ; + 5)=-aj(3a;^l) 

E.: Perhaps I could divide [both sides of the equation]. Say, I'd divide by 

3x — 1... Yes, it's fine. 

I.: What are the rules of dividing [an equation]? 

E.: We can do this when there is a multiplication in the equation. 

4. Relativity of the final result 

Maybe the most striking of our findings was the discovery that in the eyes of some 

of our interviewees the final solution of an equation might not be uniquely determined by 

the equation itself and could be dependent on the procedure chosen by the solver. Student's 

belief in the correctness of the "balance-preserving" operations and in the necessity of the 

regular "halting signal" might be stronger than any other considerations. Sometimes, the 
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student would accept a possibility of two different answers to the same question rather than 

reject a procedure which he intuitivély regards as correct. 

EXAMPLE. Erez (see the last example) was asked to check the equivalence of the 

following two equations: 

2x + 5 = x and (3x - i)(2x + 5) = x(3x - 1) 

He solved the first equation and obtained x = - 5 . Then, to solve the second equation, he 

decided to divide its both sides by 3x — 1, The resulting linear equation yielded the number 

-5 again. Erez concluded that the two equations were equivalent. Then he was asked by 

the interviewer to open the brackets in the second equation and solve it again. This time 

he found two solutions, 1/3 and —5. Once again, he was asked to assess the equivalence 

of the originai equations. 

E.: 1*11 substitute - 5 here [in 2x - 5 = x], and I'il get.. - 1 0 + 5 = -5 . . . 

that's o.k. 

I.: Whatabout 1/3? 

E.: With 1/3? [substitutes in 2x-ò = x and obtains 2/3 + 5 = 1/3]. No, 

for this x it's not true. 

L: So, are these two equations equivalent or not? 

E.: So they are not equivalent. 

I.: You said before that they are equivalent. So what is your final answer? 

Are they or aren't they equivalent? 

E.: It's true that they are equivalent as long as I don't solve it [the second 

equation] with the formula [for the roots of quadratic equations]. But 

the moment I used the formula, it is true only for one x, —5. 

The acceptance of the idea that several procedures leading to different answers may 

ali be correct was particularly evident in the case of singularities. Some of our interviewees 

interpreted the disappearance of the variables from an equation as a "lack of solutions", but 

at the same time expressed their belief that a different procedure could lead to a different 

result. 

EXAMPLE. Sixteen year old Dina (D) was solving the singular system of linear 

equations: 

2(x - 3) = 1 - i/ 

2x + y = 7. 
She arrived at an equation 0 = 0. 

D.: This means that it is true. 

I.: What do you mean? What are the solutions of this equation? How 

many solutions are there? 
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D.: I don't know. I didn't manage to arrive at them. 
L: Are there any solutions here at ali? What do you think? 
D.: In the way I know, there are none. 

One way to interpret this phenomenon is to say that it is the whole procedure which 
transforms an equation into an elementary expression, rather than its final outcome, that is 
viewed by a student as a solution to the problem. 

3. Conclusions and implications 

Not surprisingly, our empirical studies have shown a clear tendency toward 
conceptions which have very little to do with the structural definition of equivalerne offered 
by the textbooks. More often than not, students' answers were inconsistent with this 
definition - the phenomenon that could only be explained by the fact that the respondents 
based their decisions on the existence or absence of formai transformations rather than on 
the equality or inequality of truth sets. The pupils leaned heavily on secondary processes, 
apparently feeling no need to justify these procedures by any factors external to algebra 
itself. They viewed the rules of algebra as arbitrary, even if intuitively acceptable, and 
justifiable only by their purpose. Since no references had been made by the pupils to the 
underlying primary processes, we were inclined to interpret these findings as indicative of 
pseudostructural conceptions. 

At the first glance, what was found in our investigations brings to mind the views 
promoted by some leading nineteenth and twentieth century mathematicians. According to 
the formalist school, which was introduced to algebra by Peacock and deMorgan (see e.g. 
[1], [3]) and was later transferred to a much broader context by Hilbert and his followers, 
the mathematical symbols, although interpretable in many different ways, have no meaning 
of their own. From the assumption of "semantical emptiness" Peacock soon arrived at 
a complete de-arithmetization of algebra: since the meaning of symbols can no longer 
be expected to come from their non-existent designata, it must be sought in the way the 
formulae are transformed and combined with each other. These transformations, in their 
turn, are the basic elements in which ali the algebra takes its roots - and they are totally 
arbitrary. 

On the face of it, this is exactly the kind of conception that was displayed by the 
participants of our questionnaire. The similarity, however, may be deceitful. Indeed, what 
for the British mathematicians was a result-of a deliberate and well calculated move, may 
be potentially dangerous for a mathematically unsophisticated student. Peacock's request to 
strip algebraic symbols from their initial semantic load originated in a conscious decision 
of a person who knew exactly what he was going to give up, and who was perfectly 
able to go back to the renounced meanings whenever appropriate. As we stressed more 
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than once in this paper, such occasionai returns seem-to-be indispensable for successful 

problem-solvirtg. Whether today's stùdents posses such flexibility of thinking is a crucially 

important question, and it was the purpose of our investigation to provide it with an answer. 

A closer look at our findings made us realize that the similarity of stùdents' 

conceptions to the views expressed by Peacock and his colleagues is very superfìcial indeed. 

The differences are more significant than the common traits. For the majority of pupils, it 

seems, an equation and inequality are mèaningless strings of symbols to which certain well-

defined procedures are routinely applied. The beliefs about the nature of these procedures 

is where the formalists and the today's stùdents part. Although both the mathematicians 

and the pupils view the formai operations as arbitrary, for the formalist such approach is 

a matter of a deliberate choice, while for the student it is an inevitable outcome of his 

or her basic inability to link algebraic rules to the laws of arithmetic. This inability is 

evidenced by the fact that the pupils cannot cope with problems which require flexibility 

of thinking and do not yield to the standard solving algorithms. By a "standard solving 

algorithm" we mean a chain of simplifying transformations which ends when no further 

simplification can be made. The last element of such chain is considered to be the solution 

of the equation or the inequality. Pupils' ability to translate this final expression into a 

truth set seems to be very limited. This is probably why our respondents' performance was 

considerably worse for inequalities than for equations (the expression "a; < o" does not 

define a concrete number, thus is more difficult to interpret than "# = A"), and practically 

disastrous for singulàr PFs. 

In short, an equation or inequality seems tobe for a student a thing in itself, for 

which the formai manipulations are the only source of meaning. Some ideas regarding the 

possible ways of fighting pseudostructural conceptions are now being tested in an ongt>ing 

study. 
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